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Quantum computational finance: Monte Carlo pricing of financial derivatives
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This work presents a quantum algorithm for the Monte Carlo pricing of financial derivatives. We show
how the relevant probability distributions can be prepared in quantum superposition, the payoff functions
can be implemented via quantum circuits, and the price of financial derivatives can be extracted via quantum
measurements. We show how the amplitude estimation algorithm can be applied to achieve a quadratic quantum
speedup in the number of steps required to obtain an estimate for the price with high confidence. This work
provides a starting point for further research at the interface of quantum computing and finance.
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I. INTRODUCTION

A great amount of computational resources are employed
by participants in today’s financial markets. Some of these
resources are spent on the pricing and risk management of
financial assets and their derivatives. Financial assets include
the usual stocks, bonds, and commodities, based upon which
more complex contracts such as financial derivatives [1] are
constructed. Financial derivatives are contracts that have a
future payoff dependent upon the future price or the price
trajectory of one or more underlying benchmark assets. For
these derivatives, due to the stochastic nature of underlying
assets, an important issue is the assignment of a fair price
based on available information from the markets, what in
short can be called the pricing problem [2,3]. The famous
Black-Scholes-Merton (BSM) model [4,5] can price a variety
of financial derivatives via a simple and analytically solvable
model that uses a small number of input parameters. A large
amount of research has been devoted to extending the BSM
model to include complicated payoff functions and complex
models for the underlying stochastic asset dynamics.

Monte Carlo methods have a long history in the sciences.
Some of the earliest known applications were by Ulam, von
Neumann, Teller, Metropolis et al. [6] in the context of the Los
Alamos project, which used early computational devices such
as the ENIAC. For the pricing problem in finance, the main
challenge is to compute an expectation value of a function of
one or more underlying stochastic financial assets. For models
beyond BSM, such pricing is often performed via Monte Carlo
evaluation [7].

Quantum computing promises algorithmic speedups for a
variety of tasks, such as factoring or optimization. One of
the earliest proposed algorithms, known as Grover’s search
[8], developed in the mid 1990’s, in principle allows for a
quadratic speedup of searching an unstructured database. To
find the solution in a size N database with high probability,
a classical computer takes O(N ) computational steps, while
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a quantum computer takes O(
√

N ) steps. This algorithm
has been extended and generalized to function optimization
[9], amplitude amplification and estimation [10], integration
[11], quantum walk-based methods for element distinctness
[12], and Markov chain algorithms [13,14], for example. In
particular, the amplitude estimation algorithm can provide
close to quadratic speedups for estimating expectation values
[15–21], and thus provides a speedup to a problem for which
Monte Carlo methods are used classically [15,22].

Understanding the applications and enhancements of quan-
tum mechanics to computational finance is still in its relative
infancy. The framework of quantum field theory can be
harnessed to study the evolution of derivatives [23]. More
recent works focus on the application of quantum machine
learning [24,25] and quantum annealing [26] to areas such
as portfolio optimization [27] and currency arbitrage [28].
This work investigates a different perspective of how to use
quantum computing for the pricing problem. We combine
well-known quantum techniques, such as amplitude estima-
tion [10] and the quantum algorithm for Monte Carlo [15,22]
with the pricing of financial derivatives. We first show how
to obtain the expectation value of a financial derivative as
the output of a quantum algorithm. To this end, we show
the ingredients required to set up the financial problem on
a quantum computer: the elementary arithmetic operations
to compute payoff functions, the preparation of the model
probability distributions used in finance, and the ingredients for
estimating the expectation value through an imprinted phase
on ancilla qubits. It is shown how to obtain the quadratic
speedup via the amplitude estimation algorithm. We discuss
the quantum resources required to price European and Asian
call options, representing fundamental types of derivatives. We
provide evidence using classical numerical calculations that a
quadratic speedup in pricing can be attained.

This article begins with a brief summary of the basics of
derivative pricing. The Black-Scholes-Merton framework is
introduced in Sec. II and classical Monte Carlo estimation is
discussed in Sec. III within the context of finance. In Sec. IV,
the quantum algorithm for Monte Carlo is given. Section V
specializes this quantum algorithm to the pricing of a European
call option. Section VI discusses the pricing of Asian options.
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FIG. 1. The price of a stock in the Black-Scholes-Merton model
behaves stochastically as a geometric Brownian motion, changing
each time step according to a log-normal distribution. Here, five
sample price evolutions (in dollars) of a single stock are plotted as a
function of time (in days). The resultant distribution is log-normally
distributed, with mean (dashed black line) and one standard deviation
(dotted red lines) illustrated. Pricing an option requires estimating
the expected value of a payoff function on the stock at various times.
The parameters are initial price S0 = $3, drift α = 0.1, and volatility
σ = 0.25.

II. BLACK-SCHOLES-MERTON OPTION PRICING

The Black-Scholes-Merton (BSM) model [4,5] considers
the pricing of financial derivatives (“options”). The original
model assumes a single benchmark asset (“stock”), the price
of which is stochastically driven by a Brownian motion (see
Fig. 1). In addition, it assumes a risk-free investment into a
bank account (“bond”). We follow closely the discussion in
the literature [2] in the following.

Definition 1. A Brownian motion Wt is a stochastic process
characterized by the following attributes:

(1) W0 = 0.
(2) Wt is continuous.
(3) Wt has independent increments.
(4) Wt − Ws ∼ N (0, t − s) for t > s.
Here, N (μ, σ 2) is the normal distribution with mean μ and

standard deviation σ . Point 3 means that the random variable
Wt − Ws for t > s is independent of any previous time random
variable Wu, u < s. The probability measure under which Wt

is a Brownian motion shall be denoted by P.
The next step is to introduce a model for the market.
Definition 2. (Black-Scholes-Merton model) The Black-

Scholes-Merton model consists of two assets, one risky (the
stock), the other one risk free (the bond). The risky asset is
defined by the stochastic differential equation for the price
dynamics given by

dSt = Stα dt + Stσ dWt, (1)

where α is the drift, σ the volatility, and dWt is a Brownian
increment. The initial condition is S0. In addition, the risk-free
asset dynamics is given by

dBt = Btr dt, (2)

where r is the risk-free rate (market rate). Set B0 = 1. This
model assumes that all parameters are constant, both assets can
be bought or sold continuously and in unlimited and fractional
quantities without transaction costs. Short selling is allowed,
and the stock pays no dividends.

Using Ito’s lemma and the fact that dWt contributes an
additional term in first order (due do its quadratic variation
being proportional to dt), the risky asset stochastic differential
equation can be solved as

St = S0e
σWt+(α−σ 2/2)t (3)

(see Appendix A). Figure 1 shows sample evolutions of St . The
risk-free asset is solved easily as

Bt = ert . (4)

This risk-free asset also is used for “discounting,” i.e., deter-
mining the present value of a future amount of money. Let
the task be to price an option. One of the simplest options is
the European call option. The European call option gives the
owner of the option the right to buy the stock at time T � 0
for a preagreed price K .

Definition 3. (European call option) The European call
option payoff is defined as

f (ST ) = max{0, ST − K}, (5)

where K is the strike price and T the maturity date.
The task of pricing is to evaluate at present time t = 0 the

expectation value of the option f (ST ) on the stock on the
maturity date. The major tenet of risk-neutral derivative pricing
is that the pricing is performed under a probability measure
that shall not allow for arbitrage [3]. Simply put, arbitrage
is a portfolio that has, at present, an expected future value
that is greater than the current price of that portfolio. In the
Black-Scholes-Merton framework, the stock price has a drift
α under the P measure. Any α �= r allows for arbitrage under
the measure P. When α > r , one can make a profit above the
market rate r by investing in the stock, and when α < r one can
make a profit by short selling the stock. Pricing of derivatives
is performed under a probability measure where the drift of the
stock price is exactly the market rate r . This pricing measure
is denoted by Q in contrast to the original measure P.

More formally, the probability measure Q is defined such
that the discounted asset price is a martingale, i.e., the dis-
counted expected value of the future stock price is the present
day stock price itself. The martingale property is given in this
context by

S0 = e−rT EQ[ST ]. (6)

Here, e−rT is the discount factor, which determines the present
value of the payoff at a future time, given the model assumption
of a risk-free asset growing with r . In addition, EQ[. . . ]
denotes the t = 0 expectation value under the measure Q.
Under this measure, investing in the stock does not, on average,
return money above or below the market rate r , i.e., does not
allow for arbitrage. This feature is reflected in the martingale
price dynamics, which is given by

dSt = St r dt + Stσ dW̃t , (7)
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with the solution

St = S0e
σW̃t+(r−σ 2/2)t . (8)

Here, W̃t is a Brownian motion according to Definition 1 under
the martingale measure Q. The martingale property of St is
shown in Appendix A, Lemma 2.

The pricing problem is thus given by evaluating the risk-
neutral price

� = e−rT EQ[f (ST )], (9)

which is the quantity of interest in this paper. For the simple
European call option and several other options one can an-
alytically solve the Black-Scholes-Merton model. A proof is
sketched in Appendix A.

Result 1. (Black-Scholes-Merton price) The risk-neutral
price of the call option in Eq. (5) is given by

� = �(d1)S0 − �(d2)Ke−rT , (10)

with

d1 = 1

σ
√

T

[
log

(
S0

K

)
+

(
r + σ 2

2

)
T

]
, (11)

d2 = d1 − σ
√

T , (12)

and the cumulative distribution function of the normal distri-
bution p(x),

�(x) =
∫ x

−∞
dy p(y) := 1√

2π

∫ x

−∞
dy e− y2

2 . (13)

In the case of complex payoff functions and/or complex
asset price dynamics, options prices cannot be solved ana-
lytically and one often resorts to Monte Carlo evaluation.
Nevertheless, analytical solutions as above can be used for
benchmarking Monte Carlo simulations. Finally, note that
there is a dynamical equation of motion for the options price
�t in the interval 0 � t � T , which is given by a partial
differential equation. Such an equation is used in practice for
“hedging,” i.e., safeguarding during the time 0 � t � T while
the option is active against eventual payouts. In this work we
do not consider such a differential equation but focus on the
present-day options price � ≡ �0.

III. CLASSICAL MONTE CARLO PRICING

We first provide a brief overview of Monte Carlo derivative
pricing. Options are usually nonlinear functions applied to the
outcomes of one or multiple underlying assets. The option
payoff depends on the asset prices at specific time instances or
is based on the paths of the asset prices. As discussed in the
previous section, European options depend on the asset price
at a single future time. If the nonlinear function is piecewise
linear, the option can be priced analytically, similar to Result 1
and Appendix A. If there are multiple independent Brownian
processes underlying the dynamics, the price can often also
be determined analytically. The need for Monte Carlo arises
if the payoff function is nonlinear beyond piecewise linear or,
for example, in cases when different asset prices are assumed
to be correlated. Another class of options, called American
options, allow the buyer to exercise the option at any point in
time between the option start and the option maturity. Such

options are related to the optimal stopping problem [3] and are
also priced using Monte Carlo methods [29]. Asian options
depend on the average asset price during a time interval and,
if the averaging is arithmetic, may also require Monte Carlo
[30].

The underlying asset prices are modeled via stochastic
differential equations. Often stock prices are taken to be log-
normal stochastic processes, i.e., driven by an exponentiated
Brownian motion. In this case, when the parameters are con-
stant, the stochastic differential equation is exactly solvable.
In other cases, such as when the parameters of the model such
as the volatility itself follow a stochastic differential equation,
the asset price dynamics is usually not analytically solvable.
The price is then determined by sampling paths of the asset
dynamics. Moreover, Brownian motions are fundamentally
continuous and Gaussian with exponentially suppressed tails,
features which are rarely observed in real markets. Further
research has considered “fat-tailed” stochastic processes and
Levy jump processes [31], which often also require Monte
Carlo sampling.

Monte Carlo pricing of financial derivatives proceeds in
the following way. Assume that the risk-neutral probability
distribution is known, or can be obtained from calibrating
to market variables. Sample from this risk-neutral probability
distribution a market outcome, compute the asset prices given
that market outcome, then compute the option payoff given
the asset prices. Averaging the payoff over multiple samples
obtains an approximation of the derivative price. Assume a
European option on a single benchmark asset and let the true
option price be � and �̂ be the approximation obtained from
k samples. Assume that the random variable of the payoff
f (ST ) is bounded in variance, i.e., V[f (ST )] � λ2. Then, the
probability that the price estimation �̂ is ε away from the true
price is determined by Chebyshev’s inequality [22]

P[|�̂ − �| � ε] � λ2

kε2
. (14)

For a constant success probability, we thus require

k = O

(
λ2

ε2

)
(15)

samples to estimate to additive error ε. The task of the quantum
algorithm will be to improve the ε dependence from ε2 to ε,
hence providing a quadratic speedup for a given error.

Before we discuss the quantum algorithm for derivative
pricing, we show how to encode expectation values into a
quantum algorithm and how to obtain the same ε dependency as
the classical algorithm. We then discuss the quadratic speedup
by using the fundamental quantum algorithm of amplitude
estimation.

IV. QUANTUM ALGORITHM FOR MONTE CARLO

We first discuss generically the quantum algorithms to
measure an expectation value and to obtain a quadratic im-
provement in the number of measurements [10,15,22]. See
Appendix B for a brief introduction to the necessary elements
of quantum mechanics. In the following sections, we then
specialize to European and Asian options. Assume we are given
an algorithm A on n qubits (the subsequent discussion can
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also be generalized to measuring only a subset of qubits [22]).
When measuring the n qubits, the algorithm produces the n-bit
string result x with probability |ax |2. In addition, let v(x) be
a function v(x) : {0, 1}n → R mapping from n-bit strings to
reals. Here, v(A) denotes the random variable specified by the
algorithm A and the function v(x). The task is to obtain the
expectation value

E[v(A)] :=
2n−1∑
x=0

|ax |2v(x). (16)

In addition, assume we can implement a rotation onto an ancilla
qubit

R|x〉|0〉 = |x〉[
√

1 − v(x)|0〉 +
√

v(x)|1〉]. (17)

These elements are now combined into a simple quantum
algorithm to obtain the expectation value. First apply the
algorithm A:

A|0n〉 =
2n−1∑
x=0

ax |x〉, (18)

where |0n〉 denotes the n qubit register with all qubits in the
state |0〉. Then perform the rotation of an ancilla via R:

2n−1∑
x=0

ax |x〉|0〉

→
2n−1∑
x=0

ax |x〉[
√

1 − v(x)|0〉 +
√

v(x)|1〉] =: |χ〉. (19)

Combining the two operations defines a unitary F and the
resulting state |χ〉:

F |0n+1〉 := R(A ⊗ I2)|0n+1〉 ≡ |χ〉.
(20)

Here, Id is the d-dimensional identity operator. Measuring the
ancilla in the state |1〉 obtains as the success probability the
expectation value

μ := 〈χ |(I2n ⊗ |1〉〈1|)|χ〉 =
2n−1∑
x=0

|ax |2v(x) ≡ E[v(A)].

(21)
This success probability can be obtained by repeating the
procedure t times and collecting the clicks for the |1〉 state as a
fraction of the total measurements. The variance is ε2 = μ(1−μ)

t

from the Bernoulli distribution, i.e., the standard deviation is

ε =
√

μ(1−μ)
t

. Hence, the experiment has to be repeated

t = O

(
μ(1 − μ)

ε2

)
(22)

times for a given accuracy ε. This quadratic dependency in ε

is analogous to the classical Monte Carlo dependency (15).
Obtaining a quadratic speedup for the number of repetitions is
the core task of amplitude estimation.

The main tool to obtain a quantum speedup is to connect the
desired expectation value to an eigenfrequency of an oscillating
quantum system and then use another quantum degree of
freedom (such as another register of qubits) as a probe to

extract the eigenfrequency. Note that we can slightly redefine
the quantity being measured. Define the unitary

V := I2n+1 − 2I2n ⊗ |1〉〈1|, (23)

for which V = V† and V2 = I2n+1 . A measurement of V on
|χ〉 obtains 〈χ |V|χ〉 = 1 − 2μ. From this measurement we
can extract the desired expectation value.

Any quantum state in the (n + 1)-qubit Hilbert space can
be expressed as a linear combination of |χ〉 and a specific
orthogonal complement |χ⊥〉. Thus, we can express V|χ〉 =
cos(θ/2)|χ〉 + eiφ sin(θ/2)|χ⊥〉, with the angles φ and θ . Note
that our expectation value can be retrieved via

1 − 2μ = cos(θ/2). (24)

The task becomes to measure θ . We now define a transfor-
mation Q that encodes θ in its eigenvalues. First, define the
unitary reflection

U := I2n+1 − 2|χ〉〈χ |, (25)

which acts asU |χ〉 = −|χ〉 andU |χ⊥〉 = |χ⊥〉 for any orthog-
onal state. Note that −U reflects across |χ〉 and leaves |χ〉 itself
unchanged. This unitary can be implemented as U = FZF†,
whereF† is the inverse ofF andZ := I2n+1 − 2|0n+1〉〈0n+1| is
the reflection of the computational zero state. Similarly, define
the unitary

S := I2n+1 − 2V|χ〉〈χ |V ≡ VUV . (26)

Note that −S reflects across V|χ〉 and leaves V|χ〉 itself
unchanged. The transformation

Q := US = UVUV (27)

performs a rotation by an angle 2θ in the two-dimensional
Hilbert space spanned by |χ〉 and V|χ〉. Figure 2(a) shows
the breakdown of Q into its constituent unitaries and Fig. 2(b)
illustrates how Q imprints a phase of 2θ via the reflections just
discussed. The eigenvalues of Q are e±iθ with corresponding
eigenstates |ψ±〉 [15]. The task is to resolve these eigenvalues
via phase estimation, as shown in Fig. 2(c).

For phase estimation of θ [32], we require the conditional
application of the operation Q. Concretely, we require

Qc : |j 〉|ψ〉 → |j 〉Qj |ψ〉 (28)

for an arbitrary n qubit state |ψ〉. Phase estimation then pro-
ceeds in the following way [see Fig. 2(c)]. Take a copy of |χ〉
by applying F to a register of qubits in |0n+1〉. Then, prepare
an additional m-qubit register in the uniform superposition via
the Hadamard operation H:

H⊗m|0m〉|χ〉 = 1√
2m

2m−1∑
j=0

|j 〉|χ〉. (29)

Then, perform the controlled operation Qc to obtain

1√
2m

2m−1∑
j=0

|j 〉Qj |χ〉. (30)

One can show that |χ〉 = 1√
2
(|ψ+〉 + |ψ−〉) is the expansion of

|χ〉 into the two eigenvectors of Q corresponding to the eigen-
values e±iθ [15]. An inverse quantum Fourier transformation
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FIG. 2. Using amplitude estimation for the quantum Monte Carlo pricing of financial derivatives. (a) The n + 1 qubit phase estimation
unitary is written in terms of F := R(A ⊗ I2), and the simple rotation unitaries Z := I2n+1 − 2|0n+1〉〈0n+1| and V := I2n+1 − 2I2n ⊗ |1〉〈1|.
(b) A visualization of the action of Q := US , with S = VUV and U = FZF†, on an arbitrary state |ψ〉 (red) in the span of |χ〉 and V|χ〉.
First, the action of −S on |ψ〉 is to reflect along V|χ〉, resulting in the intermediate −S|ψ〉 (amber). Then, −U acts on −S|ψ〉 by reflecting
along |χ〉. The resultant state Q|ψ〉 (green) has been rotated anticlockwise by an angle 2θ in the hyperplane of |χ〉 and |χ⊥〉. (c) The phase
estimation circuit. Here, A encodes the randomness by preparing a superposition in |x〉, while R encodes the random variable into the |1〉
state of an ancilla qubit according to Eq. (17). The output after both steps is the multiqubit state |χ〉. Amplitude estimation then proceeds by
invoking phase estimation to encode the rotation angle θ in a register of quantum bits that are measured to obtain the estimate θ̂ . (d) For pricing
a European call option, the superposition prepared by A [or equivalently G in Eq. (35)] is a discretization of the normal distribution in x with a
fixed cutoff (e.g., c = 4), approximating the Brownian motion of the underlying asset. In this case, R encodes the call option payoff in Eq. (5).

applied to Eq. (30) prepares the state

2m−1∑
x=0

α+(x)|x〉|ψ+〉 + α−(x)|x〉|ψ−〉. (31)

The |α±(x)|2 are peaked where x/2m = ±θ̂ is an m-bit
approximation to ±θ . Hence, measurement of the |x〉 register
will retrieve the approximations ±θ̂ . The detailed steps are
shown in Appendix F.

These results can be formalized with the following theo-
rems.

Theorem 1. (Amplitude estimation [10]) There is a quantum
algorithm called amplitude estimation which takes as input:
one copy of a quantum state |χ〉, a unitary transformation U =
I − 2|χ〉〈χ |, a unitary transformation V = I − 2P for some
projector P , and an integer t . The algorithm outputs â, an
estimate of a = 〈χ |P |χ〉, such that

|â − a| � 2π

√
a(1 − a)

t
+ π2

t2

with probability at least 8/π2, using U and V t times each.

This theorem can be used to estimate expectation values.
Given the cosine relationship in Eq. (24), it is natural to start
with [0,1] bounded expectation values.

Theorem 2. (Mean estimation for [0,1] bounded functions
[22]) Let there be given a quantum circuit A on n qubits. Let
v(A) be the random variable that maps to v(x) ∈ [0, 1] when
the bit string x is measured as the output ofA. LetR be defined
as

R|x〉|0〉 = |x〉[
√

1 − v(x)|0〉 −
√

v(x)|1〉].
Let |χ〉 be defined as |χ〉 = R(A ⊗ I2)|0n+1〉. Set U =
I2n+1 − 2|χ〉〈χ |. There exists a quantum algorithm that uses
O(log 1/δ) copies of the state |χ〉, uses U for a number of
times proportional to O(t log 1/δ), and outputs an estimate μ̂

such that

|μ̂ − E[v(A)]| � C

(√
E[v(A)]

t
+ 1

t2

)

with probability at least 1 − δ, where C is a universal constant.
In particular, for any fixed δ > 0 and any ε such that 0 <

ε � 1, to produce an estimate μ̂ such that with probability
at least 1 − δ, |μ̂ − E[v(A)]| � εE[v(A)], it suffices to take

022321-5



REBENTROST, GUPT, AND BROMLEY PHYSICAL REVIEW A 98, 022321 (2018)

t = O(1/{ε√E[v(A)]}). To achieve |μ̂ − E[v(A)]| � ε with
probability at least 1 − δ, it suffices to take t = O(1/ε).

This theorem is a direct application of amplitude estimation
via Theorem 1. The success probability of 8/π2 of amplitude
estimation can be improved to 1 − δ by taking the median
of multiple runs of Theorem 1 (see Appendix F, Lemma
6). Theorem 2 can be generalized to random variables with
bounded variance as follows.

Theorem 3. (Mean estimation with bounded variance [22])
Let there be given a quantum circuit A. Let v(A) be
the random variable corresponding to v(x) when the out-
come x of A is measured, such that V[v(A)] � λ2. Let
the accuracy be ε < 4λ. Take U and |χ〉 as in The-
orem 2. There exists a quantum algorithm that uses
O[log(λ/ε) log log(λ/ε)] copies of |χ〉 and uses U for a num-
ber of times O[(λ/ε) log3/2(λ/ε) log log(λ/ε)] and estimates
E[v(A)] up to additive error ε with success probability at least
2
3 .

Theorem 3 can be proved by employing Theorem 2. We
proceed by sketching the proof, and refer the interested reader
to the detailed treatment in [22]. To show Theorem 3, the
bounded-variance random variable v(A) is related to a set
of random variables with outputs between [0,1] and then the
estimates of the mean of each of these random variables are
combined to give the final estimate. This can be done in three
steps. First, the random variable v(A) can be approximately
standardized by subtracting an approximation to the mean
and dividing by the known variance bound λ2, to obtain a
random variable v′(A). Second, v′(A) can be split into positive
and negative parts by using the functions fmin(x) = min{x, 0}
and fmax(x) = max{x, 0}. (Coincidentally, these functions are
similar to the call and put option payoff functions.) This
defines new random variables B< = −fmin(v′(A)) and B> =
fmax(v′(A)), both taking on only values �0. These random
variables can be rescaled and combined to give the desired
random variable.

As the third step, both positive random variables B<,> =:
B can be split into multiple auxiliary random variables with
outputs between [0,1] and each of these random variables is
estimated by Theorem 2. This is done by defining the functions
for 0 � a < b:

fa,b(x) = 1

b

{
x if a � x < b,

0 otherwise,
(32)

which take on values in [0,1]. Now, the auxiliary random
variables f0,1(B ), f1,2(B ), f2,4(B ), f4,8(B ) and so forth can
be defined which are all taking values in [0,1]. Theorem 2
can be used to estimate the mean of each of these random
variables. It can be shown that only a small number �log(λ/ε)�
of these auxiliary random variables are needed to estimate the
mean of random variable B with final error ε. This estimation
makes use of the bounded-variance property which leads to the
distribution tails contributing only a small error.

The resource count of Theorem 3 is justified as fol-
lows. For an estimation with accuracy ε it can be shown
that the number of random variables fa,b(B ) and there-
fore the number of applications of Theorem 2 needed is
�log(λ/ε)�. In addition, the number of steps t in Theo-
rem 2 can be taken to be t = O[(λ/ε)

√
log λ/ε] and also

δ = [1/ log(λ/ε)] to achieve the final accuracy. Thus, from
each application of the Theorem 2, we need O[log log(λ/ε)]
copies of |χ〉 and O[ λ

ε

√
log(λ/ε) log log(λ/ε)] applica-

tions of U . As we apply Theorem 2 for �log(λ/ε)� times
we require O[log(λ/ε) log log(λ/ε)] copies of |χ〉 and
O( λ

ε
[log(λ/ε)]3/2 log log(λ/ε)) applications of U . This is an

almost quadratic speedup in the number of applications of U
when compared to the direct approach outlined in Eq. (22).

V. QUANTUM ALGORITHM FOR EUROPEAN
OPTION PRICING

We specialize the above discussion to the Monte Carlo
pricing of a European call option. We show how to prepare
the Brownian motion distribution and the quantum circuit for
the option payoff. For any European option, i.e., an option that
depends on the asset prices only at a single maturity date T ,
we can write the price as an expectation value of a function of
the underlying stochastic processes evaluated at the maturity
date. For the BSM model with a single Brownian motion we
have

� = e−rT EQ[v(WT )], (33)

where WT is the Brownian motion at time T and v(x) is, for
example, defined from the function f (x) in Eq. (5). From
Definition 1, WT is a Gaussian random variable ∼N (0, T ).
The probability density for this random variable is given by

pT (x) = 1√
2πT

e− x2

2T . (34)

To prepare an approximate superposition of these probabili-
ties, we take the support of this density from [−∞,∞] →
[−xmax, xmax] and discretize this interval with 2n points, where
n is an integer. Here, xmax = O(

√
T ), as a few standard

deviations are usually enough to capture the normal dis-
tribution and reliably estimate the options price. The dis-
cretization points may be defined as xj := −xmax + j�x,
with �x = 2xmax/(2n − 1) and j = 0, . . . , 2n − 1. Define the
probabilities pj = pT (xj )/C, with the normalization C =∑2n−1

j=0 pT (xj ). This process is illustrated in Fig. 2(d). Accord-
ing to Ref. [33], there exists a quantum algorithm G (which
takes on the role of A in the previous section) such that we can
prepare

G|0n〉 =
2n−1∑
j=0

√
pj |j 〉. (35)

This algorithm runs in O(n) steps, provided that there is a
method to efficiently sample the integrals

∫ b

a
pT (x)dx for

any a, b. These integrals can be efficiently sampled for any
log-concave distribution, such as in the present case of the
Gaussian distribution associated with WT . We show the steps
in Appendix E.

Now, consider the function v(x) : R → Rwhich relates the
Brownian motion to the option payoff. For the example of the
European call option, the function is

veuro(x) = max{0, S0e
σx+(r− 1

2 σ 2 )T − K}. (36)
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At the discretization points of the Brownian motion we define

v(j ) := v(xj ). (37)

One can find a binary approximation to this function over n

bits, i.e., ṽ(j ) : {0, 1}n → {0, 1}n, where we take the number
of input bits to be the same as the number of output bits.
The n bits allow one to represent 2n different floating points
numbers, and with n = n1 + n2 one can trade off the largest
represented number 2n1 with the accuracy of the representation
2−n2 [34]. We can take n = n2, by keeping track of the
exponent of the floating point numbers offline. The accuracy
for the function approximation is given by |v(j ) − ṽ(j )| =
O(1/2n), if v(j ) is sufficiently well behaved (e.g., Lipschitz
continuous). The classical circuit depth of most such functions
ṽ(j ) discretizing real-world options payoffs is O(n). Via the
reversible computing paradigm, this classical circuit can be
turned into a reversible classical circuit using O(n) operations
[32]. Given the reversible classical circuit, the quantum circuit
can be determined involving O(n) quantum gates. In other
words, we can implement the operation

|j 〉|0n〉 → |j 〉|ṽ(j )〉. (38)

See Appendix C for more details on basic arithmetic operations
and quantum circuits for options payoffs.

We can now go through the steps of the quantum Monte
Carlo algorithm. Section IV assumes availability of R with a
real-valued function v(x). Such a rotation can be directly im-
plemented in some cases [35]. Here, we invoke the controlled
rotationR|j 〉|0〉 = |j 〉[√1 − ṽ(xj )|0〉 + √

ṽ(xj )|1〉], with the
discretized options payoff function ṽ(x). See Appendix D for
an implementation of this rotation by using an auxiliary register
of qubits and the circuit for the options payoff. The steps are
similar to before:

G|0n〉 =
2n−1∑
j=0

√
p(xj )|j 〉 (39)

→
2n−1∑
j=0

√
p(xj )|j 〉[√1 − ṽ(xj )|0〉 + √

ṽ(xj )|1〉] =: |χ〉.

(40)

Measuring the ancilla in the state |1〉, we obtain the expectation
value

μ = 〈χ |(I2n ⊗ |1〉〈1|)|χ〉 =
2n−1∑
j=0

pT (xj )ṽ(xj ). (41)

This expectation value μ, assuming it can be measured exactly,
determines the option price EQ[v(WT )] to accuracy

|μ − EQ[v(WT )]| =: ν. (42)

The error arises from the discretization of the probability
density and the accuracy of the function approximation ṽ.
Using n qubits, the accuracy is given by ν = O(2−n).

We can employ phase estimation and Theorems 2 and
3 to evaluate μ to a given accuracy and get a bound on
the number of computational steps needed. For the Euro-
pean call option, we can show that the variance is bounded
by VQ[f (ST )] � λ2 where λ2 := O(poly(S0, e

rT , eσ 2T ,K ))

(see Appendix A). Thus, from Theorem 3 we know that
we can use O[log(λ/ε) log log(λ/ε)] copies of |χ〉 and
O[(λ/ε) log3/2(λ/ε) log log(λ/ε)] applications of U to pro-
vide an estimate μ̂ for μ up to additive error ε with success
probability at least 2

3 . The accuracy is ε < 4λ. The total error
is

|μ̂ − EQ[f (ST )]| � ε + ν, (43)

compounding the two sources from amplitude estimation and
the discretization error. Discounting μ̂ [see Eq. (33)] then
retrieves an estimation of the option price �̂. The total number
of applications of U is

Õ

(
λ

ε

)
, (44)

where Õ(·) suppresses polylogarithmic factors. This quantity
can be considered the analog of the classical number of Monte
Carlo runs [15,22]. The required number of quantum steps
is quadratically better than the classical number of steps in
Eq. (15), or the naive quantum case in Eq. (22).

VI. ASIAN OPTION PRICING

Up to this point, we have discussed the quantum Monte
Carlo pricing of derivatives via the illustrative example of
the European call option. This call option can be priced
analytically in the Black-Scholes-Merton framework, thus MC
methods are in principle not required. Another family of
options is the so-called Asian options, which depend on the
average asset price before the maturity date [30].

Definition 4. (Asian options) The Asian call option payoff
is defined as

f (AT ) = max{0, AT − K}, (45)

where K is the strike price and T the maturity date. The
arithmetic mean option value is defined via

Aarith
T = 1

L

L∑
l=1

Stl , (46)

and the geometric mean option is defined via

A
geo
T = exp

1

L

L∑
l=1

log Stl (47)

for predefined time points 0 < t1 < · · · < tL � T , with L � 1.
The following discussion assumes the BSM framework as

before. In this framework, the geometric mean Asian option
can be priced analytically, while such a solution is not known
for the arithmetic Asian option. Assume for this discussion
that all adjacent time points are separated by the interval �t ,
i.e., tl+1 − tl = �t = T/L for all l = 1, . . . , L − 1. Analo-
gously to before, we can efficiently prepare via the Grover-
Rudolph algorithm [33] a state that corresponds to the Gaussian
normal distribution with variance �t :

|p�t 〉 := G|0m〉 =
2m−1∑
j=0

√
p�t (xj )|j 〉. (48)
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This state uses m qubits and takes O(m) steps to prepare. Then,
we prepare the product state with L such states, i.e.,

|p〉 := |p�t 〉 . . . |p�t 〉. (49)

This state uses Lm qubits and takes O(Lm) steps to prepare.
In addition, we require the operation

|j1, . . . , jL〉|0〉 = |j1, . . . , jL〉|A(St1 (xj1 ), . . . , StL (xjL
))〉.

(50)

Here, A(St1 (xj1 ), . . . , StL (xjL
)) is the average stock price cor-

responding to the Brownian path xj1 , . . . , xjL
. This operation is

easily computable. Each index j is mapped to its corresponding
point xj via xj = −xmax + j�x as before. Then, start at the
known S0 and use

Stl+1 (x) = Stl e
σx+(r−σ 2/2)�t (51)

to obtain the stock price at the next time point, where x

is a sample of the Brownian motion. This step can also be
performed in the log domain [30]

log Stl+1 (x) = log Stl + σx + (r − σ 2/2)�t. (52)

In this way, one obtains a state where the label |j1, . . . , jL〉
associated with the corresponding stock price path

|j1, . . . , jL〉|St1 (xj1 )〉 . . . |StL (xjL
)〉. (53)

Moreover, the average (both arithmetic and geometric) can be
computed in a sequential manner since we can implement the
step

|j1, . . . , jL〉|Stl (xjl
)〉|A(St1 (xj1 ), . . . , Stl (xjl

))〉
→ |j1, . . . , jL〉|Stl+1 (xjl+1 )〉|A(St1 (xj1 ), . . . , Stl+1 (xjl+1 ))〉.

(54)

The steps are performed until the final time tL is reached
and A(St1 (xj1 ), . . . , StL (xjL

)) is stored in a register of qubits.
Reversibility of the quantum arithmetic operations guarantees
that registers storing the intermediate steps can be uncomputed.
Applying operation Eq. (50) to the product state (49) obtains

2m−1∑
j1...jL=0

√
pj1,...,jL

|j1, . . . , jL〉|A(St1 (xj1 ), . . . , StL (xjL
))〉

(55)

with
√

pj1,...,jL
:= √

p�t (xj1 ) . . .
√

p�t (xjL
). Analogously to

before, a conditional rotation of an ancilla qubit can be
performed such that measuring the ancilla in the |1〉 state
obtains

2m−1∑
j1...jL=0

pj1,...,jL
f (A(St1 (xj1 ), . . . , StL (xjL

))) ≈ EQ[f (A)].

(56)

The result is an approximation to the Black-Scholes price of the
Asian option. The variance of the option can be bounded from
the fact that the arithmetic mean upper bounds the geometric
mean and the arithmetic mean itself is upper bounded by the
expected maximum of the stock price max{St1 , . . . , StL}. The
variance of options such as calls or puts on the maximum of
a stock in a time period can be bounded [2] similar to the

variance bound of the European call option, which is presented
in Appendix A. We thus obtain a similar speedup for the Asian
options via Theorem 3.

VII. NUMERICAL SIMULATIONS

While a practical quantum computer has yet to become a
reality, we can exhibit the speedup of our quantum algorithm
for options pricing numerically, and compare its performance
with the classical Monte Carlo method. Note that our quantum
algorithm consists of two main parts [see also Fig. 2(c)]. First,
prepare the Brownian motion superposition (through A) and
encode the option payoff onto an ancilla qubit (throughR); and
second, use amplitude amplification and phase estimation with
repeated applications of Q to estimate the expectation value
encoded in the ancilla qubit. The phase estimation subroutine
can in principle be simulated using publicly available quantum
software packages such as STRAWBERRY FIELDS [36] and
PROJECTQ[37]. However, to showcase the quadratic speedup,
we here perform phase estimation by using a single qubit
rotated according to eiθσz/2, where θ is the predetermined
phase.

We perform numerics for a phase θ given by the European
call option (see Sec. II), which can be priced analytically.
The analytical price � is computed directly from the Black-
Scholes-Merton formula (see Result 1). We provide an estimate
θ̂ using both quantum phase estimation and the standard
classical Monte Carlo method. Here, the analytical price �

is used both as an input to the single-qubit phase estimation
via θ from Eq. (24), as well as a benchmark for the resultant
simulations. The single-qubit phase estimation is described in
Appendix F. We define the corresponding estimation error as
the difference between the estimated price �̂ and analytical
price �, i.e.,

Error := |�̂ − �|. (57)

In the figures and following discussion, we will use subscripts
Q and C to denote the quantum and classical estimations, re-
spectively. The estimation error follows a power-law behavior
with the number of MC steps k undertaken

Error = a kζ , (58)

where ζ is the scaling exponent and a is a constant. As
discussed in Sec. III, as well as obtained in our simulations, the
scaling exponent for classical MC estimation is ζC = − 1

2 . For
the quantum case, the kQ is the total number of applications
of the single-qubit unitary. The simulations are performed
such that quantum and classical estimates have a similar
confidence (>99.5%), which implies a number of independent
single-qubit phase estimation runs of D ≈ 24 [15] (see also
Appendix F).

Figure 3 shows a comparison between the error scalings for
our quantum algorithm (blue solid curve with markers) and
classical MC (orange dashed curve). The parameters for this
figure are S0 = $100, K = $50, r = 0.05, σ = 0.2, T = 1,
and D = 24. The analytical price was determined to be � =
$10.5 and rescaled to the corresponding θ = 2 arccos(1 −
2�/S0) via Eq. (24) for use in the phase estimation. In addition,
we have also plotted a fit of the quantum error to the power
law given in Eq. (58) resulting in the scaling exponent to
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FIG. 3. Scaling of the error in classical and quantum MC methods
[defined in Eq. (57)] plotted against number of MC steps for a
European call option in log-log scale with S0 = $100, K = $50, r =
0.05, σ = 0.2, T = 1, and D = 24. Subscripts C and Q denote the
errors from classical MC and quantum phase estimation, respectively.
Evidently, the error for the quantum algorithm (with a fitted slope of
ζQ = −0.982) scales almost quadratically faster than the classical MC
method (which has ζC = −0.5). The theoretical upper bound on the
error in quantum algorithm is shown by the solid green curve, which
corresponds to ζQ = −1.

be ζQ = −0.982. It is evident that the scaling exponent of
quantum phase estimation is almost twice the classical one.
Indeed, the green solid curve shows the upper bound on
the errors in quantum estimation defined as [15] (see also
Appendix F):

εQ :=
∣∣∣∣cos

(
θ̂

2
+ π

kQ

)
− cos

(
θ̂

2

)∣∣∣∣ , (59)

where θ̂ is the phase estimated via the quantum algorithm.
This upper bound has a scaling exponent of −1 and hence
straightforwardly demonstrates the quadratic speedup in the
number of steps for phase estimation to a given error.

To test the robustness of the quadratic speedup in scaling,
we vary the strike price and plot the ratio of the quantum to
the classical scaling exponents ζQ/ζC in Fig. 4. We obtain
an almost quadratic advantage in estimation overhead for all
strike prices. Similar tests by varying other parameters also
show a robust quadratic quantum speedup of the Monte Carlo
estimation.

VIII. DISCUSSION AND CONCLUSION

In this work, we have presented a quantum algorithm for
the pricing of financial derivatives. We have assumed that
the distribution of the underlying random variables, i.e., the
martingale measure, is known and the corresponding quantum
states can be prepared efficiently. In addition, we assume
efficient computability of the derivative payoff function. Under
these assumptions, we exhibit a quadratic speedup in the num-
ber of samples required to estimate the price of the derivative
up to a given error: if the desired accuracy is ε, then classical
methods show a 1/ε2 dependency in the number of samples,
while the quantum algorithm shows a 1/ε dependency.
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FIG. 4. Ratio of the quantum to classical scaling exponents. The
quantum scaling is obtained by fitting the simulations results to the
power law in Eq. (58), while the classical scaling exponent is taken to
be −0.5. Results are plotted with varying strike price K (in dollars)
and fixing other parameters to be the same as in Fig. 3. An almost
quadratic speedup is obtained for all chosen values of K .

As an exemplary case, we have discussed European call
options for which analytical solutions are known. In addition,
we have discussed Asian options, which in the arithmetic
averaging case require Monte Carlo methods to be priced. Our
approach can in principle be applied to any derivative which
has a payoff that is a function that can be efficiently broken
down into elementary arithmetic operations within a quantum
circuit, and which can also depend on an average over multiple
time windows. Future work will extend these discussions to
the complex payoff functions often used at leading financial
institutions, as well as addressing more complicated stochastic
models.

Monte Carlo simulations play a major role in managing the
risk that a financial institution is exposed to [3]. Especially
after the financial crisis of 2008–2009, sophisticated risk
management is increasingly important to banks internally
and also required by government regulators [38,39]. Such
risk analysis falls under the umbrella of so-called valuation
adjustments (VA), or XVA [38,39], where X stands for the
type of risk under consideration. An example is CVA, where
the counterparty credit risk is modeled. Such a valuation adjusts
the price of the derivative based on the risk that the counterparty
in that financial contract runs out of money.

XVA calculations are a major computational effort for
groups (“desks”) at financial institutions that handle complex
derivatives such as those based on interest rates. For complex
financial derivatives, such risk management involves a large
amount of Monte Carlo simulations. Different Monte Carlo
runs assess the price of a derivative under various scenarios.
Determining the risk of the complete portfolio of a desk
often requires overnight calculations of the prices according
to various risk scenarios. Quantum computers promise a sig-
nificant speedup for such computations. In principle, overnight
calculations could be reduced to much shorter timescales (such
as minutes), which would allow a more real-time analysis
of risk. Such close-to real-time analysis would allow the
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institution to react faster to changing market conditions and
to profit from trading opportunities.

The qubit model for universal quantum computing was
employed here to provide a succinct discussion. However,
one is not restricted to such a setting but can use other
universal quantum computational models such as adiabatic
quantum computation or continuous variable (CV) quantum
computation. In the continuous variable setting, instead of
qubits one has oscillators which in principle have infinite-
dimensional Hilbert spaces. In this setting, preparing Gaus-
sian states for the probability distributions can be done in a
straightforward manner, instead of employing the relatively
complicated preparation routine according to Grover-Rudolph.
Investigating the promising advantages of the CV setting in a
financial context in more detail will be left for future work.
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APPENDIX A: BLACK-SCHOLES CALCULATIONS

Here, we show several calculations related to the Black-
Scholes-Merton model. We show the solution to the stochastic
differential equation, the martingale property of the stock price,
the BSM price for the European call option, and an upper bound
for the variance of the BSM price for the call option. First note
the following result.

Result 2. (Informal) For the infinitesimal Brownian incre-
ment it holds that

dW 2
t = dt. (A1)

This result can be reasoned by the variance of the Brownian
increment being proportional to the time interval of the incre-
ment. Next, we show the solution to the following stochastic
differential equation.

Lemma 1. The stochastic differential equation

dSt = Stα dt + Stσ dWt (A2)

is solved by

St = S0e
σWt+(α− σ2

2 )t . (A3)

Proof. We show this result by finding the differential dSt

given St . The quantity St can be seen as a function s(t, x). To
obtain the differential, expand this function to second order in
dx and use the solution St to obtain

ds(t, x) = ∂s

∂t
dt + ∂s

∂x
dx + 1

2

∂2s

∂x2
dx2 + O

(
dt2, dx3

)
=

(
α − σ 2

2

)
s(t, x)dt+σs(t, x)dx+ σ 2

2
s(t, x)dx2.

(A4)

Using dx = dWt and dx2 = dW 2
t = dt from Result 2 leads to

the differential

dSt = Stα dt + Stσ dWt . (A5)

�

Next, we show the martingale property of the discounted
stock price.

Lemma 2. Under the Q measure, the stock price is a
martingale, i.e.,

S0 = e−rT EQ[ST ]. (A6)

Proof.

e−rT EQ[ST ] = S0EQ

[
eσW̃T − σ2T

2
]

(A7)

= e− σ2T
2

S0√
2πT

∫ ∞

−∞
dx e− x2

2T eσx (A8)

= S0. (A9)

In the last step we simplified by substitution and completed the
square as∫ ∞

−∞
dx e− x2

2T eσx =
√

T

∫ ∞

−∞
dx e− x2

2 eσ
√

T x (A10)

=
√

T e
σ2T

2

∫ ∞

−∞
dx e− (x−√

T σ )2

2 (A11)

=
√

2πT e
σ2T

2 . (A12)

�
Via a similar calculation we can obtain the price for the call

option.
Lemma 3. The Black-Scholes price for the European call

option is given by

� = S0�(d1) − Ke−rT �(d2). (A13)

Proof. To compute the price we start at

� = e−rT EQ[f (ST )]. (A14)

Note that for the call option we can write

f (ST ) = max{0, ST − K} = (ST − K )1ST �K, (A15)

where 1x is the indicator function on the set x. Using the
solution for ST we have

f (W̃T ) = (S0e
σW̃T +(r−σ 2/2)T − K )1

W̃T �

[
log K

S0
−

(
r− σ2

2

)
T

]
σ

.

(A16)

Compute the part involving the strike price K:

E

[
1

W̃T �

[
log K

S0
−
(

r− σ2
2

)
T

]
σ

]
=

∫ ∞[
log K

S0
−
(

r− σ2
2

)
T

]
σ
√

T

dx p(x)

= �(d2). (A17)

Here, we use the cumulative distribution function

�(x) =
∫ x

−∞
dy p(y) := 1√

2π

∫ x

−∞
dy e− y2

2 . (A18)

The part involving the stock price is

E

[
S0e

σW̃T −σ 2T/21
W̃T �

[
log K

S0
−
(

r− σ2
2

)
T

]
σ

]

= S0e
−σ 2T/2

∫ ∞[
log K

S0
−
(

r− σ2
2

)
T

]
σ
√

T

dx p(x)eσ
√

T x

= S0�(d1). (A19)
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Here,

d1 = 1

σ
√

T

[
log

(
S0

K

)
+

(
r + σ 2

2

)
T

]
, (A20)

d2 = 1

σ
√

T

[
log

(
S0

K

)
+

(
r − σ 2

2

)
T

]
. (A21)

This leads to the Black-Scholes price for the call option. �
Lemma 4. The variance of the European call option f (ST )

under the risk-neutral probability measure Q can be bounded
as VQ[f (ST )] � λ2 with λ2 := O(poly(S0, e

rT , eσ 2T ,K )).
Proof. The variance is exactly computable. First note that

S2
T = S2

0e2σW̃T +(2r−σ 2 )T . We have

EQ[f (ST )2] = EQ[(ST − K )21ST �K ]

= EQ[(S2
T − 2ST K + K2)1ST �K ]. (A22)

The last two terms were calculated analogously in the Black-
Scholes price already. They are

2KEQ[ST 1ST �K ] = 2KerT S0�(d1), (A23)

EQ[K21ST �K ] = K2�(d2). (A24)

The first term is EQ[S2
T 1ST �K ] which is proportional to

EQ

[
e2σW̃T 1

W̃T �

[
log K

S0
−
(

r− σ2
2

)
T

]
σ

]
(A25)

=
∫ ∞[

log K
S0

−
(

r− σ2
2

)
T

]
σ
√

T

dx p(x)e2σ
√

T x (A26)

= e2σ 2T �(d3) (A27)

with

d3 = 1

σ
√

T

[
log

(
S0

K

)
+

(
r + 3σ 2

2

)
T

]
. (A28)

Putting it all together we obtain

VQ[f (ST )] = EQ[f (ST )2] − EQ[f (ST )]2 (A29)

= e(2r+σ 2 )T S2
0�(d3) − 2KerT S0�(d1)

+K2�(d2) − [S0e
rT �(d1) − K�(d2)]2

= O
(
S2

0e(2r+σ 2 )T + S0KerT + K2
)
. (A30)

We obtain an upper bound as VQ[f (ST )] =
O(poly(S0, e

rT , eσ 2T ,K )). �

APPENDIX B: INTRODUCTION TO
QUANTUM COMPUTING

Instead of the elementary bits of conventional computing,
which take either the value 0 or 1, the unit of information
in quantum computing is known as a qubit. A qubit is not
restricted to being in one of the two states 0 or 1 exclusively, and
can instead exist in a superposition. In quantum mechanics we
use the bra-ket notation, with the kets |0〉 and |1〉 representing
0 and 1, respectively. The state of a qubit can then be written
as

|ψ〉 = α|0〉 + β|1〉, (B1)

in terms of so-called amplitudes α, β ∈ C. This means that
the qubit can be in either of the states with some probability.
Measuring the qubit collapses it onto |0〉 with probability |α|2
and onto |1〉 with probability |β|2. Hence, |α|2 + |β|2 = 1.

States of n qubits exist in a 2n-dimensional Hilbert space
and can be described by the vector

|ψ〉 =
2n−1∑
i=0

αi |i〉, (B2)

with αi ∈ C and |i〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 the vector of
basis states over n qubits such that [i1, i2, . . . , in] is the length
n binary representation of i. The probability that the n qubits
are in state |i〉 is equal to |αi |2, where

∑2n−1
i=0 |αi |2 = 1. Note

that the tensor product symbol ⊗ denotes the joining of two
quantum systems (e.g., qubits) in quantum mechanics.

Isolated quantum system evolve according to unitary trans-
formations, i.e., so that |ψ〉 goes to |ψ ′〉 = U |ψ〉 for some
unitary U (which satisfies U †U = UU † = I, where † is the
conjugate transpose and I is the identity operator). Unitaries
can be controlled externally and also applied to collections of
multiple qubits, as is often the case in this work. A standard
library of one- and two-qubit unitaries can also be applied,
and are often called quantum gates [32] in analogy to the gates
used used for binary logic operations, e.g., AND, OR, etc. This
work uses the Hadamard gate H, which acts on one qubit with
the transformation

|0〉 → 1√
2

(|0〉 + |1〉), |1〉 → 1√
2

(|0〉 − |1〉). (B3)

The inverse quantum Fourier transform QFT−1 is also utilized
in this work, which acts to perform an inverse discrete Fourier
transform on the amplitudes αj , i.e., taking the corresponding
state |j 〉 to

1√
2n

2n−1∑
k=0

ωjk|k〉, (B4)

with ω = e−2πi/2n

. Unitaries acting on one or more qubits can
also be controlled by another qubit, e.g., so that the unitary is
enacted if the control qubit is in state |1〉 and the unitary is
not enacted if the control qubit is in state |0〉. One important
example is the controlled-NOT (CNOT) gate, which swaps
the state of a qubit from |0〉 to |1〉 (and vice versa) whenever
a control qubit is in state |1〉. Its extension is the Toffoli gate,
which swaps the state of a qubit from |0〉 to |1〉 (and vice versa)
only when two control qubits are in state |1〉.

Compositions of unitaries acting on multiple qubits, pre-
pared in various initial states, can be created to form quantum
circuits. These quantum circuits are able to carry out quantum
algorithms that may perform a task faster than on a classi-
cal device, e.g., Shor’s algorithm [32]. The unitary nature
of quantum algorithms means that all quantum circuits are
reversible. Reversibility has implications for the structure of
quantum circuits, and marks a departure from the more familiar
classical circuits. For example, the AND gate is not reversible
because a single bit is returned from which the two input bits
cannot be inferred in all cases.

Quantum circuits can be represented pictorially using a
quantum circuit diagram, as is the case in Figs. 2(a) and 2(c).
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Here, each qubit is represented by a horizontal line, with time
moving from left to right. The unitaries are applied to various
qubits by drawing a box over the qubit lines, with control from
another qubit symbolized by a black dot and line connecting
to the box. Measurements on the qubits are represented by the

symbol. Finally, the CNOT gate is written as

with the upper qubit acting as the control and the lower qubit
acting as the target, while the Toffoli gate is represented as

with control from the top two qubits and target on the

bottom qubit.

APPENDIX C: QUANTUM CIRCUITS FOR
ARITHMETIC OPERATIONS

In this appendix, we review how integers and real numbers
are represented and processed on a quantum computer [32]. An
integer 0 � a < N = 2m can be represented in binary with m

bits xi, i = 0, . . . , m − 1, such that

a = 20x0 + 21x1 + 22x2 + · · · + 2m−1xm−1. (C1)

The largest number is N − 1. The qubit encoding of the
integer is where |a〉 refers to an m qubit register prepared
in the computational basis state given by the xi , i.e., |a〉 =
|x0, x1, . . . , xm〉. For real numbers 0 � r < 1, we can use m

bits bi, i = 0, . . . , m − 1, such that

r = b0

2
+ b1

4
+ · · · + bm−1

2m
=: [.b1, b2, . . . , bm−1]. (C2)

The accuracy is 1/2m. The qubit encoding of the real
number is where |r〉 refers to a m qubit register prepared
in the computational basis state given by the bi , i.e., |r〉 =
|b0, b1, . . . , bm−1〉. For signed integers or reals, we have an
additional sign quantum bit |s〉.

Any operation performed on a classical computer can be
written as a transformation from n to m bits, that is, F :
{0, 1}n → {0, 1}m. A central result of reversible computing
is that the number of input and output bits can be made the
same and the function F can be mapped to a function F ′ :
{0, 1}n+m → {0, 1}n+m which is given by F ′(x, y) = (x, y ⊕
F (x)). F ′ is a reversible function and a permutation. This
permutation can be realized with a circuit that consists only
of negation and Toffoli gates. If F is efficiently computable,
then the circuit depth is at most a polynomial in n + m. The
classical circuit then immediately translates into a quantum
circuit consisting of bit-flip σz operations and Toffoli gates.
The Toffoli gate can be broken down into a series of two-qubit
CNOTs and Hadamard and T gates.

We now review how basic arithmetic operations can be
performed on a quantum computer. Using the following basic
gates, a number of arithmetic operations can be constructed
[40]:

(C3)

(C4)

where CY represents the “carry” operation. Composing these
gates can achieve addition, multiplication, exponentiation, and
other operations. Numerous other works provide circuits for
these operations with improved performance and lower gate
requirements [41–46].

There exists a quantum circuit that performs the addition
modulo N . Given two integers 0 � a, b < N we can construct
a circuit of the form

(C5)

defined via a gate sequence of SUM and CY ’s in Ref. [40]. In
addition, a circuit for addition modulo N can be constructed

(C6)

There also exists a quantum circuit that performs the multipli-
cation

(C7)

as well as a quantum circuit that performs the exponentiation

(C8)

We would like to implement the call option payoff function

a+ = max{0, a}. (C9)

We can implement this as a reversible circuit

(C10)

which performs

|a, s, 0〉 →
{|a, s, a〉 if |s〉 = |0〉,
|a, s, 0〉 if |s〉 = |1〉. (C11)

Here, the sign bit is used as a controller and a controlled
addition is performed if the sign bit is positive. There exists
a circuit for mapping the Brownian motion to the stock price,
which consists of the basic operations shown above:

(C12)

Combining the stock price with the max function, we obtain
the circuit for mapping the Brownian motion outcome to the
payoff for the European call option

(C13)

with ṽeuro(x) ≡ ṽeuro(x,K, σ, r, t ) the bit approximation of the
payoff function (36).
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APPENDIX D: APPLYING THE OPERATOR R

This appendix shows implementation of the operator R,
which rotates an ancilla based on the payoff function, where
the payoff function is given by an n-bit quantum circuit, similar
to circuit (C13). Using the option payoff circuit, the steps to
implement R are (the notation omits ancilla qubits in the |0〉
state)

|j 〉 → |j 〉|ṽ(xj )〉 (D1)

→ |j 〉|ṽ(xj )〉[√1 − ṽ(xj )|0〉 + √
ṽ(xj )|1〉] (D2)

→ |j 〉[√1 − ṽ(xj )|0〉 + √
ṽ(xj )|1〉] (D3)

≡ R|j 〉|0〉. (D4)

APPENDIX E: PREPARATION OF THE QUANTUM STATE
ENCODING THE SAMPLING DISTRIBUTION

Consider a probability density p(x) of a single variable x.
Assume we have discretized the probability over some interval,
such that for some integer n, we have {pj } for j = 0, . . . , 2n −
1. Assume that

∑
j pj = 1. The task is to show an algorithm

G without measurements such that

G|0n〉 =: |ψ〉 =
2n−1∑
j=0

√
pj |j 〉. (E1)

Further assume that there exists a shallow classical circuit that
can efficiently compute the sums (subnorms)

b∑
j=a

pj ≈
∫ xb

xa

p(x)dx, (E2)

for any a � b = 0, . . . , 2n − 1, a � b. Thus, for m =
1, . . . , n we can efficiently compute the probabilities

p
(m)
k =

(k+1)2n−m−1∑
j=k2n−m

pj , (E3)

with k = 0, . . . , 2m − 1.
The quantum algorithm goes as follows [33]. For m < n,

assume we have prepared the state

|ψ (m)〉 =
2m−1∑
k=0

√
p

(m)
k |k〉. (E4)

We would like to show by induction that we can prepare the
state

|ψ (m+1)〉 =
2m+1−1∑

k=0

√
p

(m+1)
k |k〉. (E5)

Define the quantities

f (k,m) = p
(m+1)
2k

p
(m)
k

, (E6)

where in the denominator there is the sum of all the elements
of the kth interval at the mth discretization level and in the
numerator we have the sum of the left half of these elements.

This quantity allows to go up one level of discretization to
m + 1. Also, define θ

(m)
k = arccos

√
f (k,m). The operation

|k〉|0〉 → |k〉|θ (m)
k 〉 (E7)

is enabled by the efficient computability of f (k,m). Now,
proceed

|ψ (m)〉|0〉|0〉 →
2m−1∑
k=0

√
p

(m)
k |k〉∣∣θ (m)

k

〉|0〉 (E8)

→
2m−1∑
k=0

√
p

(m)
k |k〉( cos θ

(m)
k |0〉 + sin θ

(m)
k |1〉) (E9)

≡ |ψ (m+1)〉. (E10)

In the second step, the register |θ (m)
k 〉 was uncomputed.

APPENDIX F: PHASE ESTIMATION

This appendix shows the basic steps for phase estimation
and provides an analysis of errors and the success probability.
First, the illustrative example of the single-qubit phase estima-
tion is presented, then we review the multiqubit setting. We
follow closely references [15,32,47]. The single-qubit phase
estimation is for demonstration purposes since it uses a known
phase θ . Here, we apply the single-qubit gate

Uz = e−i θ
2 σz (F1)

for varying powers. In this treatment, the single qubit is
effectively simulating an m-qubit register. To obtain the least
significant bit of the phase, the first step is to applyUM/2

z , where
M is such that M � 2π/ε and M = 2m for an integer m:

(|0〉 + |1〉)√
2

→ 1√
2

(
e−i θ

2
M
2 |0〉 + e+i θ

2
M
2 |1〉

)
(F2)

→ 1

2

[(
e−i θ

2
M
2 + e+i θ

2
M
2

)
|0〉

+
(
e−i θ

2
M
2 − e+i θ

2
M
2

)
|1〉

]
(F3)

→ 1

2

[
2 cos

(
θM

4

)
|0〉 + 2i sin

(
θM

4

)
|1〉

]
.

The measurement probabilities are

P
(m)
0 = cos2

(
θM

4

)
, P

(m)
1 = sin2

(
θM

4

)
. (F4)

We now useU k/2
z for k = m − 1, . . . , 1 to estimate the remain-

ing bits of the phase:

1√
2

(|0〉 + |1〉) → 1√
2

(
e−i θ

2 2k−1 |0〉 + e+i θ
2 2k−1 |1〉

)

→ 1√
2

(
e−i θ

2 2k−1 |0〉 + e−i θ ′
2 2k−1

e+i θ
2 2k−1 |1〉

)
. (F5)

The last step applies a phase e−iθ ′2k−1
to |1〉 given by the known

bits, using the identity

e−iθ ′2k−1 = e−iπ[.bk+1,...,bm]. (F6)
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After another Hadamard gate, we obtain

→ 1√
2

[(
e−i θ

2 2k−1 + e−i θ ′
2 2k−1

e+i θ
2 2k−1

)
|0〉

+
(
e−i θ

2 2k−1 − e−i θ ′
2 2k−1

e+i θ
2 2k−1

)
|1〉

]
. (F7)

From this, the measurement probabilities are given by [15]

P
(k)
0 = 1

2
+ 1

2
cos

(
2kθ − π [.bk+1, . . . , bm]

)
,

P
(k)
1 = 1 − P

(k)
0 . (F8)

These probabilities can be sampled to obtain an m-bit estimate
of θ .

In the main text and Fig. 2, we obtain the output probability
distribution for the best m-bit estimate for the phase θ using
standard m-qubit phase estimation, as typically discussed in the
literature [32,47]. This presents a coherent, controlled version
of the procedure above. Using the eigenstate |ψθ 〉 associated
with the eigenvalue θ , an m-qubit register, and the operation
Qc, Eq. (28), we can perform

2m−1∑
y=0

|y〉Qy |ψθ 〉. (F9)

In the m-qubit register, we obtain

(|0〉 + ei2π2m−1θ |1〉)(|0〉 + ei2π2m−2θ |1〉)

× · · · × (|0〉 + ei2πθ |1〉) =
2m−1∑
y=0

ei2πθy |y〉. (F10)

After applying the inverse quantum Fourier transform we have
the state

1

2m

2m−1∑
x=0

2m−1∑
y=0

e−i2π
xy

2m ei2πθy |x〉. (F11)

Let θ̂ be the m-bit approximation of θ and θ = θ̂ + δ. Using
these definitions leads to

1

2m

2m−1∑
x=0

2m−1∑
y=0

e−i2π
xy

2m ei2π (θ̂+δ)y |x〉

= 1

2m

2m−1∑
x=0

2m−1∑
y=0

ei2π
(2mθ̂−x)y

2m ei2πδy |x〉 (F12)

=:
2m−1∑
x=0

αθ (x)|x〉. (F13)

The estimate θ̂ has the amplitude

αθ (2mθ̂ ) = 1

2m

2m−1∑
y=0

ei2πδy = 1

2m

(
1 − ei2πδ2m

1 − ei2πδ

)
, (F14)

using the geometric series. This occurs with probability

P (θ̂ ) = 1

4m

∣∣∣∣1 − ei2πδ2m

1 − ei2πδ

∣∣∣∣
2

= 1

4m

∣∣∣∣ 1 − ei2πθ2m

1 − ei2π (θ−θ̂ )

∣∣∣∣
2

. (F15)

One can efficiently sample from this bit-string distribution via
the individual bit probabilities given in Eqs. (F4) and (F8).

We now provide an error analysis of phase estimation. We
follow closely the discussion in previous references. The phase
estimation algorithm provides an estimate θ̂ that is accurate
with ε, thus, we have

|θ̂ − θ | � ε. (F16)

The quantity of interest is the expectation value, which is
related to the phase θ from Eq. (24) as

1 − 2μ = cos
θ

2
. (F17)

We would like to determine a bound for the accuracy of this
expectation value, i.e., determine

|μ̂ − μ|. (F18)

First, we can use the Taylor expansion cos[(θ ± ε)/2] =
cos θ/2 − (±ε) sin(θ/2) + O(ε2) to arrive at the first-order
bound

|μ̂ − μ| � O

(
ε

2
sin

θ̂

2

)
. (F19)

More generally, we can show the following.
Lemma 5. Assume |θ̂ − θ | � ε, 0 � θ̂ < π , and 0 < ε �

1. Then,

|μ̂ − μ| � | cos[(θ̂ + ε)/2] − cos θ̂/2|. (F20)

Proof. Use the trigonometric identity for the difference
between cosines

| cos θ̂/2 − cos θ/2| = 2| sin[(θ̂ + θ )/4] sin[(θ̂ − θ )/4]|,
| cos[(θ̂ + ε)/2] − cos θ̂/2| = 2| sin[(2θ̂ + ε)/4] sin(ε/4)|.

Note that by definition the bit estimate θ̂ � π − ε
2 , thus, with

|θ̂ − θ | � ε, we have θ̂+θ
4 � 2θ̂+ε

4 � π
2 . Thus,∣∣∣∣sin

(
θ̂ + θ

4

)∣∣∣∣ �
∣∣∣∣sin

(
2θ̂ + ε

4

)∣∣∣∣. (F21)

Also, ∣∣∣∣sin

(
θ̂ − θ

4

)∣∣∣∣ � ∣∣∣sin
(ε

4

)∣∣∣. (F22)

�
We now discuss increasing the probability of success for

phase estimation. The probability of observing the best m-
bit approximation is lower bounded by 8/π2 > 0.81, from
Eq. (F15) [32]. To boost this success probability, multiple runs
of phase estimation can be performed. The median of these
multiple runs will have a higher success probability [15,22,48],
as will be shown now. Let θ̂1, . . . , θ̂D be the results of D

independent runs of phase estimation. The new estimate is the
median θ̂ = median(θ̂1, . . . , θ̂D ).

Lemma 6 ([48]). Let the desired accuracy be ε > 0. Let
the probability that each sample falls outside the accuracy,
i.e., |θ̂j − θ | � ε, be 0 < δ < 1

2 . Then, the probability that the

median is inaccurate is bounded by pf � 1
2 [2

√
δ(1 − δ)]

D
.

The proof is provided in [48]. The confidence or success
probability is defined as c := 1 − pf . Taking the logarithm
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of the failure probability, log 2(1 − c) � D log 2
√

δ(1 − δ),
leads to

| log 1 − c| � D| log 2
√

δ(1 − δ)|, (F23)

which leads to

D = O
(| log 1 − c|), (F24)

if 0 < δ < 1
2 is a constant. Hence, for a confidence of c one

needs at most O(| log 1 − c|) independent repetitions of phase
estimation.

[1] J. C. Hull, Options, Futures, and Other Derivatives (Prentice
Hall, Englewood Cliffs, NJ, 2012).

[2] S. Shreve, Stochastic Calculus for Finance II: Continuous-Time
Models (Springer, Berlin, 2004).

[3] H. Föllmer and A. Schied, Stochastic Finance: An Introduction
in Discrete Time (Walter de Gruyter, Berlin, 2004).

[4] F. Black and M. Scholes, J. Pol. Econ. 81, 637 (1973).
[5] R. C. Merton, Bell J. Econ. Manage. Sci. 4, 141 (1973).
[6] R. Eckhardt, Los Alamos Sci. 15, 131 (1987).
[7] P. Glasserman, Monte Carlo Methods in Financial Engineering

(Springer, Berlin, 2003).
[8] L. K. Grover, in Proceedings of the 28th Annual ACM Sympo-

sium on the Theory of Computing, STOC ’96 (ACM, New York,
1996), pp. 212–219.

[9] C. Dürr and P. Hoyer, arXiv:quant-ph/9607014.
[10] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Contemp. Math.

305, 53 (2002).
[11] S. Heinrich, J. Complexity 18, 1 (2002).
[12] A. Ambainis, SIAM J. Comput. 37, 210 (2007).
[13] M. Szegedy, in Proceedings of the 45th Annual IEEE Sympo-

sium on Foundations of Computer Science, FOCS ’04 (IEEE
Computer Soc., Washington, DC, 2004), pp. 32–41.

[14] P. Wocjan, C.-F. Chiang, D. Nagaj, and A. Abeyesinghe, Phys.
Rev. A 80, 022340 (2009).

[15] G. Xu, A. J. Daley, P. Givi, and R. Somma, AIAA J. 56, 687
(2018).

[16] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96,
010401 (2006).

[17] F. Magniez, A. Nayak, J. Roland, and M. Santha, in Proceedings
of the 39th Symposium on the Theory of Computing, STOC ’07
(ACM, New York, 2007), pp. 575–584.

[18] E. Knill, G. Ortiz, and R. D. Somma, Phys. Rev. A 75, 012328
(2007).

[19] R. D. Somma, S. Boixo, H. Barnum, and E. Knill, Phys. Rev.
Lett. 101, 130504 (2008).

[20] D. Poulin and P. Wocjan, Phys. Rev. Lett. 102, 130503 (2009).
[21] A. Chowdhury and R. D. Somma, Quantum Inf. Comput. 17,

0041 (2017).
[22] A. Montanaro, Proc. R. Soc. London A 471, 20150301 (2015).
[23] B. E. Baaquie, Quantum Finance (Cambridge University Press,

Cambridge, 2004).
[24] M. L. de Prado, Advances in Financial Machine Learning

(Wiley, Hoboken, NJ, 2018).

[25] I. Halperin, arXiv:1712.04609.
[26] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu,

and M. L. de Prado, IEEE J. Sel. Top. Signal Process. 10, 1053
(2016).

[27] N. Elsokkary, F. S. Khan, D. La Torre, T. S. Humble, and J.
Gottlieb, Technical Report, Oak Ridge National Lab. (ORNL)
(unpublished).

[28] G. Rosenberg, 1QBit white paper: https://1qbit.com/
whitepaper/arbitrage/.

[29] F. Longstaff and E. Schwartz, Rev. Finan. Studies 14, 113 (2001).
[30] A. Kemna and A. Vorst, J. Banking Finance 14, 113 (1990).
[31] W. Schoutens, Lévy Processes in Finance: Pricing Financial

Derivatives (Wiley, Hoboken, NJ, 2003).
[32] M. A. Nielsen and I. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2002).

[33] L. Grover and T. Rudolph, arXiv:quant-ph/0208112.
[34] IEEE standard for Floating-Point Arithmetic, IEEE Std

754-2008 (IEEE, 2008), pp. 1–70.
[35] G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501

(2017).
[36] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and

C. Weedbrook, arXiv:1804.03159.
[37] D. S. Steiger, T. Häner, and M. Troyer, Quantum 2, 49 (2018).
[38] A. Green, XVA: Credit, Funding and Capital Valuation Adjust-

ments (Wiley, Hoboken, NJ, 2015).
[39] P. J. Zeitsch, J. Math. Finance 7, 239 (2017).
[40] V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147 (1996).
[41] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, Phys.

Rev. A 54, 1034 (1996).
[42] R. VanMeter and K. M. Itoh, Phys. Rev. A 71, 052320 (2005).
[43] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, Quantum

Inf. Comput. 6, 351 (2006).
[44] Y. Takahashi, S. Tani, and N. Kunihiro, Quantum Inf. Comput.

10, 0872 (2010).
[45] M. K. Bhaskar, S. Hadfield, A. Papageorgiou, and I. Petras,

Quantum Inf. Comput. 16, 0197 (2016).
[46] N. Wiebe and M. Roetteler, Quantum Inf. Comput. 16, 134

(2016).
[47] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R.

Soc. London A 454, 339 (2018).
[48] D. Nagaj, P. Wocjan, and Y. Zhang, Quantum Inf. Comput. 9,

1053 (2009).

022321-15

https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.2307/3003143
https://doi.org/10.2307/3003143
https://doi.org/10.2307/3003143
https://doi.org/10.2307/3003143
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-88-9068
http://arxiv.org/abs/arXiv:quant-ph/9607014
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1006/jcom.2001.0629
https://doi.org/10.1006/jcom.2001.0629
https://doi.org/10.1006/jcom.2001.0629
https://doi.org/10.1006/jcom.2001.0629
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1103/PhysRevA.80.022340
https://doi.org/10.1103/PhysRevA.80.022340
https://doi.org/10.1103/PhysRevA.80.022340
https://doi.org/10.1103/PhysRevA.80.022340
https://doi.org/10.2514/1.J055896
https://doi.org/10.2514/1.J055896
https://doi.org/10.2514/1.J055896
https://doi.org/10.2514/1.J055896
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevA.75.012328
https://doi.org/10.1103/PhysRevA.75.012328
https://doi.org/10.1103/PhysRevA.75.012328
https://doi.org/10.1103/PhysRevA.75.012328
https://doi.org/10.1103/PhysRevLett.101.130504
https://doi.org/10.1103/PhysRevLett.101.130504
https://doi.org/10.1103/PhysRevLett.101.130504
https://doi.org/10.1103/PhysRevLett.101.130504
https://doi.org/10.1103/PhysRevLett.102.130503
https://doi.org/10.1103/PhysRevLett.102.130503
https://doi.org/10.1103/PhysRevLett.102.130503
https://doi.org/10.1103/PhysRevLett.102.130503
https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1098/rspa.2015.0301
http://arxiv.org/abs/arXiv:1712.04609
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1109/JSTSP.2016.2574703
https://1qbit.com/whitepaper/arbitrage/
https://doi.org/10.1093/rfs/14.1.113
https://doi.org/10.1093/rfs/14.1.113
https://doi.org/10.1093/rfs/14.1.113
https://doi.org/10.1093/rfs/14.1.113
https://doi.org/10.1016/0378-4266(90)90039-5
https://doi.org/10.1016/0378-4266(90)90039-5
https://doi.org/10.1016/0378-4266(90)90039-5
https://doi.org/10.1016/0378-4266(90)90039-5
http://arxiv.org/abs/arXiv:quant-ph/0208112
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
http://arxiv.org/abs/arXiv:1804.03159
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.4236/jmf.2017.72013
https://doi.org/10.4236/jmf.2017.72013
https://doi.org/10.4236/jmf.2017.72013
https://doi.org/10.4236/jmf.2017.72013
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1098/rspa.1998.0164



