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Frequency-encoded linear cluster states with coherent Raman photons
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Entangled multiqubit states are an essential resource for quantum information and computation. Solid-state
emitters can mediate interactions between subsequently emitted photons via their spin, thus offering a route
towards generating entangled multiphoton states. However, existing schemes typically rely on the excitation-
relaxation of the emitter, resulting in single photons limited by the emitter’s radiative lifetime, suffering from
considerable practical limitations, for self-assembled quantum dots most notably the limited spin coherence time
due to Overhauser magnetic field fluctuations. We here propose an alternative approach based on a spin-� system
that overcomes the limitations of previous proposals. Studying the example of spin-flip Raman scattering of
self-assembled quantum dots in Voigt geometry, we argue that weakly driven hole spins constitute a promising
platform for the practical generation of frequency-entangled photonic cluster states.
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I. INTRODUCTION

Robust highly entangled “cluster” states are of paramount
importance for measurement-based quantum computation
[1–4]. The experimental challenges of obtaining high-
dimensional cluster states can be significantly reduced by prob-
abilistically “fusing” qubits from adjacent one-dimensional
(1D) linear cluster (LC) states [5–7], or “gluing” together
microclusters [8]. Several platforms for generating photonic
LC states have been proposed, varying from condensed matter
emitters such as quantum dots [6,9–13] and crystal defects
[11,14] to parametric down-conversion [15,16], all presenting
their own sets of advantages and challenges. Solid-state-based
protocols typically make use of pulsed excitations to drive
optical transitions in a matter qubit to entangle the emitter’s
spin degree of freedom with the polarization of subsequently
emitted photons. Encouragingly, a photonic LC of length two
(LC2) has recently been demonstrated experimentally, showing
that the entanglement in this setup could persist for up to five
consecutively emitted photons [13].

While conceptually elegant and ostensibly deterministic,
real-world imperfections pose significant barriers to the exper-
imental realization of protocols such as the ones introduced
by Refs. [9,10,17,18]. For the III-V platform, these include
phonon dephasing of excited states [19], modified selection
rules as a consequence of hole mixing as well as a transverse
(Voigt) component of the Overhauser field [20–23], and limited
spin lifetimes due to Overhauser field fluctuations [20,24–27].
Decoupling techniques [28–34] and control of the nuclear
environment [27,35–37] overcome the latter but provide no
remedy for other error sources. Shortcomings of real quantum
dots thus put a limit to the size of cluster state achievable and
render genuinely deterministic operation impractical for the
current experimental state of the art.
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In contrast to direct pulsed excitation, we here propose
employing a weak (subsaturation) continuous wave (cw) laser
to drive the Zeeman-detuned transitions of a hole spin for
entangling the spin with the frequency of Raman scattered
photon [38]. We show such a setup overcomes the experimental
barriers suffered by previous schemes, which rely on excitation
and relaxation of the emitter: in particular, our protocol is
impervious to phonon dephasing, robust against fluctuations
of the Overhauser field, and unaffected by heavy-hole (hh)
light-hole (lh) mixing. This comes at the cost making the
protocol probabilistic, however, we show that LC states of
sufficient length to serve as building blocks for fusion [5]
can be produced at high rates and fidelity based on current
experimental capabilities. Furthermore, extended versions of
our protocol mitigating its probabilistic limitations (while
keeping its robustness) are possible (see Appendix H). Our
work thus shows that the significant divide between elegant
theoretical proposals and experimental progress in the gener-
ation of linear cluster states can be overcome. The approach
we present has scope for extension to other quantum photonic
platforms sharing a similar � structure, including defects in
wide-band-gap semiconductors [39,40] and superconducting
artificial atoms [41–43]. Mathematical detail and extensions
of the main protocol can be found in Appendix D.

II. MODEL

Despite its many attractive features for quantum metrology
and quantum information [24,44], the spin of an electron
trapped in an epitaxial quantum dot suffers from rapid ensem-
ble dephasing due to the hyperfine interaction with ∼104–106

randomly fluctuating nuclear spins of the host material. This
typically results in a loss of coherence on the order of nanosec-
onds [23–26]. By contrast, the p-orbital-like wave function
of hole-spin states vanishes at the location of the nuclear
spins, which suppresses the Fermi-contact interaction, leaving
only the much weaker dipole-dipole interaction as the main
source of dephasing [21,45–47]. Strain lifts the degeneracy of
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FIG. 1. Background: artistic depiction of our protocol. Inset (a):
schematic of the emission spectrum showing the presence of the
Raman sidebands. Inset (b): schematic illustration of the scattering
processes involving the two ground hole-spin states. The black arrows
denote the laser driving on resonance with the unperturbed transitions
(dashed lines), whereas the green, red, and blue arrows denote the
Rayleigh, red-detuned, and blue-detuned events, respectively. Inset
(c): simple schematic of the scattering processes involved in the weak,
detuned driving limit.

the J = 3
2 hole states, resulting in energetically split heavy

(Jz = ± 3
2 ) and light (Jz = ± 1

2 ) holes, the former being closer
to the valence band edge (see Fig. 1). Rashba or Dresselhaus
spin-orbit coupling may may play a role in limiting factor for
the application of these hole spins in quantum information,
which were shown, both theoretically [48] and experimentally
[49], to limit the spin relaxation rate. However, we note that
this spin-orbit coupling is still more detrimental to electron
than hole spins [48].

However, chiefly due to strain anisotropy in the QD, a finite
admixture of these states is always present (the effects on hole-
based multiphoton entanglement schemes are briefly discussed
in Appendix F 2). In the following, we denote the (Zeeman)
spin state of the heavy hole as |⇑〉 and |⇓〉 whereas the electron
spin states are |↑〉 and |↓〉. In this notation, the positively
charged X1+ transition |⇑〉 ↔ |T↑〉 = |⇑⇓,↑〉 couples to σ−-
polarized light and |⇓〉 ↔ |T↓〉 = |⇑⇓,↓〉 to σ+ light. In the
presence of an external magnetic field in Voigt geometry, the
otherwise dipole-forbidden diagonal Raman transitions are
unlocked (see Fig. 1) [50]. For weakly off-resonantly driven
hole spins, the width of these Raman transitions is solely
limited by the laser linewidth and ground-state spin dephasing
[51,52], making them attractive candidates for single-photon
sources, as well as being attractive spin-spin qubit entanglers
due to the spin’s rich level scheme and selection rules [53,54].

Wishing to exploit such Raman photons for LC genera-
tion we consider a self-assembled quantum dot in the Voigt
geometry, with the applied magnetic field B strong enough
to dominate over nuclear Overhauser field fluctuations (see
Appendix B). The applied B field (without loss of generality
along the x axis) then defines the basis of spin eigenstates.
We also include a cw laser field that is resonant with the

unperturbed transition of the QD [Fig. 1(a)]. In a frame rotating
with the laser frequency (after performing the RWA), the QD
Hamiltonian in the Zeeman basis reads as

H = δh(|⇑〉〈⇑| − |⇓〉〈⇓|) + δe(|T↓〉〈T↓| − |T↑〉〈T↑|)

−
(

�H

2
|T↑〉〈⇓| + �H

2
|T↓〉〈⇑| + �V

2
|T↓〉〈⇓|

+ �V

2
|T↑〉〈⇑| + H.c.

)
, (1)

where δe,h are the electron and hole Zeeman splittings, respec-
tively, �H/V are the Rabi frequencies for the horizontally and
vertically polarized transitions, and H.c. denotes the Hermitian
conjugate. We simulate the scattering events via Monte Carlo
trajectories with jump operators for all allowed transitions,
occurring with equal rates γ . This results in an effective (non-
Hermitian) HamiltonianHeff = H − ih̄

2 γ
∑

n C
†
nCn, where the

sum goes over the collapse operators [55,56]. This nonunitary
evolution of the system generates photons outside of the QD’s
Hilbert space, which build the LC states we are interested in.
More specifically, each “experiment” is simulated as a quantum
jump simulation, where an LCn state is successfully measured
if the correct n scattering events occur within the designated
time bins. The success rate is then calculated by averaging over
the results.

III. PROTOCOL

Figure 1(b) shows that the emission of blue- and red-detuned
Raman spin-flip photons from a single quantum dot must
alternate, provided that the scattering rate is faster than the
hole spin-flip time. We build on this correlation between spin
and photon color to develop a protocol for generating an
entangled LC state (filtering out Rayleigh scattered photons
via their orthogonal polarization). As an intrinsic drawback of
Raman spin flips, the time at which a photon is scattered is
not known prior to its detection. In the following, we assume
that there is exactly one Raman scattering event per time bin
TB (albeit at a random time within the bin, see Fig. 2). The
overall probability and ways of circumventing this limitation
[57] will be discussed later. Figure 3 contains a diagrammatic
representation of a successful run of our protocol. Let us trace
the evolution of the joint spin-photon state step by step: we
start with the hole spin initialized in the superposition state
|⇑〉 + |⇓〉 (ignoring normalization factors) and precessing at its
Larmor frequency. Let the accumulated phase prior to the first
scattering event be φ1 = δhτ1 [denoted by the matrix Up(φ1)
in Fig. 3], then a Raman spin flip (Ts in Fig. 3) evolves the
state to

e−i
φ1
2 |⇑〉 + ei

φ1
2 |⇓〉 → e−i

φ1
2 |⇓B1〉 + ei

φ1
2 |⇑R1〉, (2)

where the labels B1 (R1) inside the ket denote the first emitted
blue (red) photon. A subsequent period of free precession τ2 =
TB − τ1 until the end of the time bin TB results in a phase
φ2 = δhτ2. We now apply a π/2 Y rotation (Ur = Yπ

2
in Fig. 3),

yielding the state

e−i
χ1
2 |⇑B1〉 + e−i

χ1
2 |⇓B1〉 + ei

χ1
2 |⇑R1〉 − ei

χ1
2 |⇓R1〉, (3)
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FIG. 2. (a) Schematic representation of our protocol. The spin
precesses in a constant magnetic field in Voigt geometry. Driven
weakly and off resonantly, the hole spin scatters Raman-detuned
photons at random intervals. The timing between Y pulses TB should
be chosen so as to maximize the probability of getting a single
scattering event between the pulses. (b) Schematic of the original
Lindner and Rudolph proposal for comparison. Instead of a gated Y

rotation, an external field in Voigt geometry causes the spin to precess
continuously, with optical π pulses applied at the appropriate times
to excite the emitter.

where χ1 := φ1 − φ2. The next Raman scattering event will
have been preceded by another spin precession angle φ3

resulting in

e−i
φ3
2 e−i

χ1
2 |⇓B1B2〉 + ei

φ3
2 e−i

χ1
2 |⇑B1R2〉

+ e−i
φ3
2 ei

χ1
2 |⇓R1B2〉 − ei

φ3
2 ei

χ1
2 |⇑R1R2〉. (4)
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FIG. 3. (a) Diagrammatic representation of the spin-photon en-
tangling process for the first emitted photon. The initial spin state
(|⇑〉 + |⇓〉) and first laser photon to be scattered (upmost green circle)
undergo a joint transformation Q(1), resulting either in a red- or a
blue-detuned Raman photon that is entangled with the hole spin. Q(2)

includes the second Raman process and entangles the newly scattered
with the previous photon. (b) Breakdown of the Q(i ) operation through
its action on spin basis states: the sequence of operations transforms
includes two periods of free spin precession Up , the Raman scattering
process TS , and a π/2 Y rotation Ur . A full matrix representation of
Q(i ) is given in Appendix C.

The spin precesses further by φ4 before we apply the next Yπ
2

rotation, yielding

e−i
φ3
2 ei

φ4
2 e−i

χ1
2 |⇓B1B2〉 + ei

φ3
2 e−i

φ4
2 e−i

χ1
2 |⇑B1R2〉

+ e−i
φ3
2 ei

φ4
2 ei

χ1
2 |⇓R1B2〉 − ei

φ3
2 e−i

φ4
2 ei

χ1
2 |⇑R1R2〉

:= e−i
χ2
2 e−i

χ1
2 |⇓B1B2〉 + ei

χ2
2 e−i

χ1
2 |⇑B1R2〉

+ e−i
χ2
2 ei

χ1
2 |⇓R1B2〉 − ei

χ2
2 ei

χ1
2 |⇑R1R2〉. (5)

Let us stop at this point and, for clarity, consider the resulting
state without its free precession phases

|⇓B1B2〉 + |⇑B1R2〉 + |⇓R1B2〉 − |⇑R1R2〉. (6)

Using the photon qubit encoding |Bi〉 = |1i〉, |Ri〉 = |0i〉, the
state following the final Yπ

2
rotation is given by

|⇑1112〉 + |⇓1112〉 + |⇑1102〉 − |⇓1102〉
+ |⇑0112〉 + |⇓0112〉 − |⇑0102〉 + |⇓0102〉. (7)

In Appendix D, we show that, whether the spin is measured
to be in the |⇑〉 or |⇓〉 state, the resulting photonic state
(S (2)

+ or S
(2)
− , respectively) indeed corresponds to LC2. Further,

we show that the above protocol generalizes trivially to the
production of LC states of arbitrary length. Crucially, rein-
troducing the above precession phases keeps the state local
unitarily (LU) equivalent to LC2. The phases become known
post measurement through the time stamps of the detection
clicks, and in Appendix I, we discuss how to make allowances
for them for a tomographic reconstruction of the LC state. [58]

IV. RESULTS

We now analyze the quality and success probability of
our protocol. We begin with the rate for Raman scattering
events followed by the success probability of a string of n

Raman photons with one per time bin. Figure 4(a) shows the
Raman scattering rate and its dependence on both B and �V .
Comparison with numerical simulations shows that this rate
is well approximated by the transition probability obtained by
treating the weak driving field perturbatively to second order
(see Appendix A):

γpert = 1

8

�2
V γ

�2
, (8)

provided B � 100 mT and subsaturation �V � γ /
√

2 (with
γ being the spontaneous emission rate), where � = δe + δh.
We proceed to determine the optimal duration TB (i.e., the
free precession time between Y rotations) for maximizing
the probability of obtaining a single Raman event per time
bin. Adopting B = 100 mT and �V = 0.2γ /

√
2 (taking γ =

1 ns−1), we calculate the number of successful trials with
one Raman photon per TB interval (time interval between Ur

rotations in Fig. 3) in n successive time bins. Figure 4(c) illus-
trates the results of Monte Carlo simulations using the QUTIP

package [55,56] for n = 1 to 4 scattering events, suggesting
that TB ≈ 0.5 μs is close to optimal. We have the relation
Ps (n) = Ps (1)n between the success probability for a single
bin and that of n bins.

022318-3



SCERRI, MALEIN, GERARDOT, AND GAUGER PHYSICAL REVIEW A 98, 022318 (2018)

FIG. 4. (a) Perturbative calculation γpert (dashed line) and nu-
merical value γnum (solid line) of the Raman scattering rate as a
function of B for various driving strengths (from bottom to top:
�V = 0.1, 0.5, 1, and 5 �s). (b) Coherence time for the pseudospin
initially prepared perpendicular to the applied external magnetic field
with mixing factor α = 2√

3
β for various external field strengths. The

Overhauser field was taken to have a spread of 14 mT (from bottom to
top: B = 0.01, 0.05, 0.1, 0.5, 1, and 2 T). (c) Number of successful
n-photon correlations per hour against TB , with η = 1 for the ideal
scenario B = 100 mT, � = 0.2γ /

√
2, and gx

h = 0.1 (from top to
bottom: n = 1, 2, 3, and 4). (d) Success probabilities optimized
for TB = 500 ns [by minimizing Eq. (9)] against η, decreasing with
increasing n.

Apart from addressing the possibility of having no Raman
events within a time bin, we also need to account for the
possibility of “false positives,” i.e., detecting only one of
multiple Raman events occurring in a single time bin, due to
a photon detection efficiency η < 1 [59]. The probability of
such n-photon false positives, Pfp(n), is given by the simple
relation

Pfp(n) = Pnd (n) × Pd (1) × Ps (n + 1)

= Cn+1
n (1 − η)n × η × Ps (n + 1), (9)

where Cn+1
n is the binomial coefficient, Pd (n) [Pnd (n)] denotes

the probability of detecting (not detecting) n photons. We find
thatTB ≈ 0.5 μs remains optimal after taking this into account.
Figure 4(d) shows the rate of LC generation for n = 1 to 4 for
different detector efficiencies.

To demonstrate the robustness of our protocol against
nuclear environment fluctuations, we calculate the fidelity
between the state obtained with and without Overhauser field
(both for the the same set of precession phases determined
by randomly chosen scattering times). For a pure hh, only
the Bz

N Overhauser component perpendicular to the applied
B field affects the protocol [by randomly modifying direction
and magnitude of the total B field by arctan(Bz

N/Bext )]. By
contrast, a mixed hh-lh system suffers predominantly from
the parallel Bx

N component, to an extent determined by the
mixing factor α. This is also exemplified in a decreased
spin coherence time from the ideal hh limit, as shown in
Fig. 4(b). Only considering this term, the following analytical
expression (see Appendix E) captures the fidelity decay as a

FIG. 5. (a) Fidelity of the LC4 state in the presence of the
Overhauser field against applied field magnitude and single time-bin
duration for a mixed hh-lh spin state. Overhauser fluctuations were
14 mT [23], with gx

h = 0.1, α = 0.01, and a completely unpolarized
spin bath. (b) Natural logarithm of the success counts for a string of
four photons. The overall detector efficiency was taken to be η = 1.
The count rate increases with TB until probability of multiple events
in a single bin becomes significant. An increasing B field decreases
the count rate as predicted from Eq. (8). (c), (d) Normalized LE for
between pairwise combinations of a spin and three (c) or four (d)
scattered photons, respectively. Due to computational constraints, we
limited ourselves to 10 (c) and 5 (d) uniformly distributed basis states
on the Bloch sphere (with projectors shown in relevant insets).

function of TB :

F̄ (1) = 1

2
+

√
2π

4TBδBx
N

erf

(
TBδBx

N√
2

)
, (10)

where F̄ (n) denotes the average fidelity for a state of n scattered
photons [written for n = 1 in Eq. (10) above], and δBx

N is the
fluctuation in Bx

N . For a single scattered photon, we obtain
F (1)

av → 1
2 for large TB as expected. Not capturing decoherence

due to Bz
N fluctuations, Eq. (10) represents an upper bound on

the maximally achievable fidelity in the case of finite hh-lh
mixing. To fully account for the effects of the stochastically
varying net B-field vector, we show numerically obtained [60]
fidelity overlaps of desired vs the ensemble-average of realized
LC4 states in Fig. 5. In the presence of the Overhauser field
with fluctuations ∼14 mT, near unit fidelity remains possible
in the region with (moderately) strong B � 0.4 T and relatively
shortTB � 0.25μs [Fig. 5(a)]. Conversely, large LC generation
rates demand 0.5 μs � TB � 1 μs and B � 0.1 T [Fig. 5(b)],
so that a tradeoff situation arises. Encouragingly, there is a
wide middle ground where high-fidelity operation is possible
at respectable rates.

Another important figure of merit of our protocol is the
localizable entanglement (LE) [13,61] between any two qubits
of the LC state (including the spin). The LE represents the
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maximum negativity of the reduced density matrix of two
qubits of interest (indexed j and k), after all others have
measured out projectively. Choosing the set of projectorsM =
{Pi : 1 � i � n, i /∈ {j, k}} as our measurement defines an
ensemble EM := {pM,s , ρ

j,k

M,s}, where pM,s is the probability

of obtaining the two-spin density matrix ρ
j,k

M,s for the outcome
{s} having measured the remaining N − 2 qubits. The LE is
then defined as the maximum negativity after averaging over
all the outcomes for each measurement, that is,

LEN
j,k = max

M

∑
s

pM,s N
(
ρ

j,k

M,s

)
, (11)

where N (ρj,k

M,s ) is the negativity of ρ
j,k

M,s . We choose a quasi-
uniformly distributed basis on the Bloch sphere of each qubit
[see points in insets of Figs. 5(c) and 5(d)]. The computational
unwieldiness of Eq. (11) restricts the number of projectors,
and we can only obtain a lower bound of the true LE for LC3,4

[Figs. 5(c) and 5(d)]. Within the variance of the sample over
which the optimization was performed, the LE falls off with
qubit distance, but encouragingly it remains remarkably high
overall, and is thus unlikely to be a limiting factor in the length
of the LC that could be generated using this protocol.

V. OVERHAUSER FIELD LIMITATIONS

The relatively short T ∗
2 time of the electron spin due

to the fluctuating nuclear environment constitutes a severe
shortcoming of real quantum dot spins, putting a limit on
the order of a few nanoseconds on any experiment relying
on the coherence of this system. For the LR protocol [9] one
requires an external field of the order of ∼50 mT along the Y

direction in order to obtain a sufficient number of Y gates for a
multiphoton LC4�n�2 state within a few nanoseconds (assum-
ing instantaneous excitation and radiative decay). Such an ap-
plied field, however, activates the previously dipole-forbidden
transitions, degrading the correlations between the spin and
emitted photons required for the LC state. Applying a strong
field results in significant electron-spin precession between the
pulsed excitation and spontaneous emission events, reducing
the fidelity of the produced LC. By contrast, applying a weaker
field limits the scalability of the protocol beyond a string of a
couple of photons, as well as failing to screen the effects of
the fluctuating Overhauser field. In short, the presence of the
Overhauser field implies that the LR protocol would in practice
need to be upgraded to incorporate dynamical decoupling and
gated Y rotations instead of relying on free spin precession.

One way to overcome some of these hurdles would be to
adapt the LR protocol to a hole-spin system, having a longer de-
phasing time. However, due to the hole spins coupling weakly
to external magnetic fields, the precession time would be much
longer, requiring stronger fields to implement the Y rotations,
hence resulting in the same issue discussed above, namely, the
undesirable dipole-forbidden transitions becoming accessible.
Shorter coherence times in the presence of a weak external
field and phonon sideband emissions (see below) would also
be an issue in the hole-spin variant of the LR scheme. Hence,
our scheme goes beyond a direct adaptation of the original LR
scheme to the hole-spin platform, which would still suffer from
most of the shortcomings of the original proposal.

Extending the promising dark exciton (DE) scheme [13]
beyond a couple of photons presents similar experimental chal-
lenges: the finite radiative lifetime of the biexciton (BiE) τBiE ≈
0.33 ns entails that the spin precesses by a non-negligible
random amount both in the DE and BiE states, and this limits
the purity of the photon polarization state. Furthermore, the
DE spin also suffers from environmental decoherence during
its precession [13]. It should be noted, however, that the dark
exciton scheme proposed in Ref. [13] could be optimized (for
example, by using Purcell enhancement) to improve scalability.

The elegant recently proposed scheme in Ref. [10] was
designed to be robust against Overhauser fluctuations, pro-
vided the scattering events occur on a short enough timescale
over which the Overhauser field can be assumed constant
(so that only a global phase is gained in each trajectory).
However, in this case an additional single-photon source and
high cooperativity is required, and any lifting of the selection
rules (e.g., due to hole mixing, see below) will still impose
practical limitations.

VI. CONCLUSION

We have presented a scheme for generating frequency-
encoded LC states, which could serve as a stepping stone
towards measurement-based quantum computation. Unlike
current rival schemes, our protocol does not rely on the
excitation and relaxation of the emitter, and is therefore only
sensitive to ground-state hole spin dephasing, at the cost of
being limited by its intrinsic probabilistic nature. Based on
experimentally informed properties of real epitaxial quantum
dots, we have shown that LC states of sufficient length and high
fidelity for fusion into larger cluster states can nevertheless be
produced at respectable rates. In turn, this facilitates type-II
fusing into 2D cluster states [5,62]. Our protocol takes full
account of unmitigated Overhauser field fluctuations. It is
inherently impervious to hole-mixing-induced modifications
of the optical selection rules, but, like other approaches, it
stands to gain from dynamic decoupling.

While the probabilistic nature of the Raman scattering
events limits our protocol as described in the main text to
LC states of length n < 10, our approach can, in principle,
be made deterministic. The most elegant way of achieving this
would be to detect the presence of the Raman scattered photons
without absorbing them or learning their frequency, however,
this ability does not currently exist for optical photons, which
is why we turn to observing the QD spin instead. Continuously
monitoring whether a Raman spin flip has happened, but
without learning the spin state itself, requires the introduction
of a secondary “ancilla” quantum dot as a witness of the
spin-photon entangling event. These extensions, discussed
in more detail in Appendix H, make the Raman hole-spin
emitter a viable, practical alternative in the quest for realizing
nonclassical multiphoton states, and importantly one which
can be straightforwardly implemented with current expertise
and devices.
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APPENDIX A: SECOND-ORDER PERTURBATION RATE

It can be easily shown that, after moving to a rotating
frame with respect to the unperturbed transition frequency, the
amplitude of the Raman-flip transition |⇓〉 → |⇑〉 is given by

T⇓→⇑ = 〈⇑; ωR|HI |T↓; 0〉〈T↓; 0|HI |⇓; ωRay〉
h̄�

(1)
1

+ 〈⇑; ωRay|HI |T↑; 0〉〈T↑; 0|HI |⇓; ωB〉
h̄�

(1)
2

, (A1)

where �
(1)
1 = δh + δe, �

(1)
2 = δh − δe, HI is the light-matter

interaction Hamiltonian (in this case between the spin and cw
laser field), and ωR , ωB , and ωRay are the red- and blue-detuned
and Rayleigh scattered photon frequencies, respectively. The
first term in Eq. (A1) gives the amplitude of a red Raman
photon event: the system, initially in the |⇓〉 state, scatters a σV

photon, after which the final state is given by |⇑; H 〉 [that is, the
system in the |⇑〉 state and a red-detuned Raman photon (σH

polarized) is scattered]. Similarly, the |⇑〉 → |⇓〉 transition
giving rise to the blue-detuned photon scattering event occurs
with amplitude

T⇑→⇓ = 〈⇓; ωB |HI |T↑; 0〉〈T↑; 0|HI |⇑; ωRay〉
h̄�

(2)
1

+ 〈⇓; ωRay|HI |T↓; 0〉〈T↓; 0|HI |⇑; ωR〉
h̄�

(2)
2

, (A2)

where �
(2)
1 = −δh − δe, �

(2)
2 = −δh + δe.

The second term in each of the transition amplitudes does
not contribute to the Raman processes, and vanish as the
driving field can only drive vertically polarized transitions.
After performing the necessary solid angle integrals, we arrive
at the scattering rate given by Eq. (8) in the main text.

APPENDIX B: OVERHAUSER FIELD FOR
HOLE-SPIN SYSTEMS

Vanishing wave functions at the nuclear sites means that
the Fermi-contact hyperfine term for the nuclear–hole-spin
interaction is effectively zero, leaving only the dipole-dipole
interaction term as the dominant source of dephasing. For
an idealized pure hh, this term is of Ising nature, with just
the ZZ component being present. In most epitaxially grown
QDs, however, some degree of hh |J ; Jz〉 = |3/2; ±3/2〉 and
lh |J ; Jz〉 = |3/2; ±1/2〉 mixing is always present [21,63],
breaking the Ising-type nature of the dipole-dipole term and
introducing XX and YY terms in the Hamiltonian. This means
that the eigenstates of the Hamiltonian are no longer given
separately by the hh or lh states, but a linear combination of
both (the consequences of this mixing in quantum-dot-based
LC protocols is further discussed in Appendix F 2). Without
going into too much detail, the hyperfine coupling Hamiltonian

for the hh-lh states is given by

Hdd
hf = V

∑
j

Cj |�(Rj )|2[α(
I j
x Sx + I j

y Sy

) + I j
z Sz

]
, (B1)

where Cj are dipole-dipole hyperfine constants, V is the
unit-cell volume, and α = 2√

3
|β| is a parameter depending

on the deformation potentials for the valence band, and
the strain tensor [21,63]. In the “frozen-fluctuation” model
[24], this results in an effective magnetic field with mean
〈BN 〉 = (〈Bx

N 〉, 〈By

N 〉, 〈Bz
N 〉) (which, due to the finite size of

the spin bath, is not necessarily zero), and a fluctuation δBN =
(δBx

N, δB
y

N, δBz
N ) (which is the source of the spin’s loss of

coherence), and is assumed to follow normal statistics [21]:

P (BN ) =
(

1

2π

) 3
2 1

δB
‖2
N δB⊥

N

× exp

[
− �Bx 2

N

2 δB
‖2
N

− �B
y 2
N

2 δB
‖2
N

− �Bz 2
N

2 δB⊥2
N

]
YY,

(B2)

where �Bi
N = Bi

N − 〈Bi
N 〉, δB⊥

N = δBz
N , and δB

‖
N := δBx

N =
δB

y

N = α δB⊥
N . Experimentally, Overhauser field fluctuations

of 10–30 mT have been measured [26,27], putting a lower-
bound on the applied external field required to screen these
fluctuations.

APPENDIX C: MATRIX OPERATIONS

Consider a single scattering process that can be described
by the action of the product of matrices:

|⇑〉|Rayk〉 → e−i
φ

(k)
1
2 ei

φ
(k)
2
2 (|⇑〉 + |⇓〉)|Bk〉

= UrUp

(
φ

(k)
2

)
T (k)

s Up

(
φ

(k)
1

)|⇑〉|Rayk〉
= Q(k)|⇑〉|Rayk〉,

|⇓〉|Rayk〉 → ei
φ

(k)
1
2 e−i

φ
(k)
2
2 (|⇑〉 − |⇓〉)|Rk〉

= UrUp

(
φ

(k)
2

)
T (k)

s Up

(
φ

(k)
1

)|⇓〉|Rayk〉
= Q(k)|⇓〉|Rayk〉, (C1)

where Up(φ(k)
1,2) is the free spin precession transformation

before (φ(k)
1 ) and after (φ(k)

2 ) the kth scattering event (prior
to the Yπ

2
rotation), with the resulting matrix of events being

Q(k) := UrUp(φ(k)
2 )T (k)

s Up(φ(k)
1 ). The scattering matrix T (k)

s is
given by

T (k)
s =

(
0 T

(k)
R

T
(k)
B 0

)
, (C2)

with T
(k)
R and T

(k)
B written in the basis {|Bk〉, |Rk〉, |Rayk〉},

which simultaneously flips the spin state |⇑〉 ↔ |⇓〉, and
applies the local transformations

T
(k)
B : |Rayk〉 �→ |Bk〉,

T
(k)
R : |Rayk〉 �→ |Rk〉, (C3)
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where we have omitted the unaffected photon states for brevity.
Hence, T

(k)
B and T

(k)
R take the form

T
(k)
R = I

⊗
k−1

3 ⊗
⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠ ⊗ I

⊗
n−k

3 ,

T
(k)
B = I

⊗
k−1

3 ⊗
⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ ⊗ I

⊗
n−k

3 , (C4)

and Ur and Up(φ) are simply given by given by

Ur = exp
(
i
π

4
σy

)
⊗ I

⊗
n

3 , Up(φ) =
(

e−i
φ

2 0

0 ei
φ

2

)
⊗ I

⊗
n

3 ,

(C5)

where the first matrices act on the spin state and have been
written in the {|⇑〉, |⇓〉} basis. Unfortunately, the matrix prod-
uct describing n-photon scattering events becomes unwieldy
with increasing n. In Appendix D, however, we show that
this protocol does indeed generalize to a LCn state, up to free
precession phases.

APPENDIX D: GENERALIZATION TO n PHOTONS

1. Preliminary lemmas

In this section, we will show that the general form of the
n-photon state S (n) obtained using our protocol can be written
recursively (where we have suppressed the ket representation
for these states for ease of notation). In fact, please note:

Lemma 1. ∀ n ∈ N, the n-photon state S (n) can be decom-
posed into the recursive relations

S
(n)
+ = S

(n−1)
+ |1n〉 + S

(n−1)
− |0n〉,

S
(n)
− = S

(n−1)
+ |1n〉 − S

(n−1)
− |0n〉, (D1)

depending whether the spin is measured to be in the |⇑〉 or |⇓〉
state, respectively.

Proof. We will, without loss of generality, ignore the spin
precession, although the proof is the same for the general case:

Basis case. For j = 1, S (1)
+ = |11〉 + |01〉 and S

(1)
− = |11〉 −

|01〉. After the next scattering event, we get

S
(2)
+ = |1112〉 + |1102〉 + |0112〉 − |0102〉

= (|11〉 + |01〉)|12〉 + (|11〉 − |01〉)|02〉
= S

(1)
+ |12〉 + S

(1)
− |02〉. (D2)

Similarly,

S
(2)
− = |1112〉 − |1102〉 + |0112〉 + |0102〉

= (|11〉 + |01〉)|12〉 − (|11〉 − |01〉)|02〉
= S

(1)
+ |12〉 − S

(1)
− |02〉. (D3)

Induction step. Assume statement holds for j = n, and
consider the (n + 1)th scattering event:

S
(n+1)
+ = UrT

(n+1)
scat (|⇑〉S (n)

+ + |⇓〉S (n)
− )|Rayn+1〉

= (|⇑〉 + |⇓〉)S (n)
+ |1n+1〉 + (|⇑〉 − |⇓〉)S (n)

− |0n+1〉
= |⇑〉(S (n)

+ |1n+1〉 + S
(n)
− |0n+1〉)

+ |⇓〉(S (n)
+ |1n+1〉 − S

(n)
− |0n+1〉). (D4)

Therefore, S
(n+1)
+ = S

(n)
+ |1n+1〉 + S

(n)
− |0n+1〉 and S

(n+1)
− =

S
(n)
+ |1n+1〉 − S

(n)
− |0n+1〉, so the statement holds ∀ n ∈ N. �

It is then easy to see that we also have the following:
Lemma 2.

σ (n)
z S

(n)
± = −S

(n)
∓ ∀ n ∈ N, (D5)

which we shall use to prove that the n-photon state we generate
is indeed a linear cluster state.

2. Equivalence to LCn states

In order to show that the S
(n)
± states are indeed LCn’s,

we have to show that they both satisfy the set of eigenvalue
equations

K (a)
n S

(n)
± = (−1)k

(a)
± S

(n)
± , (D6)

with

K (a)
n = σ (a)

x

⊗
b∈N (a)

σ (b)
z , (D7)

where 1 � a � n, N (a) is the set of direct neighbors of photon
a along the state, and k

(a)
± ∈ {0, 1}, depending on the particular

realization of LCn. The subscript on the operator K denotes
the state tensor length of K , and hence the length of the state
it acts upon. In fact, we shall show the following statement:

Theorem 1. The n-photon S (n) state satisfies the set of LCn-
eigenvalue equations for

k
(a)
+ =

{
1, if a ∈ {1, n}
0, if 1 < a < n

k
(a)
− =

{
1, if a = 1
0, if 1 < a � n.

(D8)

Proof. The proof follows, once again, by induction, as well
as the use of Lemma 1.

Basis case. For j = 2,

S
(2)
+ = (|11〉 + |02〉)|1n〉 + (|11〉 − |01〉)|02〉,

S
(2)
+ = (|11〉 + |02〉)|1n〉 − (|11〉 − |01〉)|02〉, (D9)

and the statement holds when applying σ (1)
x ⊗ σ (2)

z and
σ (1)

z ⊗ σ (2)
x .

Induction step. Suppose the statement holds for j = n, and
consider S

(n+1)
+ = S

(n)
+ |1n+1〉 + S

(n)
− |0n+1〉. Then,

If a = 1,

K
(a)
n+1S

(n+1)
+ = (

K (a)
n ⊗ I2

)
(S (n)

+ |1n+1〉 + S
(n)
− |0n+1〉)

= (−1)k
(1)
+ S

(n)
+ |1n+1〉 + (−1)k

(1)
− S

(n)
− |0n+1〉

= −(S (n)
+ |1n+1〉 + S

(n)
− |0n+1〉)

= −S
(n+1)
+ , (D10)

with I2 being the 2 × 2 identity matrix. The penultimate step
holds due the induction hypothesis. Similarly, for S

(n+1)
− ,

K
(a)
n+1S

(n+1)
− = (

K (a)
n ⊗ I2

)
(S (n)

+ |1n+1〉 − S
(n)
− |0n+1〉)

= (−1)k
(1)
+ S

(n)
− |1n+1〉 − (−1)k

(1)
− S

(n)
− |0n+1〉

= −(S (n)
+ |1n+1〉 − S

(n)
− |0n+1〉) = −S

(n+1)
− .

(D11)
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If 1 < a < n,

K
(a)
n+1S

(n+1)
+ = (

K (a)
n ⊗ I2

)
(S (n)

+ |1n+1〉 + S
(n)
− |0n+1〉)

= (−1)k
(a)
+ S

(n)
+ |1n+1〉 + (−1)k

(a)
− S

(n)
− |0n+1〉

= S
(n)
+ |1n+1〉 + S

(n)
− |0n+1〉

= S
(n+1)
+ , (D12)

K
(a)
n+1S

(n+1)
− = (

K (a)
n ⊗ I2

)
(S (n)

+ |1n+1〉 − S
(n)
− |0n+1〉)

= (−1)k
(a)
+ S

(n)
− |1n+1〉 − (−1)k

(a)
− S

(n)
− |0n+1〉

= S
(n)
+ |1n+1〉 − S

(n)
− |0n+1〉

= S
(n+1)
− . (D13)

If a = n,

K
(a)
n+1S

(n+1)
+ = (

K (a)
n ⊗ σ (n+1)

z

)
(S (n)

+ |1n+1〉 + S
(n)
− |0n+1〉)

= −(−1)k
(n)
+ S

(n)
+ |1n+1〉 + (−1)k

(n)
− S

(n)
− |0n+1〉

= S
(n)
+ |1n+1〉 + S

(n)
− |0n+1〉

= S
(n+1)
+ , (D14)

K
(a)
n+1S

(n+1)
− = (

K (a)
n ⊗ σ (n+1)

z

)
(S (n)

+ |1n+1〉 − S
(n)
− |0n+1〉)

= −(−1)k
(n)
+ S

(n)
− |1n+1〉 − (−1)k

(n)
− S

(n)
− |0n+1〉

= S
(n)
+ |1n+1〉 − S

(n)
− |0n+1〉

= S
(n+1)
− . (D15)

For the a = n + 1 case, we shall make use of Lemma 2. The
operator K

(n+1)
n+1 can be decomposed as I

⊗
n−1

2 ⊗ σ (n)
z ⊗ σ (n+1)

x ,
and hence we get the following:

If a = n + 1,

K
(a)
n+1S

(n+1)
+ = −S

(n)
− |0n+1〉 − S

(n)
+ |1n+1〉

= −S
(n+1)
+ , (D16)

K
(a)
n+1S

(n+1)
− = −S

(n)
− |0n+1〉 + S

(n)
+ |1n+1〉

= S
(n+1)
− . (D17)

Therefore, the states S
(n)
± satisfy the eigenvalue conditions (D6)

for the set of parameters (D8), meaning that the state obtained
by our protocol is an LCn state. �

APPENDIX E: AVERAGE FIDELITY

Consider a single scattering event in which the spin pre-
cesses for a time T

(1)
B prior to the scattering event and a

subsequent precession time T
(2)
B followed by a Y rotation

marking the end of the run (such that T
(1)
B + T

(2)
B = TB). In

the presence of the Bx
N component, the rotation matrix Up(φ)

in (C5) picks up a stochastic term ωNt , that is,

Up((ωB + ωN )t ) =
(

e−i 1
2 (ωB+ωN )t 0

0 ei 1
2 (ωB+ωN )t

)
⊗ I

⊗
n

3 ,

(E1)

with t = T
(1)
B or T

(2)
B , where we have written the precessed

angle explicitly in terms of ωB = gx
hμBBext/h̄ and the Over-

hauser stochastic frequency ωN = gx
hμBBx

N/h̄ (gx
h being the x

component of the anisotropic hole g factor [64]).
The effect of this stochastic term can be seen in the trace

fidelity between postY rotation ideal photon state, and the more
realistic case including the Overhauser field. The spin+photon
states for the two cases, denoted by S (1) and S̃ (1), respectively,
are then given by

S (1) = e−i 1
2 ωBδTB |⇑B1〉 + e−i 1

2 ωBδTB |⇓B1〉
+ ei 1

2 ωBδTB |⇑R1〉 − ei 1
2 ωBδTB |⇓R1〉,

S̃ (1) = e−i 1
2 (ωB+ωN )δTB |⇑B1〉 + e−i 1

2 (ωB+ωN )δTB |⇓B1〉
+ ei 1

2 (ωB+ωN )δTB |⇑R1〉 − ei 1
2 (ωB+ωN )δTB |⇓R1〉, (E2)

where δTB = T
(1)
B − T

(2)
B ∈ [−TB, TB] is a uniform random

variable due to the fact that the spin precesses multiple times
during TB in the high external magnetic field. The final photon
state, as discussed earlier, depends on the state the spin is
measured in, so we shall denote the density matrices of the
ideal and realistic cases by ρ

(1)
+ and ξ

(1)
+ , respectively, if the

spin is measured in the |⇑〉 state, and similarly ρ
(1)
− and ξ

(1)
− for

the |⇓〉 result. The fidelity for a fixed value of Bx
N is then given

by F (1) = tr(ρ (1)
+ ξ

(1)
+ ) = tr(ρ (1)

− ξ
(1)
− ) = cos2(Bx

NδTB/2).
Due to the stochastic nature of the Overhauser field, we

need to ensemble average F (1) in order to get the true fidelity,
that is, F̄ (1) = 〈〈tr(ρ (1)

− ξ
(1)
− )〉

B
〉
δT

= 〈〈tr(ρ (1)
+ ξ

(1)
+ )〉

B
〉
δT

, where
the Overhauser averaging 〈. . .〉B and time averaging 〈. . .〉δT
are performed over a normal distribution with zero mean and
finite standard deviation δBx

N , and a uniform distribution over
[−TB, TB] [65]. In doing so, we get the averaged fidelity for a
single scattering event in the presence of Bx

N given by Eq. (10).

APPENDIX F: IMPERFECTIONS OF OTHER
QD-BASED PROTOCOLS

As discussed in the main text, several protocols have been
proposed for implementing photonic LC states or entangled
states sharing similar properties. The influential 2009 pro-
posal by Lindner and Rudolph [9] (LR) offered an elegant
and simple scheme which could be implemented using the
circularly polarized degrees of freedom of a quantum dot.
Despite its simplicity, a number of experimental barriers need
to be overcome to actually implement such a scheme. The
Overhauser fluctuation limitations have already been discussed
in the main text; below we discuss some additional constraints
both for the LR scheme as well as the recent dark exciton
(DE) based LC scheme [13], which has already successfully
produced LC2 states in the laboratory and shown promise for
reaching up to LC5. In essence, these imperfections effectively
introduce limits to the size of achievable cluster states for those
protocols, hence limiting the indefinite deterministic operation
in the absence of further optimizations. By contrast, we note
that our approach in this work, as discussed in the main paper,
is largely immune against all issues discussed below.
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1. Shortcomings due to coupling to phonons

The solid-state environment further limits the deterministic
nature of these protocols due to coupling to the phonon
environment. Even in the limit of idealized instantaneous
excitation pulses, a temperature-dependent fraction of the
photons are inevitably emitted incoherently via the phonon
sideband (∼9% at temperatures as low as T = 4 K, increasing
with temperature [66]). This affects all protocols involving
electronic excitation to trion of biexciton states, i.e., both the
LR and DE approaches.

2. Effects of hole-state mixing

In this section, we discuss how said protocols fare against
finite hh-lh mixing [67]. The first type of hh-lh mixing, due to
anisotropy in the in-plane strain of the quantum dot, gives rise
to the hh ↑ -lh ↓ mixing, resulting in the hole eigenstates

|⇑〉 = 1√
1 + |βud |2

(|3/2; +3/2〉 + βud |3/2; −1/2〉),

|⇓〉 = 1√
1 + |βud |2

(|3/2; −3/2〉 + β∗
ud |3/2; +1/2〉), (F1)

where, without giving its explicit form, βud is the in-plane
strain-dependent mixing factor [21,63]. This type of mixing
primarily causes ellipticity of the dipole-allowed transitions
which, for a hh system, would be driven by σ±-polarized light.
Hence, this hh ↑ -lh ↓ mixing does not induce the “diagonal”
dipole-forbidden transitions.

On the other hand, the hh ↑ -lh ↑ mixing may allow tran-
sitions which would otherwise be forbidden for a hh system.
The hole eigenstates solely due to this type of mixing are given
by

|⇑〉 = 1√
1 + |βuu|2

(|3/2; +3/2〉 + βuu|3/2; +1/2〉),

|⇓〉 = 1√
1 + |βuu|2

(|3/2; −3/2〉 + β∗
uu|3/2; −1/2〉), (F2)

where βuu is the hh ↑ -lh ↑ admixture factor [21,63]. From
Eqs. (F2), it can be immediately seen that the transitions, which
are forbidden in Faraday geometry, are now allowed. For hole
spins, βuu has been measured to be∼8%, leading to allowed-to-
forbidden transition ratios of |βuu|2/3 ≈ 0.2% [63], although
this varies from one quantum dot to another. This means that
even if the external field in the LR scheme is weak enough to
preserve a pure Faraday geometry, dipole-forbidden transitions
may still occur with some small, but finite probability, both for
the original and the hole-spin variant of the LR protocol.

Similarly, in the DE system z-polarized “forbidden” tran-
sitions are also present due to hole subband mixing, although
these transitions in this system are significantly weaker [68,69].
In addition to hh-lh mixing, the DE scheme also suffers from
dark-bright exciton (DE-BE) state mixing due to the breaking
of the C2v symmetry, although this effect is much weaker
than the hh-lh mixing. Realistically, self-assembled QDs suffer
from a reduction in symmetry during the growth process,
causing a departure from the ideal C2v symmetry. The resulting
“reduced” Cs symmetry leads to DE-BE state couplings of
two kinds; the first leads to finite z-polarized dipole transitions

FIG. 6. Success probability of scattering a single Raman photon
using a cw source against time-bin lengthTB . At an optimized time-bin
length TB ≈ 0.5 μs, the probability can be as high as 20%, before it
drops once more due to the probabilities of getting multiple photons
in a single time bin.

similar to the hh ↑ -lh ↓ admixture in the BE schemes, while
the second gives rise to forbidden in-plane transitions, bearing
similar repercussions as the hh ↑ -lh ↑ mixing discussed above
[68,70], although to a much lesser extent.

We note that our approach does not suffer from modifica-
tions of the selection rules due to hole mixing: we already rely
on the presence of off-diagonal transitions and slight changes
to their rates will not make an appreciable difference.

3. Pulsed scheme limitations

As mentioned earlier, the main limitation of our scheme is
the unknown time of arrival of the photons due to the cw source.
An obvious solution might be using a pulsed source for the
photons. Despite addressing the issue of the photons’ unknown
phases, such a protocol would still not be deterministic, as
there is still a 50% probability that a Rayleigh scattering event,
instead of a spin-flipping Raman one, occurs. While this is
still a considerable improvement over the ∼20% we get for
an optimized time-bin length (Fig. 6), this pulsed-excitation
scheme would not benefit from the advantages of subsaturation
driving, mainly, the photon linewidth limited only by the
hole-spin coherence and laser linewidth, and be susceptible
to phonon dephasing. Hence, the opportunity to create longer
LCs with less probabilistic phase uncertainty comes at the price
of lower quality LC states, which we argue is paramount for
reliably constructing 2D cluster states required for quantum
computation using probabilistic fusion gates.

APPENDIX G: ROBUSTNESS OF 2D CLUSTER-STATE
PROTOCOLS AND LC STATE FUSING SCHEMES

Schemes extending the LR scheme for 2D cluster state
generation have been proposed [17], in which it was shown
that a pair of entangled QDs could be used to directly generate
a 2D cluster state, reducing the required number of probabilis-
tic fusion of LC state building blocks. Furthermore, it was
recently shown that the requirement of two-qubit gates on the
entangling emitters can be relaxed by a careful application of
pulses and single-qubit gates on the emitters [18]. However,
building on a similar setup and selection rules as the original
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FIG. 7. (a) Success probability of obtaining a 5 × 5 2D cluster
state as a function of the length of the input LC states to be fused.
Going from LC2 to LC4 shows orders-of-magnitude improvement,
underlining that having at least moderately sized LC states is essential
for feasible 2D state growth. (b) Success probability against 2D cluster
state size for LC2 (bottom, blue line) and LC4 (top, orange line)
“building blocks,” showing an increased improvement with size when
going from one-dimensional states of size 2 to size 4.

LR protocol, we expect that the practical limitations discussed
above will also limit the achievable size of photonic states that
can be obtained with this protocol.

An alternative approach to generating a 2D cluster state is
that of fusing LC states. We show that having high-fidelity LC
states of moderate length is essential for using one-dimensional
states as building blocks. Consider a 2D cluster state of size
L × L. If we start with number of linear cluster states of
size n, then the number of steps required to at least reach
a 2D cluster state of size L × L is at least mn = L2−n

n−1 :
assuming that we have enough linear clusters to start with,
each fusion process will (on average) increase the cluster size
by n(mn + 1) − mn (noting that each fusion step leaves the
fused qubit redundantly encoded with two photons in type-II
fusion, and disregarding the final layout of the 2D state for
generality and simplicity). Clearly, we ignore the cases when
n > L2 as the probability saturates for n = L2. We show how
the probability scales for a 2D cluster state of size 5 × 5 as a
function of the “building block” size (i.e., the size of the initial
cluster states) in Fig. 7(a). This clearly demonstrates that the
probability increases exponentially before saturating, showing
a significant jump when going from linear cluster sizes of
2 to 4.

This increase in success probability is further emphasized
when one considers increasing the 2D cluster state size. In
Fig. 7(b), we show how the difference in probability increases
with increasing 2D state size L × L. This approach assumes
that upon failure, we have enough resources to replace the
linear cluster state and try again. The results of this relatively
naïve and basic analysis are further backed by an alternative
approach presented in Ref. [71], in which Gross et al. fuse
linear clusters by “weaving” n + 1 linear clusters of size n to
form a cluster state of size n × n. They show that as long as a
careful choice of parameters is made, depending on the fusion
success probability, then the cluster state can be prepared using
O(n2) edges and the overall success probability approaches
unity as n goes to infinity.

Aside from having relatively longer linear states as building
blocks, the fidelity of these states, indicative of quality, is also
an important factor when considering scalability to higher
dimensions [62,72], as it will determine the “percolation”

or “edge-bound” probability. Fortunately, our approach can
deliver on both counts by producing LC4 states with high
fidelity at a respectable generation rate.

APPENDIX H: PROPOSAL FOR DETERMINISTIC
SCHEME USING DQD

Motivated by recent theoretical and experimental work, we
propose extending our Raman protocol to a double quantum dot
(DQD) system, where, depending on the relative strength of the
exchange interaction and transition energy detuning between
the two QDs, either joint measurements on the DQD system
can be performed, while leaving the photon-entangling hole-
spin state unaffected, or oscillations between joint states can
be detected without collapsing the system joint state. In the
following, we will discuss two possibilities of extending our
protocol in such a way.

(a) Electrical control. During the past few years, great
progress has been made in synthesizing and controlling quan-
tum dot molecules, both in stacked [73–75] and lateral [76,77]
geometries. A Raman-spin flip DQD scheme was shown in
Ref. [78], in which the external field is applied in Faraday
geometry and the Raman spin flips occur between the singlet
S and triplet T0 states of the system. While this configura-
tion would not allow screening of the dominant fluctuation
component of the Overhauser field, such a setup would, in
principle, allow a current measurement scheme to be applied
and signal the Raman events. In fact, the standard singlet-triplet
spin blockade used in gated DQDs [79] could be used to detect
current drops, signaling the Raman event. This would require
operation round the (1,0), (1,1), (2,0) triple point at a negative
bias, making use of the the additional charge state S(2, 0).
Addressing and manipulation of these singlet and triplet states
in optically active DQDs have been recently been demonstrated
for QD molecules [75,78,80–82], whereas the current transport
measurements have been long understood for surface-defined
QDs. This route would require a hybrid gated and optically
active device, which, although certainly challenging, might
nonetheless present a feasible route.

(b) Optical control. A more attractive alternative to having a
gated structure would be to have an all-optical noninvasive spin
readout technique, provided by the rich energy-level structure
for these systems. In quantum dot molecules, this can be
achieved by using the distributed trion state, with the ancilla
spin being empty, while the host spin being singly electron
charged. The spin readout technique was demonstrated ex-
perimentally performing resonance fluorescence (RF) on the
| ↓s , 0a〉 ↔ | ↓s ,↓ ⇑a〉 transition, which is decoupled from
the main spin-flip transition [83]. This technique could be
readily extended to hole-spin systems with an analogous level
structure. A similar setup was demonstrated experimentally in
Ref. [84], where use of these cycling transitions was made
to detect the flips of the host spin state. Both these setups
would require individual addressing of the ancilla and host
spin, meaning that the two QDs selected must be sufficiently
relatively far detuned, which could be achieved by tuning the
bias voltage over the sample, decreasing the exchange energy
splitting [80]. Alternatively, for samples with a much stronger
singlet-triplet splitting, optical addressing of the joint states
would be more feasible. In the singlet-triplet Raman scheme
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FIG. 8. (a) Extending the Raman spin-flip protocol to a DQD
setup in Voigt geometry, where the two QDs are sufficiently detuned
(relative to the exchange interaction), allowing the optical addressing
of a single spin. (b) An alternative setup in Faraday geometry [78], in
which the initial state would be a superposition of S and T0 states.

in Faraday geometry discussed in Ref. [78] [Fig. 8(b)], spin
readout of the singlet state can be performed by using the
decoupled cycling transition T+ ↔ R++ [81].

APPENDIX I: QUANTUM STATE TOMOGRAPHY

Quantum state tomography (QST) allows one to completely
characterize an unknown quantum state, as long as an ensemble
of identical copies of such a state can be created in the
experiment. Despite the wide range of tomographic techniques
in existence [85–87], the aim is typically to use sets of repeated
measurements on the ensemble, the results of which enable the
reconstruction of the original state.

Our probabilistic protocol then presents an obvious question
as to how would one obtain multiple copies of the cluster state
since, for each realization, the phases imprinted on the photonic
qubits are random, and are only know post detection. Using
conventional reconstruction techniques would then average
over the coherences of the cluster state, losing the entanglement
information.

Despite this apparent downfall, the fact that the random
phases can be determined post measurement means that this
problem can be reformulated in a “static frame” with respect
to the state, that is, the state is not imprinted with the phases,
instead, in this frame, the effective basis chosen for the

(a)

(b)

(c)

FIG. 9. (a) Bloch sphere representation of the problem: the actual
state to be reconstructed (purple) gains a random phase (dots) prior to
every measurement, with the measurement bases given by the arrows.
(b) An equivalent picture where the state is fixed, with the “random”
measurement basis given by the phases. (c) Fidelity for 16 grouped
projectors, showing, as expected, an increase in the fidelity for higher
numbers of events.

actual measurement rotates for each measurement due to the
different phases. The problem then reduces to reconstructing
a state when the measurement basis used is different for
each measurement. We emphasize that this does not mean
that the experimentally chosen basis is actually rotated for
each measurement. The random measurement projectors can
then be grouped as {P (j )

1 , P
(j )
2 , . . . , P

(j )
nj

} by proximity on the
Bloch sphere into projectors {Pj : 1 � j � K} to be used for
reconstruction.

As a proof of principle, we used the state c1|H 〉 + c2|V 〉
for each experiment, where c1 and c2 are two random complex
numbers, so that each time we have a different measurement
projector. Using maximum likelihood estimation (MLE) and
the Cholesky decomposition for the density matrix, we per-
formed QST for various numbers of grouped projectors, the
results of which are shown in Fig. 9. As the number of of Pj

is increased, the fidelity rises, as expected. However, for lower
numbers of events, the fidelity peaks at a number of grouped
projectors, and then starts declining again. This drop is due
to the failure of the Gaussian assumption used for MLE. This
failure is expected to affect fidelities for higher event numbers
as we increase the number of projectors.
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Heavy-Hole Hyperfine Interaction in InGaAs Quantum Dots
Using Resonance Fluorescence, Phys. Rev. Lett. 105, 257402
(2010).

[48] D. V. Bulaev and Daniel Loss, Spin Relaxation and Decoherence
of Holes in Quantum Dots, Phys. Rev. Lett. 95, 076805 (2005).

[49] K. De Greve, P. L. McMahon, D. Press, T. D. Ladd, D. Bisping,
C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel,
and Y. Yamamoto, Ultrafast coherent control and suppressed
nuclear feedback of a single quantum dot hole qubit, Nat. Phys.
7, 872 (2011).

[50] C. Emary, X. Xu, D. G. Steel, S. Saikin, and L. J. Sham, Fast
Initialization of the Spin State of an Electron in a Quantum Dot
in the Voigt Configuration, Phys. Rev. Lett. 98, 047401 (2007).

[51] G. Fernandez, T. Volz, R. Desbuquois, A. Badolato, and A.
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