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Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized
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In this work we investigate methods to improve the efficiency and scalability of quantum algorithms for
quantum chemistry applications. We propose a transformation of the electronic structure Hamiltonian in the
second quantization framework into the particle-hole picture, which offers a better starting point for the expansion
of the system wave function. The state of the molecular system at study is parametrized so as to constrain the
sampling of the corresponding wave function within the sector of the molecular Fock space that contains the
desired solution. To this end, we explore different mapping schemes to encode the molecular ground state wave
function in a quantum register. Taking advantage of known post-Hartree-Fock quantum chemistry approaches
and heuristic Hilbert space search quantum algorithms, we propose a new family of quantum circuits based on
exchange-type gates that enable accurate calculations while keeping the gate count (i.e., the circuit depth) low.
The particle-hole implementation of the unitary coupled-cluster (UCC) method within the variational quantum
eigensolver approach gives rise to an efficient quantum algorithm, named q-UCC, with important advantages
compared to the straightforward translation of the classical coupled-cluster counterpart. In particular, we show
how a single Trotter step in the expansion of the system wave function can accurately and efficiently reproduce
the ground-state energy of simple molecular systems.
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I. INTRODUCTION

Quantum computing is emerging as a new paradigm for the
solution of a wide class of problems that are not accessible
by conventional high-performance computers based on clas-
sical algorithms [1,2]. Quantum computers can in principle
efficiently solve problems that require exponential resources
on classical hardware, even when using the best known
classical algorithms. In the last few years, several interesting
problems with potential quantum speed up have been brought
forward in the domain of quantum physics, such as eigenvalue
search using quantum phase estimation algorithms [3–6] and
evaluation of observables in quantum chemistry [7–13], e.g.,
by means of the hybrid variational quantum eigensolver (VQE)
algorithm [14–18].

The original idea that a quantum computer can poten-
tially solve many-body quantum mechanical problems more
efficiently than classical algorithms is due to Feynman, who
proposed to use quantum algorithms to investigate the funda-
mental properties of nature at the quantum scale [19,20], while
there are still no classical algorithms with favorable scaling
that find the exact solution of quantum mechanical problems.
Using different systematic expansions of the many-electron
wave function [21], several quantum chemistry approaches
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have been proposed that can reach an arbitrary precision for
the ground-state energy of the molecular Hamiltonian [22–24].
The most commonly used variational approaches are full
configuration interaction (full CI) [25] and coupled cluster
(CC) [26]. However, for all these approaches the scaling as
a function of the number of degrees of freedom N (e.g.,
number of electrons or number of basis functions) is very
unfavorable: O(N !) in full CI [27] and O(N10) for the CC
approach when the expansion is truncated at the fourth order
in the electronic excitation operator, named CCSDTQ (S stands
for single, D for double, T for triple, and Q for quadruple exci-
tations). At present, the CCSD(T) expansion (which includes
an approximated treatment of the triples excitations [26,28])
with a scaling O(N7) is often considered the gold standard
for quantum chemistry calculations. Energies computed at
CCSD(T) level of theory have an error that lies within the
so-called chemical accuracy (errors less than 1–5 kcal/mol =
0.043–0.22 eV) for many systems (i.e., when no strong static
correlation or multireference character of the ground state is
present [29,30]). The exponential scaling of Hilbert space as
function of the number of qubits in quantum computers opens
up new possibilities for the calculation of accurate electronic
structure properties using quantum devices.

Designing quantum algorithms for quantum chemistry cal-
culations requires reformulating the fermionic problem into
qubit operators. This includes (i) the mapping of the origi-
nal electronic structure Hamiltonian into the corresponding
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qubit Hamiltonian, (ii) the preparation of suitable trial wave
functions, and (iii) the development of an optimization scheme
that converges to a ground-state solution compatible with the
nature of the quantum circuit. As for the mapping (i), we will
work in the second quantization formalism (SQ) of quantum
mechanics. The main reason for this choice is that the degrees
of freedom are encoded in the expansion coefficients of the
electronic wave function. This avoids the costly discretization
of the physical space needed in the first quantization (FQ)
picture. The SQ approach has the clear advantage of being
readily applicable to small molecular systems using state-
of-the-art quantum architectures, while methods in FQ will
require a larger number of qubits even for the simulation of
small systems such as H2.

The SQ Hamiltonian is formulated in the Hartree-Fock
(HF) basis and mapped to the qubit space using either the
Jordan-Wigner [31], the Bravyi-Kitaev, or parity mapping
transformations [32,33]. This formalism was already success-
fully applied to the study of a number of small-size molecular
systems, from molecular hydrogen [34–37], H2, to beryllium
dihydrate, BeH2 [35]. While the scaling of this approach is
not yet fully understood, the complexity of the problem can
be reduced by the encoding of specific symmetries directly
at the Hamiltonian level. For example, one can restrict the
action of the SQ Hamiltonian to the sector of the Fock space
that corresponds to the desired number of electrons [38] or
implement symmetry constraints [33].

The trial wave function (ii), can be prepared with either
of two main strategies. First, one can translate classical ap-
proaches (full CI, CC, and alike) in the qubit language by
designing circuits parametrized in the angles of single- and
two-qubit gates. This method [that we name the classically
inspired approach (CLA)] was pioneered by several research
groups worldwide [39–41] using the CC Ansatz truncated
at different levels of excitations. This approach suffers from
different drawbacks, e.g., the number of parameters (gate
angles) increases significantly with the number of electrons,
impacting seriously the efficiency of the parameter optimiza-
tion and limiting therefore the scaling to larger systems. The
second approach, named heuristic sampling [35], prepares the
trial state using single-qubit rotations and hardware-efficient
entangler blocks that span the whole qubit register. This
heuristic approach (HEA) does not have any equivalent clas-
sical counterpart since it was designed to exploit the unique
capabilities of the quantum hardware. In both cases (CLA and
HEA trial wave functions), the optimization of the parameters,
point (iii), is done using a classical optimization algorithm
(e.g., the simultaneous perturbation stochastic approximation
(SPSA) algorithm [42]). The overall approach falls therefore
into the class of the variational quantum eigensolver (VQE)
algorithm, where the exponentially hard part of the problem
(the sampling of the wave function space) and the calculation
of the Hamiltonian expectation values are performed in the
quantum hardware, while the parameter optimization is done
in a classical computer. The purpose of this work is to develop
efficient quantum algorithms for quantum chemistry calcula-
tions that require a minimal number of gate operations in order
to reduce the errors in near-term quantum device calculations.

The paper is organized as follows. In Sec. II, we discuss
the mapping of the SQ Hamiltonian into the particle-hole

picture. To keep a one-to-one correspondence with the classical
UCCSD algorithm we do not perform any additional reduction
of the Hamiltonian as done in previous studies [38]. One of the
aims of this work is in fact to investigate the relations between
the classical CCSD and the quantum UCCSD algorithms to
identify possible strategies for a more efficient implementation
of the CC expansion in quantum circuits. The possibility to
apply specific parametrized particle-conserving exchange-type
gates in the heuristic approach is also discussed. Section III
discusses the implementation of the VQE algorithm in the
particle-hole formalism. In Sec. IV, we apply these techniques
to the hydrogen (H2) and water (H2O) molecules and discuss
the impact of the different approximations. Conclusions are
summarized in Sec. V.

II. THEORY

The particle-hole (p-h) representation [43] provides a better
reference trial wave function that improves the performance
of the VQE optimization algorithm. The optimization in the
particle-hole framework is performed using two different trial
wave-function Ansätze: the CC-based expansion [41] and the
heuristic approach [35]. To improve the efficiency and scala-
bility of these methods we investigate different approximations
and their associated errors.

A. Hamiltonian in the particle-hole picture

We start with the electronic structure SQ Hamiltonian in the
Hartree-Fock orbitals basis {φi (r )}Nmax

i=1 [44],

Ĥ el =
∑
ij

hij â
†
i âj +

∑
ijkl

gijkl â
†
i â

†
j âl âk, (1)

where hij = 〈i|ĥ|j 〉 are the one-electron integrals defined as

〈i|ĥ|j 〉 =
∫

dr1 φ∗
i (r1)

(
−1

2
∇2

r1
−

M∑
I=1

ZI

R1I

)
φj (r1) (2)

and gijkl = 〈ij |ĝ|kl〉 the two-electron terms given by

〈ij |ĝ|kl〉 =
∫

dr1dr2 φ∗
i (r1)φ∗

j (r2)
1

r12
φk (r1)φl (r2) . (3)

Here RI , ri ∈ R3 are the coordinates of atom I and electron
i, respectively. In Eq. (2) M is the total number of atoms
in the system, ZI are the atomic numbers, ∇2

r1
= ∂2

x1
+ ∂2

y1
+

∂2
z1
, R1I = |r1 − RI |, and r12 = |r1 − r2|. Throughout the pa-

per we use the physicists’ notation for the definition of the
two-electron integrals [44]. The Hamiltonian in Eq. (1) acts
in the Fock space F = ⊕Nmax

N=0 AH⊗N with particle number
N ∈ {0, . . . , Nmax}, where H is the one-particle Hilbert space
and A the antisymmetrizing operator.

To move to the p-h representation, we start with the
definition of a new vacuum state in the N -particle sector of
the Fock space

|�0〉 =
N∏

i=1

â
†
i |vac〉 , (4)

which coincides with the Slater determinant solution of the HF
problem with N electrons. The set of HF orbitals contributing
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to |�0〉 are called occupied {φi (r )}Ni=1, while all other high-
energy orbitals are called unoccupied or virtual, {φi (r )}Nmax

i=N+1.
In this paper, we will use the following notation for the orbital
indices: i, j, k, l: for occupied orbitals; m, n, p, q: for virtual
(unoccupied) orbitals; r, s, t, u for either types. A generic state
can then be generated from the new ground state |�0〉 using
excitation operators that create holes within the set of occupied
orbitals and particles within the unoccupied or virtual set.
For instance, the excitation operator â

†
mâi excites one electron

from the occupied HF orbital φi (r ) into the unoccupied orbital
φm(r ). The holes and particles generated by the excitation
operators with respect to the ground state |�0〉 are called
quasiparticles. The corresponding creation and annihilation
operators are defined by

b̂
†
i = âi (hole creation) (5)

b̂†m = â†
m (particle creation) (6)

b̂i = â
†
i (hole annihilation) (7)

b̂m = âm (particle annihilation) (8)

and still fulfill the fermionic anticommutation relation statis-
tics. In the quasiparticle framework we can define a normal
ordering operator N̂b[. . . ]. With N̂b we define an equivalent
electronic structure Hamiltonian in the particle-hole (p-h)
picture that has |�0〉 as reference (vacuum) state. This Hamil-
tonian is

Ĥ p-h = EHF +
∑
rs

〈r|F̂ |s〉N̂b[â†
r âs]

+ 1

2

∑
srtu

〈rs|ĝ|tu〉N̂b[â†
r â

†
s âuât ], (9)

where

EHF =
∑

i

〈i|ĥ|i〉 + 1

2

∑
ij

(〈ij |ĝ|ij 〉 − 〈ij |ĝ|ji〉) (10)

is the reference energy and 〈r|F̂ |s〉 is the Fock matrix

〈r|F̂ |s〉 = 〈r|ĥ|s〉 +
∑

i

(〈ri|ĝ|si〉 − 〈ri|ĝ|is〉) . (11)

In Eq. (9), the normal ordering operator N̂b acts on the p-h oper-
ators {b̂r , b̂

†
s}, which appear after applying the transformations

in Eq. (5)–(8).
The advantage of this transformation is evident if we think

about perturbation theory applied to the ground state in Eq. (4).
Only after redefining the normal ordering as in Eqs. (5)–(8)
it is possible to obtain an efficient perturbative expansion
using Wick’s theorem, which is independent of the number
of electrons in the system. Note that the transformation to the
p-h picture can be obtained by applying a rotation to the HF
ground state or by performing the transformation described
above leading to the p-h Hamiltonian in Eq. (9). For practical
convenience, we chose the second approach; as in the VQE
algorithm the Hamiltonian is a measured quantity while the
wave function is encoded in the qubit register and therefore it
should be kept in its original form [45].

B. Trial wave functions

The trial wave functions are constructed applying a set
of perturbations (excitations) to the HF ground-state wave
function, |�0〉. The perturbations are controlled by a set
of parameters (gate angles) that are then optimized until
convergence is reached.

We can identify two main classes of trial wave functions:
The first one, based on the CC Ansatz, provides a controllable
and intuitively simple expansion of the initial HF wave function
combined with an efficient parametrization of the final state,
minimizing therefore the number of independent parameters.
The unitary version of the CC approach (UCC) [46], is
more suited for applications in quantum computing due to
the properties of the applied gate operations. While often
implemented as a variational approach, UCC still differs from
the truly variational version of CC (vCC) [47]. However, the
difference between the UCC and variational-CC energies is in
general very small [48].

The second class of trial wave functions is based on quantum
algorithms that have no strict classical equivalent. In fact,
these approaches are not based on a controlled perturbative
expansion around a zero-order solution (e.g., the HF state)
but instead they aim at sampling in the most efficient way
possible the relevant portion of the Hilbert space that contains
the solution.

1. UCC Ansatz

In UCC the trial wave function is parametrized using the
following Ansatz:

|�(�θ )〉 = eT̂ (�θ )−T̂ †(�θ )|�0〉, (12)

where T̂ (�θ ) = T̂1(�θ ) + T̂2(�θ )+, . . . ,+T̂n(�θ ) is the excitation
operator to order n with

T̂1(�θ ) =
∑
i;m

θm
i â†

mâi (13)

T̂2(�θ ) = 1

2

∑
i,j ;m,n

θ
m,n
i,j â†

nâ
†
mâj âi (14)

(with equivalent expressions for higher orders) and �θ =
{{θm

i }, {θm,n
i,j }, . . . } is a collective vector for all expansion coef-

ficients. In the following, we will restrict our implementation
to the UCCSD case, i.e., T̂ = T̂1(�θ ) + T̂2(�θ ), the extension to
higher excitations does not imply any further development but
only requires the implementation of longer circuits that are at
present unpractical from experimental, as well as simulation
perspectives.

The correlation energy of the system (i.e., the correction to
the HF energy) is given by 〈�(�θ )|Ĥ p-h|�(�θ )〉 − EHF using the
p-h Hamiltonian of Eq. (9). The VQE algorithm will find the
optimal �θ parameters from which the correlated ground-state
energy is obtained

EGS = EHF + Ecorr
UCCSD(�θmin), (15)

where EHF = 〈�0|Ĥ el|�0〉.
The circuits for the implementation of the UCCSD trial

wave function (see Fig. 1) are constructed following the
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(a)

(b)

FIG. 1. Circuits for the exponentiation of the (a) single and (b)
double excitation operators (â†

pâr − H.c.) and (â†
pâ†

q âr âs − H.c.),

which contribute to T̂1 and T̂2, respectively. The p, q indices refer to
virtual and r, s to occupied orbitals. The generic state |.〉 corresponds
to |1〉 in case it is part of the occupied manifold and |0〉 otherwise.
The repeated units across several qubits are shown in dashed lines.
The definition of the gates that span more than two qubits (dashed
lines) is given in Appendix B (Fig. 8).

prescriptions in Refs. [3,39,41] and implemented in the IBM
software package QISKit (quantum information software kit)
[49].

Particularly challenging for the implementation of UCCSD
expansion is the mapping to circuits of the exponentiation
in Eq. (12), which results in a circuit depth that scales as
O(((( Nocc

2 ) × ( Nvirt

2 ) × Nqubits))), where Nocc (Nvir) is the number
of occupied (virtual) orbitals that take part to the excitations.
In this work, we therefore investigate the impact of some
approximations used for the implementation of the UCC
expansion in quantum circuits. In particular, we will focus on
the effect of applying an increasing number of Trotter steps, n,
in the approximation of the expansion

e(Â+B̂ ) = lim
n→∞

(
e

Â
n e

B̂
n

)n
, (16)

in the case of noncommuting operators Â and B̂. This situation
occurs, for instance, when dealing with terms of the form Â =
θm
i (â†

i âm − â
†
mâi ) and B̂ = θmn

ij (â†
i â

†
mâkân − â

†
nâ

†
kâmâi ).

Finally, it is important to stress that the classical (nonvari-
ational) CCSD approach [26] leads in fact to a set of closed

equations for the parameters in Eqs. (13) and (14) by fully
exploiting the commutation relation of the T̂1 and T̂2 operators
and the properties of the normal ordering operator. However,
these properties are not applicable in the variational UCCSD
formulation due to the replacement of the T̂i by the (T̂i − T̂

†
i )

operators for i = 1, 2. More details on the approximations used
in the UCCSD approach are summarized in Appendix A.

2. Heuristic Ansatz

In addition to the UCC Ansatz, in this work we also investi-
gate the adjustment of the HEA approach to the p-h formalism.
In particular, we design particle-conserving entangler blocks
to constrain the wave-function search to the sector of Hilbert
space with a constant number of particles and we investigate
the advantage of using hardware specific exchange-type gates
[50–52]. The preparation of the heuristic trial states comprises
two types of quantum operations, single-qubit Euler rotations
Û (�θ ) with angles �θ and an entangling drift operation Ûent (�θ )
acting on pairs of qubits. The N -qubit trial states are obtained
by applying a sequence of D entanglers Ûent alternating with
the Euler rotations on the N qubits to the HF ground state |�0〉,

|�(�θ )〉 =
D−times︷ ︸︸ ︷

ÛD (�θ )Ûent . . . Û
1(�θ )Ûent Û

0(�θ )|�0〉. (17)

The choice of the initial HF state |�0〉 improves the efficiency
of the searching algorithm, avoiding Barren plateaus in Hilbert
space [53].

This gate sequence has p = N (3D + 2) independent an-
gles. In full analogy with our UCC approach, we make use
of the particle-hole Hamiltonian Ĥ p-h expressed in terms
of the HF orbitals instead of the original Hamiltonian in
second quantization [Eq. (1)] as done in Ref. [35]. Within this
framework the most suited entangler blocks are made up of
particle-conserving gates, i.e., gates that conserve the number
of excited qubits.

More specifically, the single-qubit operations are decom-
posed into rotations about the x and the z axes, Û q,k (�θ ) =
Ẑ

q

θ
q,k

1

X̂
q

θ
q,k

2

Ẑ
q

θ
q,k

3

, where

X̂q
(
θ

q,k

j

) = exp
[ − iθ

q,k

j σ̂ x
q /2

]
(18)

denotes the unitary operation acting on qubit q at the j th
position of the gate sequence [similarly for Ẑq (θq,k

j )] [3,54].
In this work, we investigate the performance of three

different entangler blocks, U
(1−3)
ent (Fig. 2), composed by:

(i) the particle-conserving two-parameter exchange-type gate,
defined by

U1,ex(θ1, θ2) =

⎛
⎜⎝

1 0 0 0
0 cos θ1 eiθ2 sin θ1 0
0 e−iθ2 sin θ1 − cos θ1 0
0 0 0 1

⎞
⎟⎠ (19)

parametrized by the angles θ1 and θ2 [52], (ii) the particle-
conserving single-parameter exchange-type gate

U2,ex(θ ) =

⎛
⎜⎝

1 0 0 0
0 cos 2θ −i sin 2θ 0
0 −i sin 2θ cos 2θ 0
0 0 0 1

⎞
⎟⎠ (20)
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(a)

(b)

(c)

FIG. 2. Definition of the three entangler blocks: (a) U
(1)
ent , (b) U

(2)
ent ,

and (c) U
(3)
ent , composed by the U1,ex, see Eq. (19), U2,ex, see Eq. (20),

and CNOT gates, respectively. The repeated units across several qubits
are shown in dotted boxes (see Appendix B).

parametrized by angle θ [50], and (iii) the entangler block
composed by all-to-all CNOT gates, UCNOT. Note that U2,ex

is a special case of U1,ex, but the entangler block associated
to it [Fig. 2(b)] also comprises single-qubit rotations (the
decomposition of U1,ex and U2,ex in elementary gates is given
in Appendix C). The first two gates are, for example, capable
of implementing directly in hardware a particle-conserving
SWAP gate in a single step. The structures of the three entangler
blocks used in this work are shown in Fig. 2. Note that in the
first case there is no need to introduce one-qubit rotation gates.

The last entangler does not conserve the particle number
and therefore the optimization can explore alternative paths

through regions of the Fock space that have a different number
of electrons than in the initial state. To constrain the final
number of electrons to a fixed number N , we can add an extra
potential term to the p-h Hamiltonian

Ĥ
p-h
N = Ĥ p-h + μ (〈N̂〉 − N )2, (21)

where N̂ is the number operator and μ is a tunable parameter.
This term can be switched on gradually during the optimization
to increase flexibility during the first steps of the optimization.

C. Reduction of the Hilbert space

In addition to the development of efficient methods for the
generation of trial states, other strategies can be implemented
to make computations more efficient.

(a) Effective core potentials. The number of degrees of
freedom can be reduced by replacing the inert electrons in
the innermost nuclear shells of Eq. (2) with an effective core
potential given by

hECP
ij =

∫
dr1 φ∗

i (r1)

(
−1

2
∇2

r1
−

M∑
I=1

VECP(r1I )

)
φj (r1),

(22)

where VECP (r1I ) is defined in Ref. [55].
In practice, this allows us to restrict the number of basis

functions and consequently the number of HF orbitals (and
therefore qubits) used to expand the Hamiltonians Ĥ el [Eq. (1)]
and Ĥ p-h [Eq. (9)].

(b) Selection of the active space. In the UCC approach one
can further reduce the Hilbert space in which to search to a
subspace generated by the reduced operators

T̂ ′
1 (�θ ) =

∑
i ′;m′

θm′
i ′ â

†
m′ âi ′ (23)

T̂ ′
2 (�θ ) =

∑
i ′,j ′;m′,n′

θ
m′,n′
i ′,j ′ â

†
n′ â

†
m′ âj ′ âi ′ , (24)

where the indices i ′, j ′ run over a subset of occupied orbitals:
i ′, j ′ ∈ {iF − Nocc, . . . , iF }, and m′, n′ over a subset of virtual
orbitals: m′, n′ ∈ {iF + 1, . . . , iF + 1 + Nvir}; iF is index of
the highest occupied HF orbital, Nocc is the number of occupied
and Nvir is the number of virtual orbitals included in the
expansions in Eqs. (23) and (24). This is similar to the complete
active space self-consistent field (CASSCF) method used to
reduce the costs of CI calculations [56]. The selection of the
active space is often dictated by the nature of the orbitals
involved in the expansion and the overlaps among them. Using
an active space in quantum algorithms shortens the overall
circuit depth therefore making better use of the limited qubit
coherence time [57].

III. IMPLEMENTATION OF THE VQE ALGORITHM IN
THE p-h PICTURE

Using the VQE algorithm with the p-h formalism requires:
(i) calculating the HF orbitals and storing the needed matrix

elements: 〈i|ĥ|i〉 and 〈ij |ĝ|ji〉 using a classical computer;
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(ii) performing a fermion-to-qubit transformation using the
Jordan-Wigner [31,58] procedure;

(iii) generating the trial wave functions starting from the
HF ground state |�0〉 = |11 . . . 100 . . . 0〉 (with N ‘1’ entries)
by applying the circuits in Fig. 1 (UCCSD approach) and
Fig. 2 (heuristic approach) to |�0〉. In the first iteration the
gate angles are chosen from a uniform distribution between 0
and 2π ;

(iv) the expectation value for the p-h Hamiltonian Ĥ p-h

using the quantum computer;
(v) the energy (parametrized in the gate angles) to a

classical algorithm that performs an optimization step in the
parameter space and returns the updated values to point (iii);
in this work, the optimization is performed using the BFGS
algorithm [41,59].

The steps (iii)–(v) are iterated until convergence is reached.
A detailed analysis of the error effects in state-of-the-art
quantum computers is beyond the scope of this work and will
require further investigations including the implementation of
the recently proposed error mitigation schemes [60].

IV. RESULTS AND DISCUSSION

In this section, we report and discuss the results obtained
from the application of the theoretical developments presented
in Sec. II on the simulation of two relatively simple molecules,
hydrogen (H2) and water (H2O), which incorporate most of the
complexity required to illustrate the efficiency of the different
advancements.

All calculations are performed using the 6-31G basis
[61,62] set leading to a Hilbert space of dimension 28 (where
8 corresponds to the total number Nmax of HF orbitals,
occupied and virtual) for the case of molecular hydrogen
and of dimension 212 for the water molecule (Nmax = 12).
Further, we replaced the 1s core electrons of oxygen with the
corresponding effective core potentials (ECPs) [63], meaning
that only eight electrons are considered in the valence shell of
H2O. However, as discussed in Sec. IV B 1, we also used active
spaces to further restrict the search of the ground-state wave
function to a smaller sector of the Hilbert space.

A. Particle-hole Hamiltonian

The choice of the p-h Hamiltonian introduced in Sec. II A,
Eq. (9), brings several important advantages compared to the
plain molecular Hamiltonian in second quantization [Eq. (1)].
By shifting the reference state to the HF ground state, we
achieve faster convergence since the optimization only con-
cerns the correlation energy, which in general amounts to only
a few percent of the total energy. In Table I, we compare
the performance of the VQE algorithm for the optimization
of the electronic structure of H2 based on the p-h and plain
molecular Hamiltonians [Eq. (1) and Eq. (9), respectively].
The calculations are done for both types of wave-function
Ansätze: UCCSD and heuristic. In the UCCSD case, the circuit
corresponding to the exponentiation of the operators T̂1 and T̂2

[in Eqs. (13) and (14)] is the same for both Hamiltonians and
therefore we do not expect any benefit from the p-h approach
in terms of the reduction of the gate count. However, the
optimization of the parameters becomes notably more efficient
using the p-h Hamiltonian. The number of BFGS iterations

TABLE I. Statistics on the simulation of the ground-state energy
for H2 using the original Hamiltonian in second quantization [Eq. (1)]
and the p-h Hamiltonian [Eq. (9)]. Results are given for the UCCSD
expansion (with a single Trotter step, see Sec. IV B 2) and three
heuristic approaches using U

(1)
ent , U

(2)
ent , and U

(3)
ent gates. Comparison

is based on: number of Pauli strings evaluations for determination
of the gradients in parameter space (Eval.), number of optimization
steps in the BFGS algorithm (Iter.), number of single-qubit (1QG)
and two-qubit (2QG) gates, total number of parameters (Par.), and the
number of entangling blocks (D).

SQ Hamiltonian

UCCSD Heuristic

U
(1)
ent U

(2)
ent U

(3)
ent

Full Equil. Full Equil. Full Equil. Full

Eval. (103) 3.3 35 38.4 12.5 19 28.6 –
Iter. 53 740 812 59 88 420 –
1QG 708 0 0 64 96 112 >144
2QG 608 56 70 56 84 392 >504
Par. 15 112 140 120 180 112 >144
D – 8 10 8 12 14 >18

SQ particle-hole Hamiltonian

UCCSD Heuristic

U
(1)
ent U

(2)
ent U

(3)
ent

Full Equil. Full Equil. Full Equil. Full

Eval. (103) 1.5 21.4 32.1 10.7 14.8 17.2 –
Iter. 27 421 578 52 78 254 –
1QG 708 0 0 64 96 112 >144
2QG 608 42 70 56 84 392 >504
Par. 15 84 140 120 180 112 >144
D – 6 10 8 12 14 >18

required to achieve a convergence of 10−7 hartrees decreases
from 53 for the plain Hamiltonian to 27 in the p-h case. Most
importantly, the number of circuit measurements required
for the full optimization also drops from 3383 × Ns for the
plain Hamiltonian to only 1471 × Ns in the p-h formalism,
where Ns is the number of shots used to evaluate the energy.
Combining these effects, we observe an overall speed up in the
p-h implementation of UCCSD of about a factor 2 to 3.

The situation is similar in the heuristic wave-function
approach using either U

(1)
ent or U

(2)
ent entangler blocks. In these

cases, the number of entangler blocks, D in Eq. (17), is
increased until convergence of the final energy is reached, i.e.,
|ED

heur − Eexact| < ε, where ED
heur is the energy of the heuristic

approach with D blocks and ε is the chemical accuracy.
Column Equil in Table I reports the values required for conver-
gence at the equilibrium position (∼0.7 Å), while Full refers
to the numbers obtained when convergence is imposed over
the entire dissociation path (maximum value over the entire
dissociation path). At each value of D, the number of iterations
of the classical optimizer (Iters in Table I) is determined by the
convergence criteria set for the energy difference between two
consecutive iterations (<10−7 hartrees). We first observe that
using the p-h Hamiltonian (at the equilibrium distance, Equil)
the same accuracy (10−7 hartrees) can be achieved with only
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six entangler blocks compared to the eight required when using
the plain Hamiltonian. This has the effect of reducing, at least
in the case of the U

(1)
ent , both the number of parameters (from

112 to 84) and the total number of gate operations (from 56 to
42). As in the UCCSD case, also in the heuristic approach the
number of iterations as well as the number of circuit evaluations
drop significantly when using the p-h Hamiltonian. For the
case in which chemical accuracy is required at all distances
(Table I, columns Full), we see an overall gain for the heuristic
implementation of the p-h approach of about a factor 3 to 4
compared to standard SQ Hamiltonian [Eq. (1)].

We also note that the convergence with the CNOT entanglers
requires in general a larger number of resources and in some
cases (CNOT/Full in Table I) it is not possible to reach a
solution within chemical accuracy with less than 18 blocks.

B. UCCSD Ansatz

The quantum algorithm based on the UCCSD Ansatz for
the molecular wave function is obtained by directly mapping
the exponentials in Eqs. (13) and (14) into the corresponding
quantum circuits (see Fig. 1). In this work we investigate two
developments of the UCC approach that lead to a simplification
of the corresponding quantum algorithm by reducing the circuit
depth. The first one is based on the restriction of the Hilbert
space using an active space as described in Sec. IV B 1. The
other one consists of the exploitation of the variational charac-
ter of the UCCSD Anzatz, which introduces the possibility of
absorbing the effect of some approximations (e.g., the Trotter
decomposition) through a suitable modification of parameters
used to span the wave-function space.

1. Active space in the UCCSD approach

We start with the simulation of the hydrogen molecule. As
mentioned above, the 6-31G basis set [61] leads to a Hilbert
space spanned by eight HF orbitals, two occupied and six
virtuals (i.e., unoccupied). Note that in order to keep a one-to-
one correspondence with the classical UCCSD algorithm we
do not perform any additional reduction of the Hamiltonian as
was done in previous studies [38].

Figure 3 shows the dissociation profile for the H2 molecule
computed using VQE approach and the UCCSD Ansatz with
different sizes of the active space (AS) ranging from a min-
imum of 4 to the full space. For all choices of the active
space, we observe a noticeable improvement of the evaluated
dissociation curve compared to the zero-order approximation
given by HF profile (red line). More interestingly, the results
obtained with the smallest AS (AS4) already provide a quali-
tatively correct curve that runs approximately in parallel to the
exact solution obtained by diagonalizing the p-h Hamiltonian
in the chosen basis set (6-31G). By increasing the size of the
active space we observe a gradual improvement of the quality
of computed dissociation curve with errors that approaches
chemical accuracy (set to 0.5 × 10−2 hartrees).

Figure 4 reports the same energy profiles for the asymmetric
stretch of a O-H bond of a water molecule. The exact solution is
computed using a direct diagonalization of the p-h Hamiltonian
generated using the first 12 lowest-energy HF orbitals, among
which eight are occupied. In this case the different active spaces
(AS4, AS6, AS8) are defined by the size of occupied HF

FIG. 3. Top: Dissociation profile of the H2 molecule for different
definitions of the active space (AS). AS 4 (orange triangles): only
two occupied and two virtual orbitals are considered in the definition
of the T̂1 and T̂2 operators; AS 6 (green squares): two occupied and
four virtual orbitals; AS 8 (blue circles): two occupied and six virtual
orbitals. The red (gray, no symbols) curve corresponds to the reference
HF calculation and the black one is the analytic solution evaluated
using the p-h Hamiltonian expanded in the full (eight-qubit) space.
Bottom: Corresponding energy errors along the dissociation profile.
The blue (gray) shaded area corresponds to the energy range within
chemical accuracy.

orbitals included in the expansions for the T̂1 and T̂2 operators
(see inset of Fig. 4). As for the case of the hydrogen molecule,
the correction to the HF profile is large for all choices of
the active space and the error decreases monotonically as the
number of electrons included increases. The largest deviations
are measured for the intermediate bond lengths, while the error
goes below the line delimiting chemical accuracy (shaded blue
region) at the distances below the equilibrium value (<1 Å)
and in the dissociation limit (>2 Å). The intermediate range
corresponds to geometries close to the so-called Coulson-
Fisher point where spin-symmetry breaking can occur [64].

2. Trotter error in UCCSD

A major drawback of the UCCSD implementation are the
errors introduced by the Trotter factorization [Eq. (12)]. In this
section, we investigate the convergence of the energy E

an/n

UCCSD
as a function of the number of Trotter steps, n. The expansion
in Eq. (12) can be written

e(T̂1−T̂
†

1 )+(T̂2−T̂
†

2 ) ≈ (e(T̂1−T̂
†

1 )/n e(T̂2−T̂
†

2 )/n)n , (25)

and becomes exact in the limit n → ∞. To this end, we
designed a series of test calculations, which probe the origin of
the different errors arising from the truncation at second order
in UCCSD and the use of the Trotter decomposition.

To simplify the discussion, we report a summary of the
different simulations and the corresponding approximations in
Table II. As a reference, we take the first eigenvalue from the
diagonalization of the p-h Hamiltonian in Eq. (9), Ediag. The
energy Ean

UCCSD is evaluated using optimization of the UCCSD
coefficients in the matrix representation of the expansion in
Eqs. (13) and (14) [exact exponentiation in Eq. (12)]. The

022322-7



PANAGIOTIS KL. BARKOUTSOS et al. PHYSICAL REVIEW A 98, 022322 (2018)

FIG. 4. Top: Dissociation profile of the H2O molecule for dif-
ferent definitions of the active space (AS). AS 8 (orange triangles):
four HF orbitals (starting form the highest occupied one, see inset)
and all virtual orbitals are considered in the definition of the T̂1 and
T̂2 operators; AS 10 (green squares): six occupied and all virtual
orbitals; AS 12 (blue circles): eight occupied and all virtual orbitals.
The red (gray, no symbols) curve corresponds to the reference HF
calculation and the black one is the analytic solution evaluated using
the p-h Hamiltonian expanded in the full (12-qubit) space. Bottom:
Corresponding energy errors along the dissociation profile. The blue
(gray) shaded area corresponds to the energy range within chemical
accuracy.

difference Ediag − Ean
UCCSD is a measure for the error introduced

by the truncation of the excitation operator at second order
T̂ = T̂1 + T̂2. Finally, the energies E

an/n

UCCSD and E
circ/n

UCCSD are
computed using the approximated Trotter expansion with n

steps, Eq. (25), in the matrix and circuit representations (Fig. 1),
respectively. This energy difference provides a clear measure of
the error introduced by the truncation of the Trotter expansion
to n order. Due to the perfect agreement between the values
of E

an/n

UCCSD and E
circ/n

UCCSD (data not shown), in the following we
will only use E

circ/n

UCCSD.
In Fig. 5, we summarize the results for the Trotter approx-

imation in the hydrogen molecule. Without loss of generality,
we will focus on a single geometry corresponding to a bond
length of 0.592 Å. As reference energy we take the analytic
value Ediag. The exact UCCSD expansion coefficients are ob-
tained using the VQE algorithm and the analytic representation

TABLE II. Summary of the different simulations used to describe
the approximations in UCCSD. See more details in the text.

Description Approximations

Ediag diagonalization of Ĥ p-h Exact

analytic UCCSD (matrix repr.)
Ean

UCCSD Truncation at T̂2using exact exponentiation

analytic UCCSD (matrix repr.) Truncation at T̂2
E

an/n

UCCSD using n Trotter steps & Trotter error

UCCSD/VQE in circuits Truncation at T̂2
E

circ/n

UCCSD using n Trotter steps & Trotter error

FIG. 5. Convergence of the Trotter error as a function of the
Trotter expansion coefficient n in Eq. (25) for the UCCSD energy
of H2 at a bond length of 0.592 Å. The reference energy, Eexact,
corresponds to Ediag from Table II. Green circles: analytic dependence
of the Trotter error [Eopt/n

UCCSD in Eq. (26)]. Red triangles: Trotter errors
obtained after the optimization of the angles �θ at each value of n using
the VQE approach [Ecirc/n

UCCSD(n) in Eq. (27)].

of the exponentiations in Eqs. (13) and (14). Using these
coefficients θopt (corresponding to the energy Ean

UCCSD), we
recompute the energies

E
opt/n

UCCSD(n) = 〈ψTr(�θopt, n)|Ĥ p-h|ψTr(�θopt, n)〉 (26)

using an n-steps Trotter expansion. |ψTr(�θopt, n)〉 corresponds
to the state obtained using the optimized angles �θopt and the
right-hand side of Eq. (25) (with variable n) instead of the
exact expression [left-hand side of Eq. (25)]. The error with
respect to the exact energy is given by the green circles in Fig. 5.
Interestingly enough, when we apply the VQE approach and
therefore a full reoptimization of the parameters at each value
of n, we obtain the energies (Fig. 5, red triangles)

E
circ/n

UCCSD(n) = min
�θ

〈ψTr(�θ, n)|Ĥ p-h|ψTr(�θ, n)〉 , (27)

which show a negligibly small error |Ediag − E
circ/n

UCCSD(n)|,
independent from the number of Trotter steps (see also
Ref. [65]). Already with n = 1 we measure an error smaller
than 10−10 hartrees, i.e., well below chemical accuracy. This
result implies that the flexibility introduced by the large number
of parameters in VQE can variationally absorb the Trotter error
even at n = 1. Therefore, the UCCSD approach based on VQE
algorithm deviates from what would be the one-to-one map-
ping of the classical CCSD expansion, becoming a mixed CLA-
HEA approach that we name q-UCCSD. This very important
result can enormously impact the future implementation of the
UCCSD Ansatz in quantum circuits for large molecules since
the Trotter expansion can be implemented in one step, reducing
the circuit depth.
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FIG. 6. Dissociation profiles of the H2 molecule computed using
the p-h Hamiltonian and the heuristic Ansatz for the trial wave
function. The blue crosses and green dots (mostly overlapping)
are obtained using the particle-conserving entanglers U

(1)
ent and U

(2)
ent ,

respectively. The cyan triangles are computed using the non-particle-
conserving operator circuit U

(3)
ent . The blue (gray) shaded area corre-

sponds to the chemical accuracy energy range. For all entangler types,
the number of repeated blocks, D in Eq. (17), was set to 8.

C. Heuristic Ansatz

In this section we further develop methods of the heuristic
wave-function Ansätze that were introduced in Ref. [35]. As
in the case of UCCSD, we begin by encoding the qubits
with the occupancy of the molecular HF orbitals instead of
atomic ones. Then, following the developments in the theory
section, we combined the heuristic VQE approach with the
p-h Hamiltonian, which provides a more efficient starting
point for optimization of the ground-state energy. Within this
framework, we also made use of the ECPs to decrease the
number of degrees of freedom. In particular, we compared
the level of accuracy and the efficiency of the three entangler
blocks defined in Sec. II B 2 (see Fig. 2). In the case of
the non-particle-conserving entangler (UCNOT) the chemical
potential term of Eq. (21) is added to the p-h Hamiltonian.
The number of entangler blocks for each heuristic Ansatz is
fixed by imposing an energy accuracy of 10−7 hartrees at the
equilibrium position. By increasing the number of blocks it
is possible to achieve convergence within chemical accuracy
along the entire dissociation profile, at the cost of further
increasing the circuit depth (see Table I). The dissociation
curve for the H2 and H2O molecules computed using the
p-h Hamiltonian and the three entangler blocks U

(1−3)
ent are

shown, respectively, in Figs. 6 and 7. As reference, we also
plot the HF profile and the reference curve obtained from
the diagonalization of the p-h Hamiltonian. We observe that
both particle-conserving entanglers (U (1)

ent and U
(2)
ent ) produce

very similar profiles with very small deviations around the
equilibrium position that become increasingly larger as the
distance between the two hydrogen atoms increases. The non-
particle-conserving entangler (U (3)

ent ) shows larger deviations
over the entire distance range (compared to the exact energy,
Ediag). The reason for this discrepancy can be twofold. It may
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FIG. 7. Dissociation profiles of the H2O molecule computed
using the p-h Hamiltonian and the heuristic Ansatz for the trial wave
function. The blue crosses and green dots are obtained using the
particle-conserving entanglers U

(1)
ent and U

(2)
ent , respectively. The cyan

triangles are computed using the non-particle-conserving operator
circuit U

(3)
ent . The blue (gray) shaded area corresponds to the chemical

accuracy energy range. For all entangler types, the number of repeated
blocks, D in Eq. (17), was set to 20.

arise from a sampling deficiency of the CNOT gate sequence,
or by an intrinsic convergence problem related to the much
larger size of the sampling space (the Fock space with variable
number of electrons). Comparing with the UCCSD results, we
observe that with the quoted number of entangler blocks we do
not achieve chemical accuracy at large distances (R > 1.3 Å).
On the other hand, in the case of the water molecule both Û

(1)
ent

and Û
(2)
ent entanglers are within chemical accuracy all along the

dissociation path.

V. CONCLUSIONS

In this work we examine the implementation of different
quantum algorithms for the calculation of the ground-state
energy of simple molecular systems in quantum computers.
In particular, we show that the reformulation of the molecular
Hamiltonian in second quantization using the particle-hole
(p-h) picture brings important advantages in terms of com-
putational efficiency and accuracy. By shifting the reference
state from the vacuum to the HF wave function, this approach
provides a better starting point for a systematic expansion of the
molecular wave function, which leads to a faster convergence
of the correlation energyEcorr = EGS − EHF. We also analyzed
the effects of restricting the Hilbert space to the subspace
of chemically active valence electrons. By replacing core
electrons with the corresponding effective core potentials,
we obtain a modified p-h Hamiltonian, which can reproduce
ground-state molecular energies within chemical accuracy
using a reduced number of qubits.

Additionally, we also investigate the implementation of
two different wave-function Ansätze for the optimization
of the ground-state energy within the variational quantum
eigensolver (VQE) algorithm. The first one is based on an
adaptation of the coupled-cluster expansion series used in

022322-9



PANAGIOTIS KL. BARKOUTSOS et al. PHYSICAL REVIEW A 98, 022322 (2018)

quantum chemistry. We show that within the VQE framework
the exponentiation of the cluster operators [see Eq. (12)] can be
efficiently approximated with a single Trotter step, while keep-
ing a good level of accuracy for the ground-state energy (errors
below 10−10 hartrees in simulations). This surprising result can
be explained with the flexibility of the variational quantum
algorithm, which relies on an efficient parametrization of the
Hilbert space that can absorb the error introduced by the Trotter
approximation. As such, this VQE implementation of the CC
approach loses its original one-to-one correspondence with the
original classical algorithm and acquires a different, variational
character. For this reason we introduced the q-UCC acronym to
define the quantum version of the classical CC approach. The
use of a single Trotter step has also important implications for
the implementation of the CC algorithm in real hardware since
it implies a drastic reduction (of about a factor 103) in the
number of gates required. The second approach is based on
the heuristic wave-function expansion introduced originally
in Ref. [35]. In this case, we proposed a set of specialized
exchange-type two-qubit gates, which substantially improve
the efficiency of the entangler blocks used to generate the
trial wave functions in the VQE approach. The success of
both exchange-type gates is related to their particle-conserving
property, which enables to restrict the sampling of the Hilbert
space within the relevant subspace with the correct number of
electrons.

We apply these developments to the study of the dissociation
curves of molecular hydrogen (H2) and water (H2O). The p-h
Hamiltonian shows clear advantages compared to the original
Hamiltonian in terms of implementation (shorter circuit depth)
and convergence efficiency (smaller number of iterations). We
showed that both wave function Ansätze can converge the
ground-state energy within chemical accuracy. In the q-UCC
approach, the possibility to define active spaces, which confine
the excitations to a subset of the occupied and virtual orbitals,
can be used to further reduce the gate count while keeping a
good and controllable level of accuracy.

In conclusion, we show that within the p-h formalism it is
possible to design valid quantum algorithms for the solution of
electronic structure problems in near-term quantum computers
with a favorable scaling in terms of parameters and gate counts.
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APPENDIX A: APPROXIMATIONS IN UCCSD

The q-UCC expansion operator for the HF ground state |�0〉
is given by

Û ( �θ ) = eT̂ (�θ )−T̂ †(�θ ). (A1)

With the excitation operator T̂ (�θ ) = T̂(1)(�θ ) + T̂(2)(�θ ) re-
stricted to the single T̂(1)(�θ ) and double T̂(2)(�θ ) excitations,
Eq. (A1) becomes

Û (�θ ) = eT̂(1) (�θ )+T̂(2) (�θ )−T̂
†
(1) (�θ )−T̂

†
(2) (�θ ) . (A2)

Substituting T̂(1)(�θ ) = ∑
ij θij â

†
i âj and T̂(2)(�θ ) =∑

ijkl θijkl â
†
i â

†
j âkâl , Eq. (A2) reads

Û (�θ ) = exp

⎛
⎝∑

ij

θij â
†
i âj +

∑
ijkl

θijkl â
†
i â

†
j âkâl

−
∑
ij

θij â
†
j âi −

∑
ijkl

θijkl â
†
l â

†
kâj âi

⎞
⎠ (A3)

with �θ = ({θij }, {θijkl}) and θij , θijkl ∈ R. Using the Trotter
approximation to the first order eÂ+B̂ ≈ eÂeB̂ with Â =
T̂(1)(�θ ) − T̂

†
(1)(�θ ) and B̂ = T̂(2)(�θ ) − T̂

†
(2)(�θ ), Eq. (A3) be-

comes

Û (�θ ) = exp

⎛
⎝∑

ij

θij (â†
i âj − â

†
j âi )

⎞
⎠

× exp

⎛
⎝∑

ijkl

θijkl (â
†
i â

†
j âkâl − â

†
l â

†
kâj âi )

⎞
⎠. (A4)

Applying once more the Trotter expansion to first order we get
(without loss of generality we consider i > j > k > l)

Û (�θ ) =
∏
i>j

exp (θij (â†
i âj − â

†
j âi ))

×
∏

i>j>k>l

exp (θijkl (â
†
i â

†
j âkâl − â

†
l â

†
kâj âi )). (A5)

At this point, we apply the Jordan-Wigner transforma-
tion defined by âj = 1⊗j ⊗ 1

2 (X̂ + iŶ ) ⊗ Ẑ⊗N−j−1 and â
†
j =

1⊗j ⊗ 1
2 (X̂ − iŶ ) ⊗ Ẑ⊗N−j−1 with the Pauli matrices {X̂ =

σ̂ x, Ŷ = σ̂ y, Ẑ = σ̂ z} and j = [0, . . . , Nq − 1] where Nq is
the number of qubits. Eq. (A5) can be simplified to

Û (�θ ) =
∏
i>j

exp

⎛
⎝ iθij

2

i−1⊗
a=j+1

σ̂z,a (σ̂y,j σ̂x,i − σ̂x,j σ̂y,i )

⎞
⎠ ∏

i>j>k>l

exp

⎛
⎝ iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂x,l σ̂x,kσ̂y,j σ̂x,i + σ̂y,l σ̂x,kσ̂y,j σ̂y,i

+ σ̂x,l σ̂y,kσ̂y,j σ̂y,i + σ̂x,l σ̂x,kσ̂x,j σ̂y,i − σ̂y,l σ̂x,kσ̂x,j σ̂x,i − σ̂x,l σ̂y,kσ̂x,j σ̂x,i − σ̂y,l σ̂y,kσ̂y,j σ̂x,i − σ̂y,l σ̂y,kσ̂x,j σ̂y,i )

⎞
⎠. (A6)
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Using the assignment Â = σ̂y,j σ̂x,i and B̂ = −σ̂x,j σ̂y,i all commutators [Â, [Â, B̂]], [B̂, [Â, B̂]] and [Â, B̂] vanish. Therefore, the
Glauber’s formula eÂ+B̂ = eÂeB̂e

1
2 [Â,B̂] simplifies exactly to eÂ+B̂ = eÂeB̂ (similarly for the double excitation terms). Therefore,

the q-UCCSD expansion operator can finally be written as

Û (�θ ) =
∏
i>j

exp

⎛
⎝ iθij

2

i−1⊗
a=j+1

σ̂z,a (σ̂y,j σ̂x,i )

⎞
⎠ exp

⎛
⎝− iθij

2

i−1⊗
a=j+1

σ̂z,a (σ̂x,j σ̂y,i )

⎞
⎠

×
∏

i>j>k>l

exp

⎛
⎝ iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂x,l σ̂x,kσ̂y,j σ̂x,i )

⎞
⎠ exp

⎛
⎝ iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂y,l σ̂x,kσ̂y,j σ̂y,i )

⎞
⎠

× exp

⎛
⎝ iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂x,l σ̂y,kσ̂y,j σ̂y,i )

⎞
⎠ exp

⎛
⎝ iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂x,l σ̂x,kσ̂x,j σ̂y,i )

⎞
⎠

× exp

⎛
⎝− iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂y,l σ̂x,kσ̂x,j σ̂x,i )

⎞
⎠ exp

⎛
⎝− iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂x,l σ̂y,kσ̂x,j σ̂x,i )

⎞
⎠

× exp

⎛
⎝− iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂y,l σ̂y,kσ̂y,j σ̂x,i )

⎞
⎠ exp

⎛
⎝− iθijkl

8

k−1⊗
b=l+1

σ̂z,b

i−1⊗
a=j+1

σ̂z,a (σ̂y,l σ̂y,kσ̂x,j σ̂y,i )

⎞
⎠. (A7)

In a more compact way Û (�θ ) = ∏
i>j Ûij

∏
i>j>k>l Ûijkl ,

notice that its parts [Ûij , Ûi ′j ′] �= 0, [Ûij , Ûi ′j ′k′l′] �= 0, and
[Ûijkl, Ûi ′j ′k′l′] �= 0 when sets {i, j, k, l}, {i ′, j ′, k′, l′} share
same indices (e.g., i �= i ′, j �= j ′, k �= k′, l = l′).

FIG. 8. Definition of single- and two-qubit gate blocks (dashed
lines) that span multiple qubits.

APPENDIX B: DEFINITION OF THE GATE OPERATIONS
SPANNING MULTIPLE QUBITS

In the case of the operation spanning multiple qubits (see
dashed boxes in Figs. 1 and 2), we used the following schemes
(assuming nearest-neighbor connectivity). The top circuit in
Fig. 8 describes the decomposition of the composite one-qubit
operation (dashed box in the left-hand side) into a sequence
of one-qubit operations between the starting qubit, qi and the
final one, qi+N , each one parametrized by a different set of
angles. A similar procedure applies to the two-qubit operations
as shown in the bottom panel. The operator UOP stands for one
of the operators discussed in Sec. II B 2.

APPENDIX C: DECOMPOSITION OF THE EXCHANGE
GATES IN ELEMENTARY GATES

The two exchange gates U1,ex and U2,ex can be directly
implemented in a single step using the approach outlined in
Refs. [50–52]. For the sake of completeness, in order to empha-
size the gain in gate count here we report their decomposition
into elementary gates [67]. The result is summarized in Fig. 9
for Ui,ex (with i = 1, 2), where, for the U1,ex:

U1,ex =

⎛
⎜⎝

1 0 0 0
0 cos(θ ) eiφsin(θ ) 0
0 e−iφsin(θ ) −cos(θ ) 0
0 0 0 1

⎞
⎟⎠

FIG. 9. Decomposition of an exchange gate (i = 1, 2) between
qubit n and m into their elementary gates.
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and the UA,UB , and UC gates are

UA =
(

0 e−iφ

e−iφ 0

)
, UB =

(
cos(θ ) sin(θ )
sin(θ ) −cos(θ )

)
, Uc =

(
0 eiφ

eiφ 0

)
,

and for U2,ex:

U2,ex =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos 2θ −i sin 2θ 0

0 −i sin 2θ cos 2θ 0

0 0 0 1

⎞
⎟⎟⎟⎠

the UA,UB , and UC gates are

UA =
(

0 1
1 0

)
, UB =

(
cos(2θ ) −isin(2θ )

−isin(2θ ) cos(2θ )

)
, Uc =

(
0 1
1 0

)
.
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