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Entanglement sudden death and revival in quantum dark-soliton qubits
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We study the finite time entanglement dynamics between two dark-soliton qubits due to quantum fluctuations in
quasi-one-dimensional Bose-Einstein condensates. Recently, dark solitons are proved to be an appealing platform
for qubits due to their appreciably long lifetime. We explore the entanglement decay for an entangled state of
two phonon coherences and the qubits to be in the diagonal basis of so-called Dicke states. We observe the
collapse and revival of the entanglement, depending critically on the collective damping term but independent of
the qubit-qubit interaction for both initial states. The collective behavior of the dark-soliton qubits demonstrate
the dependence of entanglement evolution on the interatomic distance.
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I. INTRODUCTION

Two basic features to distinguish the classical world from
the quantum world are the superposition and entanglement,
cornerstone ingredients in the rapidly developing field of
quantum information and computation [1]. In recent years, the
interaction between qubits and the environment has attracted
a great deal of attention motivated by the possibility of
controlling and exploiting the entanglement dynamics [2–5].
The occurrence of spontaneous emission due to the coupling
of qubits with the reservoir, leading to the irreversible loss of
quantum information therein encoded, has been regarded as
the main obstacle in practical usages of entanglement.

Much work has been done to understand the decoherence
dynamics for a pair of qubits interacting with different reser-
voirs [6–8]. As it is currently known, two spatially separated
qubits, initially prepared in a product of two pure states, get
entangled as time evolves, leading to the creation of a so-called
transient entanglement in the system [6,7]. Conversely, Yu and
Eberly discovered a finite-time disentanglement of two initially
entangled qubits in contact with pure dissipative environments
[9,10]. This effect is currently known under the name of
entanglement sudden death, and has been confirmed with
experiments performed both with photonic [11] and atomic
systems [12].

In this context, Bose-Einstein condensates (BECs) have
attracted a great deal of interest during the last decades,
since the macroscopic character of the wave function allows
BECs to display pure-state entanglement at macroscopic scales
[13–15]. A scheme to generate entangled states in a bimodal
BEC has been announced in Refs. [16,17]; the investigation of
the macroscopic superposition based on matter waves has been
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achieved with BEC Josephson junctions [18–20]. Moreover,
light scattering with BECs have been used to enhance their
nonlinear properties in superradiance experiments [21], and
to show the possibility of matter wave amplification [22]
and nonlinear wave mixing [23]. Entanglement dynamics for
coupled BECs have been investigated in [24].

Another important manifestation of the macroscopic nature
of BEC is the dark soliton (DS), a structure resulting from
the detailed balance between the dispersive and nonlinear
effects, appearing also in other physical systems [25–27].
The dynamics and stability of DSs in BECs have been a
subject of intense research over the last decade [28,29].
The dynamical evolution of DS entanglement and how its
stability is affected by quantum fluctuations has been studied
in Ref. [30]. Collision-induced entanglement between fast
moving matter-wave solitons using the Born approximation
has been studied in BECs displaying attractive interactions
[31]. Moreover, the study of collective aspects of soliton gases
[32] bring DSs towards applications in many-body physics
[33]. In a recent publication, we have shown that DSs trapping
an impurity can behave as qubits in quasi-1D BECs [34], being
excellent candidates to store information as a consequence of
their appreciably long lifetimes (∼ 0.01-1 s). DS qubits thus
offer an appealing alternative to quantum optical of solid-state
platforms, as information processing involves only phononic
degrees of freedom: the quantum excitations on top of the BEC
state.

Ghasemian et al. [35] described the collapse-revival phe-
nomenon, after studying the dynamics of BEC atoms interact-
ing with a single-mode laser field. The possibility of generating
entangled Schrödinger cat states by using a BEC trapped in a
double-well potential has been investigated [36,37]. In these
works, it is reported that the revival of the initial state can be
used as an unambiguous signature of the coherent macroscopic
superposition, as opposed to an incoherent mixture. Also,
two-impurity qubits surrounded by a BEC reveal the influence
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of quantum reservoirs on effects such as sudden death, revival,
trapping, and generation of entanglement [38].

In this paper we investigate the dynamics of the entangle-
ment produced between two dark-soliton qubits in a quasi-
one-dimensional Bose-Einstein condensate. As described in
Ref. [34], the qubits are produced by trapping impurities
inside the potential created by the dark solitons. Moreover,
the phonons (quantum fluctuations on top of the background
density) play the role of a quantum reservoir. We show the
occurrence of entanglement sudden death by computing the
time evolution of the Wootters’ concurrence and showing
that it vanishes for a finite time. We further demonstrate that
the concurrence dynamics critically depends on the distance
between the DS qubits.

The paper is organized as follows: In Sec. II we model
the mean-field dynamics of the BEC and the impurities by
using the Gross-Pitaevskii (GP) and Schrödinger equations,
respectively. We compute the coupling between the DS qubits
and the phonons. In Sec. III we describe the Markovian
master equation and extract the density matrix elements for
the collective DS qubit states. The use of concurrence as a
measure of the entanglement is discussed in Sec. IV. Finally,
a summary and discussion of the investigation is presented in
Sec. V.

II. THEORETICAL MODEL AND
QUANTUM FLUCTUATIONS

At the mean-field level, the system is governed by Gross-
Pitaevskii (GP) equations,

ih̄
∂�

∂t
= − h̄2

2m1

∂2�

∂x2
+ g|�|2� + χ |�|2�, (1)

ih̄
∂�

∂t
= − h̄2

2m2

∂2�

∂x2
+ χ |�|2�, (2)

where χ is the BEC-impurity coupling constant, g is the BEC
particle-particle interaction strength, and m1 and m2 denote the
BEC particle and impurity masses, respectively. Here the dis-
cussion is restricted to repulsive interactions (g > 0) where the
dark solitons are assumed to be not disturbed by the presence
of impurities. To achieve this, the impurity gas is considered to
be much less massive than the BEC particles and sufficiently
dilute, i.e., |�|2 � |�|2 (an experimental realization can be
found in [34]). Therefore, the soliton behaves like a potential
for the impurities (considered to be free particles), i.e.,

ih̄
∂�

∂t
= − h̄2

2m2

∂2�

∂x2
+ χ |ψsol|2�, (3)

where a singular nonlinear solution corresponding to the ith
(i = 1, 2) soliton profile is given by [39,40]

ψ
(i)
sol (x) = √

n0 tanh [(x − xi )/ξ ], (4)

where xi = ±d/2 determines the position of the solitons,
ξ = h̄/

√
m1n0g is the healing length, and n0 ∼ 108–109m−1 is

the typical linear density. For well separated solitons d � ξ ,
the internal level structure of the two qubits is assumed to
be equal. Each qubit is characterized by its ground gi and
excited levels ei (i = 1, 2), separated by a gap frequency

d

FIG. 1. Schematic representation of two dark-soliton qubits in
cigar shaped quasi-1D Bose-Einstein condensates immersed in a
dilute gas of impurities. The localized depressions in the density
represent the dark solitons, while the wiggly lines represent the
phonons, i.e., the elementary excitations composing the quantum
reservoir.

ω0 = h̄(2ν − 1)/(2mξ 2) (see Fig. 1). Here

ν = −1 +
√

1 + 4χ/g (5)

is a parameter controlling the number of bound states created
by the DS, which operates as a qubit (two-level system)
in the range 0.33 � ν < 0.80 [34]. Typical experimentally
accessible conditions provide longitudinal and transverse trap
frequencies of ωz/2π ∼ (15–730) Hz � ωr/2π = (1–5) kHz,
and the corresponding length lz = (0.6–3.9) μm [41]. More
recent experiments lead to much less pronounced trap inho-
mogeneities by creating much larger traps, lz ∼ 100 μm [42].

Quantum fluctuations

The total BEC quantum field includes the DS wave func-
tions and quantum fluctuations, �i (x) = ψ

(i)
sol (x) + δψi (x),

where

δψi (x) =
∑

k

(
u

(i)
k (x)bk + v

∗(i)
k (x)b†k

)
. (6)

Here bk are the bosonic operators verifying the commutation
relation [bk, b

†
q ] = δk,q . The amplitudes uk (x) and vk (x) satisfy

the normalization condition |uk (x)|2 − |vk (x)|2 = 1 and are
explicitly given by [43]

u
(i)
k (x) = eik(x−xi )

√
1

4πξ

μ

εk

⎧⎨
⎩

(
(kξ )2 + 2εk

μ

)

×
[
kξ

2
+ i tanh

(
x − xi

ξ

)]
+ kξ

cosh2
(

x−xi

ξ

)
⎫⎬
⎭,

v
(i)
k (x) = e−ik(x−xi )

√
1

4πξ

μ

εk

⎧⎨
⎩

(
(kξ )2 − 2εk

μ

)

×
[
kξ

2
+ i tanh

(
x − xi

ξ

)]
+ kξ

cosh2
(

x−xi

ξ

)
⎫⎬
⎭.

The total Hamiltonian then reads

H = Hq + Hp + Hint. (7)

022319-2



ENTANGLEMENT SUDDEN DEATH AND REVIVAL IN … PHYSICAL REVIEW A 98, 022319 (2018)

The term Hq describes the dark-solitons (qubits) Hamiltonian,
which is given by

Hq =
2∑

i=1

h̄ω0σ
(i)
z , (8)

with σ (i)
z = a

(i)†
1 a

(i)
1 − a

(i)†
0 a

(i)
0 being the effective spin opera-

tor of the respective qubit. The phonon (reservoir) Hamiltonian
is given by

Hp =
∑

k

εkb
†
kbk, (9)

with the Bogoliubov spectrum εk = μξ
√

k2(ξ 2k2 + 2) and the
chemical potential μ = gn0. Finally, the interaction Hamilto-
nian Hint can be explicitly written as

Hint =
∑
i,j

χ

∫
dx�

†
j�

†
i �i�j , (10)

where �j (x) describes the impurity wave function in the
presence of DS potential and spannable in terms of bosonic
operators al ,

�j (x) =
1∑

n=0

φ(j )
n (x)a(j )

n , (11)

with the ground state φ0(x) = sech[(x − xi )/ξ ]/
√

2ξ and the
excited state φ1(x) = i

√
3 tanh [(x − xi )/ξ ]φ0(x). Therefore,

Eq. (10) can be decomposed as

Hint = H
(0)
int + H

(1)
int + H

(2)
int , (12)

containing zeroth-, first-, and second-order terms in the bosonic
operators bk and b

†
k . The higher-order term ∼ O(b2

k ) is ignored,
consistent with the Bogoliubov approximation performed in
Eq. (6) owing to the small depletion of the condensate. This
approximation is well justified in the case of two-level systems,
as the inexistent higher excited states cannot be populated via
two-phonon processes. The first part of Eq. (12) corresponds
to

H
(0)
int = n0χ

2∑
i=1

1∑
n,n

′ =0

a†(i)
n a

(i)
n

′ f
(i)
n,n

′ , (13)

with f
(i)
n,n

′ = ∫
dxφ

†(i)
n (x)φ(i)

n
′ (x)tanh2[(x − xi )/ξ ], which can

be omitted by renormalizing the qubit frequency ω̃0 ≈ ω0 +
n0χ . The first-order term is given by

H
(1)
int =

2∑
k,i=1

1∑
n,n

′ =0

a(i)†
n a

(i)
n

′
[
bkg

(i)
n,n

′ (k) + b
†
kg

(i)∗
n,n

′ (k)
]
, (14)

where

g
i,j

n,n
′ (k) = √

n0χ

∫
dxφ(j )†

n (x)φ(j )
n

′ (x) tanh

(
x − xi

ξ

)
u

(i)
k .

Equation (14) contains both interband (n 	= n′) and intraband
(n = n′) terms. However, within the rotating wave approxima-
tion (RWA), the qubit transition can only be driven by near-
resonant phonons, for which the intraband terms |g(i)

00 (k)| and

|g(i)
11 (k)| are much smaller than the interband term |g(i)

01 (k)| =
|g(i)

10 (k)∗|. As such, we obtain

H
(1)
int =

2∑
k,i=1

(g(i)(k)σ (i)
+ bk + g(i)∗(k)σ (i)

− b
†
k ) + H.c.

Here g(i)(k) = g
i,j

n,n
′ (k), σ

(i)
+ = a

(i)†
1 a

(i)
0 , and vice versa. The

counter-rotating terms proportional to bkσ− and b
†
kσ+ that do

not conserve the total number of excitations are dropped by
invoking the RWA. The accuracy of such an approximation
can be verified in Ref. [34], where it is shown that the emission
rate γ is much smaller than the qubit transition frequency ω0

for DS qubits.

III. MASTER EQUATION

We derive the master equation (see Appendix) to describe
the dynamics of the DS qubit density matrix ρq after taking
trace over the phonon’s degrees of freedom [5,44,45]

∂ρq (t )

∂t
= − i

h̄
[Hq, ρq (t )] −

2∑
i 	=j

ηij [σ i
+σ

j
−, ρq (t )]

+
2∑

ij=1

�ij

[
σ

j
−ρq (t )σ i

+ − 1

2
{σ i

+σ
j
−, ρq (t )}

]
, (15)

where

�ij = 2L

∫ ∞

0
dkg

(i)
k g

(j )∗
k δ(ωk − ω0),

ηij = L

2π
℘

∫ ∞

0
dkg

(i)
k g

(j )∗
k

1

(ωk − ω0)
, (16)

with ℘ standing for the principal value of the integral. For
i = j , �ii ≡ γ denotes the spontaneous emission rate of the
qubits due to the Bogoliubov excitations (phonons); for i 	= j ,
�ij ≡ � is the collective damping resulting from the mutual
exchange of phonons. The coherent term ηij ≡ η represents
the interaction between DS qubits. Both the coherent and
incoherent terms are dependent on the distance d between
DS qubits. Figure 2 depicts the dependence of the collective
damping � and the coherent interaction η as a function of the
DS qubit distance d. For large separations, i.e., d � ξ , both
parameters are very small (i.e., � = η ≈ 0).

The main concern of the present work is the study of the
time evolution of the entanglement. To study this, the most
adequate sates are the collective, or the so-called Dicke, states
[46]

|g〉 = |g1, g2〉,
|±〉 = (|e1, g2〉 ± |g1, e2〉)/

√
2,

|e〉 = |e1, e2〉, (17)

as schematically represented in Fig. 3. The density matrix of
Eq. (17) becomes

ρ =

⎛
⎜⎜⎜⎝

ρee ρe+ ρe− ρeg

ρ+e ρ++ ρ+− ρ+g

ρ−e ρ−+ ρ−− ρ−g

ρge ρg+ ρg− ρgg

⎞
⎟⎟⎟⎠, (18)
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FIG. 2. Collective damping � and qubit-qubit interaction param-
eter η (inset) as a function of interatomic distance d . We have chosen
ν = 0.75, for which DS qubit is well defined.

where ρij = 〈ψi |ρ|ψj 〉 with i, j = +,−, for example. The
elements of the above density matrix can be determined by
using Eq. (15),

ρee(t ) = e−2γ tρee(0), ρ++(t ) = e−(γ+�)t ρ++(0)

+ (γ + �)

(γ − �)
(e−(γ+�)t − e−2γ t )ρee(0),

ρ−−(t ) = e−(γ−�)t ρ−−(0)+ (γ − �)

(γ + �)
(e−(γ−�)t−e−2γ t )ρee(0),

ρeg (t ) = e−γ tρeg (0),

ρ+−(t ) = e−(γ−2iη)t ρ+−(0),

ρe+(t ) = e− 1
2 (3γ+�−2iη)t ρe+(0),

ρe−(t ) = e
1
2 (3γ+�−2iη)t ρe−(0),

ρg+(t ) = e− 1
2 (γ+�−2iη)t ρg+(0) + (γ + �)

(γ + 2iη)
2e− 1

2 (2γ+�)t

× sinh

(
t

2
(γ + 2iη)

)
ρ+e(0),

ρg−(t ) = e− 1
2 (γ−�+2iη)t ρg−(0) − (γ − �)

(γ − 2iη)
2e− 1

2 (2γ−�)t

× sinh

(
t

2
(γ − 2iη)

)
ρ−e(0), (19)

with ρjk = ρ∗
kj and ρgg = 1 − ρee − ρ++ − ρ−−. Equation

(19) depicts that all transition rates to and from the state ρ++
are equal to γ + � while from state ρ−− are γ − �. Therefore,
the state ρ++ decays with an enhanced (superradiant) rate and
ρ−− with a reduced (subradiant) rate (see Fig. 3).

FIG. 3. Collective states of two dark-soliton qubits.

IV. MEASUREMENT OF ENTANGLEMENT

The amount of entanglement can be determined by using
the Wootter’s concurrence [47]

C(t ) = max(0,
√

ε1 − √
ε2 − √

ε3 − √
ε4),

where the εi’s are the eigenvalues in decreasing order of
magnitude of the matrix

ζ = ρσy ⊗ σyρ
∗σy ⊗ σy.

Here ρ∗ represents the complex conjugate of ρ and σy is the
Pauli matrix. Depending on the initial state, concurrence can
reach a value equal to zero asymptotically or at some finite
time. It is interesting to observe that locally equivalent initial
states with the same concurrence can disentangle at different
times, depending on the parameters � and η. In what follows,
we investigate this aspect.

A. Entangled state

Let us assume that, initially, both or neither of the DS qubits
are excited, i.e., the qubits are chosen to be prepared initially
in an entangled state

|�〉 = √
1 − α|g〉 + √

α|e〉, (20)

with 0 � α � 1. Therefore, the density matrix Eq. (18) be-
comes

ρ =

⎛
⎜⎜⎜⎝

ρee 0 0 ρeg

0 ρ++ 0 0

0 0 ρ−− 0

ρge 0 0 ρgg

⎞
⎟⎟⎟⎠.

The eigenvalues of the respective matrix ζ are thus given by

√
ε1,2 = √

ρee(t )ρgg (t ) ± |ρge(t )|,
√

ε3,4 = 1
2 [ρ++(t ) + ρ−−(t )] ± 1

2 [ρ++(t ) − ρ−−(t )].

It is easy to verify that, depending on the largest eigenvalue
(either

√
ε1 or

√
ε3), the concurrence C(t ) can be defined in
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FIG. 4. Time evolution of concurrence C(t ) for for an initial
entangled state |�〉 in a noninteracting DS qubit system.

two alternative ways, i.e.,

C1(t ) = 2|ρge(t )| − [ρ++(t ) + ρ−−(t )], (21)

C2(t ) = |ρ++(t ) − ρ−−(t )| − 2
√

ρee(t )ρgg (t ), (22)

where C1(t ) measures the entanglement produced by the state
of Eq. (20) with the necessary condition ρeg (t ) 	= 0, while
C2(t ) provides the entanglement formed by the states |±〉.
Notice that the positiveness of C2(t ) is guaranteed if the
latter states are not equally populated. At t = 0, the system is
entangled by the amount C1(0) = 2

√
α(1 − α). By inspecting

Eqs. (19), (21), and (22), it is possible to observe that DS
qubits radiating independently (� = 0) cannot be entangled
by following the criterion C2(t ) because ρ++(t ) = ρ−−(t ).
Thus, the time for the entanglement death due to spontaneous
emission can be found via the condition C1(t ) = 0, which
provides

tdeath = 1

γ
ln

(
α

α − √
α(1 − α)

)
. (23)

It is also pertinent to mention here that the condition for
a finite-time disentanglement for independent DS qubits is
α > 1/2 (see Fig. 4).

The situation changes when we allow the qubits to interact.
In this case, the entanglement death is followed by its revival
at a larger time trevival. Figure 5 depicts the time evolution
of the concurrence for the collective interactive system. It
is shown that the entanglement dies as a consequence of
the spontaneous emission, but revives after a time trevival �
8/γ , for α � 1/4 and qubits placed at a distance d = 6ξ/5.
After a careful inspection of Eq. (19), it is observed that the
concurrence C1(t ) < 0 at long times. Therefore, finite time
(trevival) entanglement is determined by following C2(t ) which
yields

trevival = 2

3�
ln

(
4γ√

α(γ − �)

)
. (24)

Moreover, it can be analyzed from Fig. 6 that entanglement
vanishes around the time at which ρ−−(t ) is maximum, i.e.,

FIG. 5. Time evolution of concurrence C(t ) for an initial entan-
gled state |�〉 at distance d = 6ξ/5.

the state ρ−−(t ) is maximally populated, and that it does
not undergo any revival. The latter is due to the impartiality
between the term ρeg (t ) and ρ−−(t ). In other words, ρeg (t ) and
ρ−−(t ) go to almost zero at long times while the population
of ρ++(t ) accumulates on the timescale t = 1/(γ + �) which
is sufficiently large at � ≈ −0.5γ . At large distances, when
d � 5ξ , the collective damping is very small � ≈ 0 and DS
qubits act like an independent qubits (as in Fig. 4).

B. Mixed state

We now consider a two-qubit system to be initially prepared
in a diagonal basis of the collective states. Therefore, the initial
density matrix has the form

ρ(0) = 1

3

⎛
⎜⎜⎜⎝

α 0 0 0

0 2 0 0

0 0 0 0

0 0 0 1 − α

⎞
⎟⎟⎟⎠. (25)

The initial concurrence is determined by C2(0) =
2(1 − √

α(1 − α))/3, and the sudden-death time for
independent DS qubits can be described by using criterion

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

t

St
at

e
P
op

.,C
(t

)

FIG. 6. State population [dashed curve for ρge(t ), dotted-dashed
for ρ++(t ) and dotted for ρ−−(t )] and concurrence C1(t ) (solid curve)
at d � 5ξ/2.
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FIG. 7. Time evolution of concurrence C(t ) for a mixed initial
state in a noninteracting DS qubit system.

C2(t ) = 0, which provides

tdeath = 1

γ
ln

(
α√

(3α2 + 5α) − (1 + α)

)
. (26)

It is obvious from Eq. (26) that the entanglement sudden
death (ESD) is possible only for α � 1/3 (see Fig. 7). The
time evolution of the concurrence for interacting qubits is
depicted in Fig. 8. It is observed that the entanglement first
decays and then revives for α � 1/2 at d ≈ 4ξ . ESD happens
at tdeath ∼ 0.75/γ , while entanglement revival is obtained at
trevival ∼ 1.4/γ .

C. Experimental estimates

We consider a quasi-1D BEC of 85Rb with a chemical
potential (μ) of a few kHz. This yields a qubit gap frequency
ω0/2π ∼ 0.5 kHz, the spontaneous decay rate γ /2π ∼ 29 Hz
and a collective decay �/2π ∼ 6 Hz, at d ∼ 6ξ/5 ∼ 1 μm.
These rates validate a posteriori the RWA and Markovian
approximations. Therefore, the sudden death time for the

FIG. 8. Time evolution of concurrence C(t ) for a mixed initial
state at distance d ≈ 4ξ between DS qubits.

maximally entangled state is tdeath ∼ 19 ms and the revival time
is trevival ∼ 35 ms, where the period �t ∼ 16 ms is the dark
period, i.e., the time interval during which C(t ) = 0. For large
separations, ESD occurs at tdeath ∼ 2 ms due to the balanced
population of ρeg and ρ−−, whereas, for the mixed initial state,
the dark period occurs for ∼ 3.6 ms. Prolonging entanglement
is essential for practical realization of quantum information
and computation protocols based on entanglement. Therefore,
the dark period of entanglement can be delayed or averted by
carrying out local unitary operation on qubits [48,49].

V. SUMMARY AND DISCUSSION

To summarize, we investigate the finite-time disentangle-
ment, or the entanglement sudden death, between two dark-
soliton qubits produced in a quasi-one-dimensional BEC. We
derive the master equation and extracted the time evolution
of the relevant density matrix elements. The Wooter’s con-
currence is used as a measure of entanglement and we show
the collapse and revival behavior, depending on the collective
damping and on the initial state. For an initial entangled state,
the concurrence cannot be revived at large distances in the
range of 2–5 μm due to the impartial behavior of the populated
states, while it revives for a mixed state. Therefore, it can
be concluded that the collective behavior of the dark-soliton
qubits reveals the dependence of entanglement evolution on
the interatomic distance and it becomes quite different from
that of independent dark-soliton qubits.
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APPENDIX: DERIVATION OF THE MASTER EQUATION

We begin by writing the total Hamiltonian by spanning the
Hilbert space as

H (t ) = Hq ⊗ I + I ⊗ Hp + Hint (t ). (A1)

The key ingredient for the application of the Born-Markov ap-
proximation is the assumption that Hq ⊗ Hp is small compared
to the remaining terms, so that a perturbative treatment of the
interaction is possible. To make this more explicit, we take
H0 = Hq + Hp and move into the interaction picture

HI (t ) = eiH0tHI e
−iH0t . (A2)

We make the Born approximation and assume that the density
operator factorizes at all times as

ρ(t ) ∼= ρq (t ) ⊗ ρp, (A3)

where the reservoir density operator is assumed to be time in-
dependent, i.e., ρp = ρp(0). Therefore, within the interaction
picture, the density operator evolves according to

dρ(t )

dt
= −ı[HI (t ), ρ(t )], (A4)
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and the respective formal integral solution is given by

ρ(t ) = ρ(0) − ı

∫ t

0
[HI (s), ρ(s)]ds. (A5)

By plugging Eq. (A5) into Eq. (A4), and by taking the partial
trace over reservoir degrees of freedom (phonons), we obtain

dρq (t )

dt
= −

∫ t

0
ds TrP [HI (t ), [HI (s), ρq (s)ρp]]. (A6)

This equation is called the Redfield equation where the term
TrP [HI (t ), ρ(0)] is disregarded. Furthermore, we make use
of the Markov approximation to put Eq. (A6) into a more
amenable form. This assures that the behavior of ρq (t ) is local
in time. This master equation still depends on the choice of the
initial state. However, making the substitution s → t − τ and
letting the upper integration limit to go to infinity, we obtain

dρq (t )

dt
= −

∫ ∞

0
dτ TrP [HI (t ), [HI (t − τ ), ρq (t )ρp]].

(A7)

The latter is the Born-Markov master equation. To gain a
little more insight into the structure of Eq. (A7), it is useful
to be more specific about the form of the interaction picture
Hamiltonian

HI (t ) = S†B + SB†, (A8)

where S†(t ) = ∑2
i=1 σ

(i)
+ = eıω0t S†, B(t ) = ∑

k g(k)e−ıωkt b,
and vice versa. Here we use the identity

eαASe−αA = S + α[A, S] + α2

2!
[A, [A, S]] + · · · . (A9)

Moreover, we invoke the cyclic property of trace to write the
reservoir correlation function as TrP (bkb

†
qρP ) = δk,q . As such,

the Born-Markov master equation (A7) can be finally rewritten
as

dρq (t )

dt
= −γ [ρq (t )S†S − Sρq (t )S†]

− γ [ρq (t )SS† − Sρq (t )S†] + H.c., (A10)

where

γ =
∑

k

g(k)g(k)∗
∫ t

0
dτe−ı(ωk−ω0 )(t−τ ).

The sum over the phonon k modes can be computed by taking
the continuum limit∑

k

→
∫ ∞

0
D(k)dk, (A11)

where D(k) = L/2π is the density of states, L is the size of
the system, and∫ t

0
dτe−i(ωk−ω0 )(t−τ ) = [πδ(ωk − ω0) − i℘/(ωk − ω0)].

(A12)

Transforming Eq. (A.10) back in the Schrödinger picture, we
finally obtain

dρq (t )

dt
= − i

h̄
[Hq, ρq (t )] −

2∑
i 	=j

ηij [σ i
+σ

j
−, ρq (t )]

+
2∑

ij=1

�ij

[
σ

j
−ρq (t )σ i

+ − 1

2
{σ i

+σ
j
−, ρq (t )}

]
.

(A13)

Equation (A13) is the final form of the master equation used
in this work.
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