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Quadrature histograms in maximum-likelihood quantum state tomography
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Quantum state tomography aims to determine the quantum state of a system from measured data and is an
essential tool for quantum information science. When dealing with continuous variable quantum states of light,
tomography is often done by measuring the field amplitudes at different optical phases using homodyne detection.
The quadrature-phase homodyne measurement outputs a continuous variable, so to reduce the computational cost
of tomography, researchers often discretize the measurements. We show that this can be done without significantly
degrading the fidelity between the estimated state and the true state. This paper studies different strategies for
determining the histogram bin widths. We show that computation time can be significantly reduced with little
loss in the fidelity of the estimated state when the measurement operators corresponding to each histogram bin
are integrated over the bin width.
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I. INTRODUCTION

Quantum information science and engineering have ad-
vanced to the point where rudimentary quantum computers are
available in the laboratory and commercially [1–4]. However,
further advancing quantum technologies requires improve-
ments in the fidelities of basic operations. Consequently, more
precise and efficient reconstruction and diagnostic tools for
estimation of quantum states [5–12], processes [13–20], and
measurements [21–24] are essential. Quantum tomographic
techniques for optical quantum states of light have become
standard tools because quantum light sources are essential for
implementations of continuous-variable quantum computation
and communication [25–29]. These sources are also exten-
sively exploited in quantum cryptography [30–34], quantum
metrology [35,36], state teleportation [37–39], dense coding
[40,41], and cloning [42,43].

In the quantum state tomography studied here, one per-
forms a measurement on each member of a collection of
quantum systems, prepared in the same unknown state. Each
system is measured in a basis chosen from a complete set
of measurements. The goal is to estimate the unknown state
from the measurements results. This estimation can be done
by different methods, but we study Maximum Likelihood
Estimation (MLE), which finds among all possible states the
one that maximizes the likelihood function. The likelihood
function computes for any state the probability, according to
that state, of obtaining the observed data.

Quantum homodyne tomography is one of the most pop-
ular optical tomography techniques available [44]. It rapidly
became a versatile tool and has been applied in many different
quantum optics experimental settings since it was proposed by
Vogel and Risken in 1989 [5] and first implemented by Smithey
et al. in 1993 [6]. This technique permits one to characterize
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an optical quantum state by analyzing multiple phase-sensitive
measurements of the field quadratures.

A homodyne measurement generates a continuous value.
It is a popular practice to discretize the measurement result,
because this can considerably reduce the size of the data
and expedite the reconstruction calculation. However, the
discretization necessarily loses information contained in the
original measurements. How should we choose a discretization
strategy such that the bins are not too small nor too large?
Larger bins will reduce calculation time and memory, but
smaller bins will provide a better representation of the un-
derlying distribution.

In this paper, we use numerical experiments to simulate op-
tical homodyne tomography and perform maximum likelihood
tomography on the data with and without discretization. When
choosing a quadrature bin width, we use and compare two
different strategies: Scott’s rule [45] and Leonhardt’s formula
[46]. The paper is divided as follows: we begin by reviewing
maximum likelihood in homodyne tomography in Sec. II.
Then, in Sec. III, we describe our numerical experiments. Next,
we discuss the estimation of the mean photon number from the
quadrature measurements in Sec. IV. In Sec. V we present our
results, and we make our concluding remarks in Sec. VI.

II. MAXIMUM LIKELIHOOD IN HOMODYNE
TOMOGRAPHY

Let us consider N quantum systems, each prepared in
an optical state described by a density matrix ρtrue. In each
experimental trial i, we measure the field quadrature of one
of the systems at some phase θi of a local oscillator, i.e.,
a reference system prepared in a high-amplitude coherent
state. Each measurement is associated with an observable
X̂θi

= X̂ cos θi + P̂ sin θi , where X̂ and P̂ are analogous to
mechanical position and momentum operators, respectively.
For a given phase θi , we measure a quadrature value xi ,
resulting in the data {(θi, xi )|i = 1, . . . , N}.
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The outcome of the ith measurement is associated
with a positive-operator-valued measure (POVM) element
�(xi |θi ) = �i . Given the data, the likelihood of a candidate
density matrix ρ is

L(ρ) =
N∏

i=1

Tr(�iρ), (1)

where Tr(ρ�i ) is the probability density, when measuring with
phase θi , to obtain outcome xi , according to the candidate
density matrix ρ.

MLE searches for the density matrix that maximizes the
likelihood in Eq. (1). It usually is more convenient to maximize
the logarithm of the likelihood (the “log-likelihood”):

L(ρ) = lnL(ρ) =
N∑

i=1

ln[Tr(�iρ)], (2)

which is maximized by the same density matrix as the likeli-
hood. The MLE is essentially a function optimization problem,
and since the log-likelihood function is concave, approximate
convergence to a unique solution will be achieved by most
iterative optimization methods.

In our numerical simulations, we use an algorithm for
likelihood maximization that begins with iterations of the RρR

algorithm [47] followed by iterations of a regularized gradient
ascent (RGA) algorithm. We switch from one algorithm to
another because a slowdown is observed in the RρR algorithm
after about (t + 1)2/4 iterations, where t + 1 is the Hilbert
space dimension. In the RGA, the density matrix ρ (k+1)

obtained in iteration k + 1 is parametrized as

ρ (k+1) = (
√

ρ (k) + A)(
√

ρ (k) + A†)

Tr[(
√

ρ (k) + A)(
√

ρ (k) + A†)]
, (3)

where ρ (k) is the density matrix found by the previous iteration,
and A may be any complex matrix of the same dimensions as ρ.
Equation (3) ensures that ρ (k+1) is a density matrix for any A.
We then use sequential quadratic programming optimization
strategy [48] in which A is chosen to maximize a quadratic
approximation of the log-likelihood subject to Tr(AA†) � u,
where u is a positive number adjusted by the algorithm to
guarantee that the log-likelihood increases with each iteration.
To halt the iterations, we use the stopping criterion of Ref. [49],
L(ρML) − L(ρ (k) ) � 0.2, where L(ρML) is the maximum of
the log-likelihood. This stopping criterion ensures convergence
to a state whose log-likelihood is very close to the maximum
likelihood.

III. METHODS FOR NUMERICAL EXPERIMENTS

Our numerical experiments simulate single-mode optical
homodyne measurements of three types of states: (1) superpo-
sitions of coherent states of opposite phase | − α〉 + |α〉 (called
“cat states”), (2) squeezed vacuum states, and (3) Fock states.
Each state is represented by a density matrix ρtrue represented
in the photon number basis, truncated at t photons. To better
simulate realistic experiments, these pure states are subject
to a 0.05 photon loss by passing through a medium with
transmissivity of 0.95 before measurement.

In order to calculate the probability to obtain homodyne
measurement outcome x, when measuring state ρtrue with
phase θ , we represent all states and measurements in the photon
number basis of a Hilbert space truncated at t photons. If |x〉
is the x-quadrature eigenstate with eigenvalue x, and U (θ ) is
the phase evolution unitary operator, then for an ideal homo-
dyne measurement, we have �(x|θ ) = U (θ )†|x〉〈x|U (θ ). To
include photon detector inefficiency, we replace the projector
with �(x|θ ) = ∑n

i=1 Ei (η)†U (θ )†|x〉〈x|U (θ )Ei (η), where η

is the detection efficiency and Ei (η) are the associated Kraus
operators [44]. Typical state-of-the-art homodyne detection
systems have efficiency η ∼ 0.9, so we use this value in our
simulations. Using this strategy, we are able to correct for the
detector inefficiency as we estimate the state. We use rejection
sampling from the distribution given by P (x|θ ) to produce
random samples of homodyne measurement results [50].

To choose the phases at which the homodyne measurements
are performed, we divide the upper half-circle evenly among
m phases between 0 and π and measure N/m times at each
phase, where N is the total number of measurements. In
all simulations, we use m = 20 and N = 20 000. To secure
a single maximum of the likelihood function, we need an
informationally complete set of measurement operators, which
can be obtained if we use t + 1 different phases to reconstruct
a state that contains at most t photons [51].

To quantify the similarity of the reconstructed state ρ to the
true state ρtrue we use the fidelity

F = Tr
√

ρ1/2 ρtrue ρ1/2. (4)

We report fidelities for four different situations: (i) the state
is reconstructed using the continuous values of homodyne
measurement results, that is, without discretization, (ii) the
state is reconstructed with chosen bin widths, (iii) the state is
reconstructed with bin widths given by Scott’s rule [45], and
(iv) the state is reconstructed with bin widths suggested by
Leonhardt [51]. We consider only histograms with contiguous
bins of equal width.

In 1979 Scott derived a formula recommending a bin
width for discretizing data sampled from a probability density
function f for a single random variable x. The recommended
bin width is

h� =
[

6

s
∫ ∞
−∞ f ′(x)2 dx

]1/3

, (5)

where the first and second derivatives of f must be continuous
and bounded and s is the sample size. Because one does not
know f in an experiment we assume a normal distribution. For
a normal f we have∫ ∞

−∞
f ′(x)2 dx = 1

4
√

πσ 3
, (6)

where σ is the distribution’s standard deviation. Combining
Eqs. (5) and (6), we obtain the recommended bin width for a
normal distribution:

h = 3.5 σ s−1/3. (7)

This formula is known as Scott’s rule and is optimal for
estimating f (minimizing total mean-squared error) at each
phase if the data are normally distributed. In our simulations

022325-2



QUADRATURE HISTOGRAMS IN MAXIMUM-LIKELIHOOD … PHYSICAL REVIEW A 98, 022325 (2018)

we compute a bin size separately for each phase’s quadrature
measurements, and we use the unbiased sample standard
deviation in place of σ .

Although Scott’s rule is optimal for each phase, it may not
be optimal for homodyne tomography because we are esti-
mating the density matrix rather than each phase’s quadrature
distribution individually. Also many interesting optical states
do not have normal quadrature distributions, for example, our
cat states. In fact, one might expect that the bin width should
be related to the number of photons in a quantum state because
higher photon number states have more narrow features in their
quadrature distributions, which should not be washed out by
the discretization.

Leonhardt states that if we desire to reconstruct the density
matrix of a state with n photons, we need a bin width narrower
than qn/2, where qn is given by

qn = π√
2n + 1

. (8)

This result was obtained from a semiclassical approximation
for the amplitude pattern functions in quantum state sampling
[46]. Leonhardt recommends using the maximum photon
number in Eq. (8); however, many states have no maximum
photon number, and whether a state has a maximum photon
number is not possible to learn with certainty from tomography.
Instead, we have tested using the photon number t at which the
reconstruction Hilbert space is truncated and an estimate of the
mean photon number 〈n̂〉 in Eq. (8). The truncation t must be
chosen in advance to be large enough that the probability that
ρtrue contains more than t photons is very small. We estimate
the mean photon number from the quadrature measurements
as described in the next section.

IV. ESTIMATING MEAN PHOTON NUMBER

In order to use Leonhardt’s advice for choosing the his-
togram bin width, we need to estimate the mean number 〈n̂〉 of
photons in the measured state from the phase-quadrature data
set. We use the estimator given in Refs. [52,53]. To obtain this
estimator, we first compute the mean value of (X̂θ )2, averaged
over θ , treating θ as if it is random and uniformly distributed
between 0 and π :

〈(X̂θ )2〉 = 〈X̂2 cos2 θ + (X̂P̂ + P̂ X̂) cos θ sin θ + P̂ 2 sin2 θ〉.
(9)

The phase θ is independent of X̂ and P̂ , so we can compute
the expectation over θ as

〈(X̂θ )2〉 =
〈 ∫ π

0
[X̂2 cos2 θ + (X̂P̂ + P̂ X̂) cos θ sin θ

+ P̂ 2 sin2 θ ]Prob(θ ) dθ

〉
, (10)

〈(X̂θ )2〉 =
〈 ∫ π

0
[X̂2 cos2 θ + (X̂P̂ + P̂ X̂) cos θ sin θ

+ P̂ 2 sin2 θ ]
1

π
dθ

〉
(11)

= 1

2
〈X̂2 + P̂ 2〉. (12)

Because the photon number operator is

n̂ = 1
2 (X̂2 + P̂ 2 − 1), (13)

we obtain

〈n̂〉 = 〈
X̂2

θ

〉 − 1
2 . (14)

We estimate 〈n̂〉 by computing the sample mean of all quadra-
ture measurements [52,53]:

〈n̂〉 = 1

N

N∑
i=1

x2
i − 1

2
, (15)

where the bar above 〈n̂〉 distinguishes the true mean photon
number from our estimate of the mean photon number. Note
that when θ is uniformly distributed over [0, π ), the individual
values of θ are not needed to compute 〈n̂〉.

V. RESULTS

To study the performance of various discretization strate-
gies, we compute fidelities between the true state and the states
estimated with the different strategies. Below ρML2 represents
the state estimated without discretization, ρHist is estimated
with histogram bins of specified width chosen arbitrarily, ρScott

is estimated with bin widths chosen according to Scott’s rule,
and ρLeonhardt is estimated with Leonhardt’s bin widths. To
make the graphs below, for each choice of parameters, we simu-
late 100 tomography experiments, making 100 density matrix
estimates. The graphs show the arithmetic mean of the 100
fidelities of the reconstructed states. The half width of the error
bars are the sample standard deviations of the 100 fidelities.

Our first results are shown in Fig. 1. The state considered
is a cat state with α = 1, where α is the amplitude of the
coherent state in the superposition. The state is reconstructed
in a Hilbert space truncated at t = 10 photons. (The probability
that the α = 1 state has more than 10 photons is 3.8 × 10−10.)
Scott’s method finds a different optimal bin width for each
phase considered, so we report the mean bin width averaged
over the 20 phases in these cases. Here the mean bin width for
Scott’s method is 0.35. When choosing a bin width, we use
values up to 0.34, the width we obtain when we use Eq. (8)

FIG. 1. Fidelities between estimated states and true states as
functions of the bin width for a cat state with amplitude α = 1 and
photon loss of 0.05. The Hilbert space is truncated at t = 10 photons.
Each set of points with the same color and marker shape corresponds
to a different data set. The mean bin width for Scott method is 0.35.
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FIG. 2. Average fidelity as a function of the bin width for cat states
with amplitudes α = 1 and α = 2. The Hilbert space is truncated at
t = 15 photons. The mean bin widths for Scott’s method are 0.35
(α = 1 cat state) and 0.64 (α = 2 cat state).

for t = 10, the number of photons at which we truncated the
Hilbert space. In all cases, each bin’s measurement operator
represents the measurement as if it occurred at the center of
each bin. In Fig. 1 each set of points corresponds to a different
data set. We see that different data sets had similar behavior
as we changed the bin size. As we can see in this figure, the
highest fidelities occur when we do not use discretization, as
expected. We also see that smaller bin widths result in higher
fidelities. However, even the largest bin widths tested result in
a fidelity loss of only 0.005 compared to the raw data.

The next set of results is presented in Fig. 2, where we
show average fidelities as a function of the bin width for
cat states with amplitudes α = 1 and α = 2. The states are
reconstructed in a t = 15 photons Hilbert space. The α = 2
state has probability of 3.3 × 10−7 to contain more than 15
photons. The fidelity for an α = 1 cat state is always greater
than the fidelity for a α = 2 cat state, including the case when
we do not use discretization. This is expected, because a
α = 2 state requires more parameters to effectively describe
its density matrix in the photon number basis, so for a given
amount of data, there is greater statistical uncertainty.

For a given bin width the fidelity of the α = 2 cat state
estimates is always lower than the fidelity for the α = 1
cat state estimates. This is also expected because the α = 2
state has more wiggles in its probability distribution, so more

FIG. 3. Average fidelity as a function of the bin width for a cat
state with amplitude α = 1. The Hilbert space is truncated at t = 10
photons. For this state, 〈n〉 = 0.6093, and 〈n̂〉 = 0.6109, giving a bin
width by Leonhardt’s formula of 1.05. The mean bin width for Scott’s
method is 0.35.

FIG. 4. Average fidelity as a function of the bin width for a cat
state with amplitude α = 2. The Hilbert space is truncated at t = 15
photons. For this state, 〈n〉 = 3.1978, and 〈n̂〉 = 3.1983, giving a bin
width by Leonhardt’s formula of 0.58. The mean bin width for Scott’s
method is 0.64.

information is lost when the bins are larger. The average bin
width used by Scott’s method is 0.35 for the α = 1 cat state,
and 0.64 for the α = 2 cat state, which results in significant
fidelity loss. Leonhardt’s width indicated in Fig. 2 is obtained
by using t = 15 in place of n in Eq. (8).

Until now, as mentioned before, every measurement out-
come in a given bin has been associated with the measurement
operator for the quadrature value at the center of that bin. That
is, the measurement operator �i associated with bin i would
give the probability density of obtaining a measurement result
at the center of bin i when computing Tr(�iρ). Although this
may be a useful approximation for very small bins, to improve
our analysis, we now change each bin’s measurement operator
so that it represents a measurement that occurs anywhere in the
bin. To obtain these new operators, we numerically integrate
the measurement operators over the width of each histogram
bin. With these integrated measurement operators, computing
Tr(�iρ) gives the probability to obtain a measurement result
anywhere in bin i. We identify each case by adding [POVM-
center] and [POVM-integral] to the legends in the graphs.

We also add to our analysis the use of the mean photon
number estimate in Leonhardt’s formula, and we calculate the

FIG. 5. Average fidelity as a function of the bin width for a
squeezed vacuum state whose squeezed quadrature has a variance
3/4 of the vacuum variance. The Hilbert space is truncated at t = 10
photons. For this state, 〈n〉 = 0.0167, and 〈n̂〉 = 0.0162, giving a bin
width by Leonhardt’s formula of 1.54. The mean bin width for Scott’s
method is 0.25.
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FIG. 6. Average fidelities as functions of bin width for Fock states
with different numbers of photons n. The bin widths from Leonhardt’s
formula are 0.56 (n = 4), 0.46 (n = 6), 0.40 (n = 8), and 0.36
(n = 10). The mean bin width from Scott’s method are 0.69 (n = 4),
0.82 (n = 6), 0.95 (n = 8), and 1.05 (n = 10).

fidelity between ρtrue and the state ρLeonhardt estimated using
the resulting bin width. Recall that Leonhardt recommends
that the bin width should be smaller than the one calculated
using the maximum photon number in Eq. (8), but here we use
the estimate of the mean photon number instead.

Figures 3 and 4 show average fidelities as functions of the
bin width for cat states with amplitudes α = 1 and α = 2,
respectively. Figure 5 examines a squeezed vacuum state
whose squeezed quadrature has a variance 3/4 of the vacuum
variance. Note for the cat states, as α increases, Scott’s bin
width also increases, which is certainly undesirable because
the quadrature distributions contain more fine structure. These
graphs show that integrating the measurement operators over
the width of each bin considerably improves the fidelities for all
cases. We can also see that the estimated mean photon number
can be safely used in Eq. (8) to compute the bin width.

As seen in Eq. (7), Scott’s rule gives bin widths proportional
to the sample standard deviation. Since states with a higher
number of photons can have higher standard deviations, Scott’s
method will produce larger bin widths. This is undesirable
because pure states containing many photons have very fine
features in their quadrature distributions. On the other hand,
we expect Leonhardt’s method to perform better because it

FIG. 7. Average reconstruction time as a function of the bin width
for a cat state with amplitude α = 1. The Hilbert space is truncated at
t = 10 photons. The mean bin width for Scott’s method is 0.35, and
the bin width given by Leonhardt’s formula is 1.05.

FIG. 8. Average reconstruction time as a function of the bin width
for a squeezed vacuum state whose squeezed quadrature has a variance
3/4 of the vacuum variance. The Hilbert space is truncated at t = 10
photons. The mean bin width for Scott’s method is 0.25, and the bin
width given by Leonhardt’s formula is 1.54.

uses the estimated mean number of photons to calculate the
bin width. We can clearly see the expected behavior of both
methods for higher numbers of photons in Fig. 6, where we
have used Fock states to check our intuition.

All of the discretization methods considered here give much
faster fidelity estimates, as we can see in Figs. 7 and 8, with
no significant loss of fidelity between the estimated states and
the true states. The average times reported here include any
calculations required to determine the desired bin width from
the original homodyne data, the construction of histograms,
and the ML density matrix estimation. All the simulations were
carried out in a dual-core computer running at 3.7 GHz with
4 GB of RAM.

VI. CONCLUSION

We have used idealized numerical experiments to generate
simulated data, performed maximum likelihood tomography
on data sampled from cat states and squeezed vacuum states
with and without discretization, and estimated the fidelities
between the reconstructed states and the true state. We
used two different methods to choose the bin width: Scott’s
and Leonhardt’s methods. We studied using measurement
operators calculated using the quadrature exactly at the center
of each bin and integrating the measurement operators along
the length of the bin.

Scott’s method calculates an optimal bin width, for each
phase, based on the size and the standard deviation of the sam-
ple. This method works well for Gaussian states and states with
small numbers of photons. States with higher number of pho-
tons have quadrature distributions with higher standard devia-
tions, giving bigger bin widths for each phase. We implemented
Scott’s method for Gaussian distributions, but if one has prior
knowledge about the state and its distribution, one could tailor
Scott’s rule by using more appropriate distributions in Eq. (5).

Leonhardt’s method recommends a bin width narrower than
qn/2, where qn decreases with the square root of the number
of photons in the state being reconstructed. Since, in a real
experiment, we do not know the mean number of photons in
the state considered, we estimate the mean photon number
from the quadrature measurement results. We have found
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that the method to find the mean number of photons from
the quadrature measurement results gives accurate results.
We checked that by comparing the estimated mean number
of photons with the true mean number of photons for the
cat states and squeezed vacuum states. We also have found
that integrating the measurement operators over the width of
each histogram bin significantly improves the fidelity. Using
this strategy, Leonhardt’s formula safely establishes an upper
bound to the bin width, and both methods provides a faster
statistical estimation without losing too much information.
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