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Local and intrinsic quantum coherence in critical systems
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Local and intrinsic quantum coherence, as two contributions of total quantum coherence, have been introduced
by Radhakrishnan et al. [C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T. Byrnes, Phys. Rev. Lett.
116, 150504 (2016)]. In the present work we study the property of local, intrinsic, and total quantum coherence in
critical systems such as the XY model, extended XY model, and Ashkin-Teller model to analyze their capability
in identifying the second-order, infinite-order quantum phase transitions, as well as the topological quantum phase
transitions. It is shown that not only the total coherence, but also the local and intrinsic coherence can spotlight the
critical points efficiently. Moreover, the long-range properties of total and local coherence, and the short-range
properties of intrinsic coherence are analyzed. The total and local coherence for spin-pairs farther than nearest
neighbors can highlight the critical points while the intrinsic coherence is absent for long-distance spin-pairs.
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I. INTRODUCTION

Quantum coherence plays a crucial role in quantum in-
formation science and is regarded as an important resource
in various quantum information tasks [1,2]. The theoretical
framework for the quantification of quantum coherence is
rigorously introduced by Baumgratz, Cramer, and Plenio [3],
where the relative entropy and the l1 norm are proved to be
proper distance measures for quantifying quantum coherence.
Several remarkable efforts have been devoted to exploring
quantum coherence over the past few years. For instance, the
measures of quantum coherence based on the Tsallis relative
α entropies [4], trace-norm distance [5,6], fidelity [6], and
skew information [7,8] are fully studied. Additionally, the
distribution of quantum coherence was first introduced by
Radhakrishnan et al., in which the total quantum coherence
was decomposed into the intrinsic coherence and the local
coherence that can be interpreted as the collective coherence
between two subsystems and the coherence on every single
subsystem, respectively [9].

It is well known that the quantum phase transitions (QPTs),
which are induced by quantum fluctuation, are one of the
central topics in condensed-matter physics [10]. Recently, the
relation between quantum coherence and QPTs has attracted
great attention and it has been shown that the derivative of
quantum coherence quantified by the relative entropy [11],
quantum Jensen-Shannon divergence [12], l1 norm [13], and
skew information [13,14] can be efficient probes of the
second-order QPT in the XY model. It is now recognized
that most of the previous works only investigated the total
quantum coherence in critical systems. Moreover, although
Radhakrishnan et al. studied the total, local, and intrinsic
quantum coherence in XXZ spin-1/2 chain and indicated
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that all of them can characterize the first-order QPT in this
model [9], the local and intrinsic quantum coherence in critical
systems where the second-order QPTs, infinite-order QPTs,
and topological quantum phase transitions (TQPTs) occur,
were not investigated carefully.

In contrast to the first, second, and infinite-order QPTs,
which are characterized by the Landau-Ginzburg-Wilson
paradigm [10], TQPTs are beyond the symmetry-breaking
theory of Landau and can be described by nonlocal string order
parameters [15,16]. In this work, we focus on the extended
XY model, where the three-body interaction is considered.
The extended XY spin-1/2 chain is an integrable model with
rich quantum phases, including the paramagnetic phase and the
ferromagnetic phase in XY model when the three-site interac-
tion is neglected and several topological phases characterized
by different winding numbers because of the Z symmetry
[17]. Consequently, it can be regarded as an ideal platform
to demonstrate the capability of local and intrinsic quantum
coherence in identifying the second-order QPTs and TQPTs.

Furthermore, to investigate the relation between quantum
coherence and infinite-order QPT, we will study the local and
intrinsic quantum coherence in the Ashkin-Teller (A-T) model
[18], which can be experimentally realized on Ni(100) surface
with absorbed selenium [19]. The infinite-order QPT in the
A-T model has been characterized via the extreme points of
the entanglement entropy for a block subsystem [20] and the
global quantum discord [21]. Nevertheless, the signature of
the infinite-order QPT can not be detected by the pairwise
entanglement straightforwardly [20].

The primary motivation of the present work is to explore
whether the total, local, and intrinsic quantum coherence can
be indicators of TQPTs, second and infinite-order QPTs or
not. Towards that goal, the behaviors of total, local, and
intrinsic quantum coherence near the critical points associated
to the second-order QPT in the XY model, the TQPTs in
the extended XY model, and the infinite-order QPT in the
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A-T model are studied carefully. Both of the total and local
quantum coherence can characterize the second-order QPT and
TQPTs for the long-distance spin-pairs of the XY model and
the extended XY model, respectively. Whereas, the intrinsic
coherence can only spotlight the critical points for the spin-
pairs with short distance of the spin chains. The two-site scaling
laws are obtained by analyzing the long-distance properties of
total quantum coherence. Additionally, we prove that there is
no intrinsic coherence for the frontal spin-pairs of the A-T
spin chain. Therefore, the local coherence becomes the main
contribution of total quantum coherence. It is nontrivial that
the local coherence, which is equal to the total coherence, can
detect the infinite critical point in A-T model efficiently.

The remainder of this work is organized as follows. In
Sec. II, first, the extended XY model and the A-T model are
briefly reviewed. Second, the definition of total, intrinsic, and
local quantum coherence are given. In Sec. III, the calculation
results of total, intrinsic, and local quantum coherence in the
XY model, extended XY model, and A-T model are presented.
In Sec. IV we conclude.

II. MODELS AND DEFINITIONS

A. Extended XY model

The Hamiltonian of the extended XY model can be written
as [17]

H =
N∑

i=1

ασ z
i

(
1 + δ

2
σx

i−1σ
x
i+1 + 1 − δ

2
σ

y

i−1σ
y

i+1

)

+
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(
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σx

i σ x
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2
σ
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i σ
y

i+1 + λσ z
i

)
, (1)

where γ and δ denote the anisotropy of the spin chain,
α represents the strength of three-site interaction, and λ is
the strength of the magnetic field. The Pauli operators in
Eq. (1) can be mapped to spinless fermion operators by
applying the Jordan-Wigner transformation. Then, after the
Fourier-Bogoliubov transformation, in momentum space, the
Hamiltonian can be diagonalized as [22–24]

H =
∑

k

εk

(
η
†
kηk − 1

2

)
, (2)

where k = 2πM
N

and M = −N−1
2 ,−N−3

2 , . . . , N−3
2 , N−1

2 . The
relation between the Bogoliubov fermion operator ηk and the
fermionic operators in momentum space ck is ck = cos θk

2 ηk +
i sin θk

2 η
†
−k with

tan(θk ) = Y (k)

Z(k)
, (3)

where Y (k) = αδ sin(2k) + γ sin k and Z(k) =
α cos(2k) + cos k − λ, and the energy spectra read
εk = ±

√
Y 2(k) + Z2(k).

The reduced density operator for the spin-pair consisted of
mth and nth spin can be written as

ρmn = 1

4

⎛
⎜⎝
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0 z v+ 0
0 v+ z 0
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⎞
⎟⎠, (4)

where w± = 1 ± 2〈σ z〉 + 〈σ z
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n 〉, and v± =
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n 〉. The correlation functions read
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where R = |m − n| is the distance of spin-pairs, and GR =
− 1

π

∫ π

0 dk cos(Rk − θk ) in the case of zero temperature.
The Hamiltonian (1) becomes the XY model in the case of

α = 0. There is a second-order QPT between the paramagnetic
phase and ferromagnetic phase at the critical point λc =
1. Moreover, it is worth mentioning that the factorization
phenomenon also exists in the XY model and the factorization
points satisfy λf =

√
1 − γ 2 [13,14,25].

Next we analyze the TQPTs in the extended XY model.
Actually, in momentum space, the Hamiltonian (1) can be ex-
pressed as the form of the Bogoliubiv–de Gennes Hamiltonian

H =
∑

k

(c†k c−k )Hk

(
ck

c
†
−k

)
, (9)

where Hk = −→
r (k) · −→

r (σ ) with −→
r (k) = (0 Y (k) Z(k)). In

the auxiliary Y–Z plane, the winding number with respect to
the origin point reads

ν = 1

2π

∮
(YdZ − ZdY )/|−→r |2. (10)

The critical points of TQPTs can be obtained by solving the
characteristic equation g(ξ ) = 0, where g(ξ ) = α[ξ 2 + (1 −
δ)ξ−2/2] + ξ + (1 − γ )ξ−1/2 − λ, and ξ = exp(ik), with
|ξ | = 1. For example, with the parameters α = 1, δ = 1, and
λ = −0.5, it can be numerically verified that γc1 � −0.618
and γc2 � 1.618 satisfy the characteristic function. Moreover,
the energy spectra displayed in Fig. 1(a) also indicate that γc1 �
−0.618 and γc2 � 1.618 are the critical points of TQPTs. The
winding numbers can be directly obtained from the trajectories
of winding vectors in the auxiliary Y–Z plane. The trajectories
for γ = −1, 0, 2 are presented in Fig. 1(b), which suggest that
with the increase of γ , the winding number ν changes from 0
to 2 at γc1 and from 2 to 0 at γc2.
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FIG. 1. (a) The energy spectra as a function of γ with parameters
α = 1, δ = 1, and λ = −0.5. (b) Trajectories of winding vectors
in Y–Z plane with parameters α = 1, δ = 1, λ = −0.5, and γ =
−1, 0, 2.

B. Ashkin-Teller model

The Hamiltonian of the Ashkin-Teller (A-T) model is given
as

HAT = −
M∑
i=1

(
σx

i + τ x
i + �σx

i τ x
i

) − β

M∑
i=1

(
σ z

i σ z
i+1

+ τ z
i τ z

i+1 + �σ z
i σ z

i+1τ
z
i τ z

i+1

)
, (11)

where σ
η

i and τ
η

i (η = x, y, z) represent independent Pauli
operators. M is the length of the A-T spin chain with N = 2M

spins. The location of the critical point related to infinite-order
QPT is �c = 1, which is irrelevant to the value of β. Here we
adopt the periodic boundary condition, that is, ση

M+1 = σ
η

1 and
τ

η

M+1 = τ
η

1 .
The scheme of the A-T model is shown in Fig. 2. Here, we

focus on the frontal spin-pairs at the ith site, which is marked
by the red circle in Fig. 2. The reduced density matrix for the
ith frontal spin-pairs can be written as [20]

ρσi−τi
= 1

4

⎛
⎜⎝

1 u u v

u 1 v u

u v 1 u

v u u 1

⎞
⎟⎠, (12)

where u = 〈σx
i 〉 = 〈τ x

i 〉 and v = 〈σx
i τ x

i 〉.

C. Total, local, and intrinsic quantum coherence

The general form of total quantum coherence can be written
as [1–3]

CT (ρ) = min
δ∈I

D(ρ, δ), (13)

whereD is a distance measure andI denotes a set of incoherent
states. A proper distance measure D for quantifying quantum
coherence should satisfy several conditions as proposed by the

FIG. 2. The scheme of Ashkin-Teller model.

authors of Ref. [3]. The total quantum coherence (13) can be
divided into the coherence between different subsystems and
the coherence on every single subsystem, which are named as
the intrinsic coherence and the local coherence, respectively
[9].

It is worth stressing that the total quantum coherence is
dependent on the chosen basis because ρ is an incoherent
state in the basis consisted of the eigenstates of ρ. In Ref. [9],
the intrinsic quantum coherence, which is a basis-independent
quantity, is defined as

CI (ρ) = min
δ∈S

D(ρ, δ), (14)

whereS represents a set of separable states. In fact, the intrinsic
coherence is equal to the quantum entanglement measured via
distance D [26]. In addition, incoherent states are diagonal
in a chosen orthogonal basis, which are definitely separable;
nevertheless separable states are not necessarily incoherent.
Therefore the relation between two setsI andS clearly appears
as I ⊂ S , thus CT (ρ) � CI (ρ) [27].

The remainder contribution for total quantum coherence
is regarded as the quantum local coherence, which can be
described as

CL(ρ) = D(δ∗, ρd ), (15)

where ρd and δ∗ are obtained by minimizing Eqs. (13) and
(14), respectively. In this work, we pay attention to the relative
entropyD(ρ, δ) = Tr[ρ(log2 ρ − log2 δ)], which is a bona fide
distance measure for quantifying both quantum coherence [3]
and entanglement [26,27]. In this distance measure CL(ρ) +
CI (ρ) � CT (ρ) is satisfied.

III. RESULTS

A. Total, local, and intrinsic quantum
coherence in the XY model

We study the abilities of the total, local, and intrinsic
quantum coherence in characterizing the second-order QPT
in the XY model. We numerically calculate the total quantum
coherence of the spin-pairs ρmn, which can be decomposed of
the intrinsic coherence between the mth and nth spin, and the
local coherence on the mth and nth spin. The computational
results of total, local, and intrinsic quantum coherence in the
XY model with γ = 0.6 and 0.8 are presented in Fig. 3. From
Fig. 3(a), it is shown that the intrinsic coherence CI (ρ) = 0 at
the factorization points (λf 1 = 0.8 for γ = 0.6 and λf 1 = 0.6
for γ = 0.8). Actually, at λf , the reduced density operator
ρ in Eq. (4) is a separable state [28,29]; thus the intrinsic
coherence vanishes and the local coherence is equal to the
total coherence, i.e., CL(ρ) = CT (ρ), which can be observed
from the inset of Fig. 3(b). Moreover, all of the total, local,
and intrinsic coherence have sudden changes at the critical
point of second-order QPT λc = 1, and the critical point can
be highlighted via the coherence susceptibility with respect to
λ [11], that is, χ (C) = dC/dλ.

In addition, from Fig. 3(c) and 3(d), it can be observed
that, although χ (CT ) is trivial for factorization, χ (CL) has
nonanalytical behaviors close to λf . In fact, Eq. (15) suggests
that the local coherence is dependent on both of δ∗ and ρd .
δ∗ is tightly related to the intrinsic coherence and naturally
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(a) (b)

(c) (d)

FIG. 3. (a) The intrinsic coherence CI as functions of λ with
γ = 0.6, 0.8. The inset shows the intrinsic coherence susceptibility
as functions of λ with γ = 0.6, 0.8. (b) The dependence of the local
and total coherence, i.e., CL and CT , and λ with γ = 0.6, 0.8. (c) The
dependence of the local and total coherence susceptibility with respect
to λ, i.e., χ (CL) and χ (CT ), and λ with γ = 0.8. (d) The dependence
of the local and total coherence susceptibility with respect to λ, i.e.,
χ (CL) and χ (CT ), and λ with γ = 0.6.

contains the information of factorization. Consequently, the lo-
cal coherence susceptibility can characterize the factorization
phenomenon.

Furthermore, the long-range properties of the total quantum
coherence are emphasized in Ref. [12,13]. With the aim to
obtain relevant scaling laws, we focus on the reduced density
operators for spin-pairs with long distance, i.e.,R > 1. Without
losing generalization, we only consider the XY model with
γ = 0.6 here. In Fig. 4(a), the intrinsic coherence almost
vanishes and CT � CL in the case of R = 3, indicating that the
intrinsic coherence is a short-range correlation, while the total
quantum coherence is a long-range correlation because the
contribution from the coherence in every single qubit, that is,
the local coherence, is not influenced by the increase of R. Ac-
tually, it has been revealed that although the correlation length
is diverging at the critical point, the entanglement between the
two sites with long distance vanishes [30], which is consistent
with the results of intrinsic coherence. As shown in Fig. 4(b),
the susceptibility of total quantum coherence can still detect
the critical point λc = 1 for the spin-pairs with long distance.
But the intrinsic coherence cannot characterize QPTs even with
R = 3, see the inset of Fig. 4(a). Moreover, the impact of R on
the critical behaviors of total quantum coherence is explored
quantitatively. The value of total quantum coherence at critical
point as a function of distance of spin-pairs R is displayed in
Fig. 4(c), which reveals a power-law decay of the total quantum
coherence at the critical point, i.e.,

CT |λ=λc
= aRb. (16)

(a)

(b) (c)

FIG. 4. (a) The intrinsic coherence, local coherence, and total
coherence CI , CL, and CT for the reduced density operators of spin-
pairs with long distance R = 3 as functions of λ with γ = 0.6. (b)
Total quantum coherence CT for the reduced density operators of
spin-pairs with R = 1, 3, 5, 7 as functions of λ. (c) The relation of
the value of total quantum coherence at the critical point λc = 1
and distance of spin-pairs R. The expression of fitting curve is
CT |λ=λc

= 0.3862R−0.4627

We mention here that the polynomial scaling law of quan-
tum discord at the critical point of the XY model has been
derived analytically in Ref. [31], which shows that the quantum
discord QD(ρmn) ∼ R−0.5, where R = |m − n| represents the
distance of spin-pairs, at λc = 1. In fact, quantum discord
can be regarded as the quantum coherence in the particular
representation obtained by minimizing over all product local
unitary transformations [27]. Hence quantum coherence has
the similar scaling law to quantum discord.

B. Total, local, and intrinsic quantum coherence
in the extended XY model

To explore the connection between quantum coherence
and TQPTs, we focus on the extended XY model, where the
three-site interaction is considered. First, the total quantum
coherence CT in the extended XY model is calculated. In
Figs. 5(a) and 5(c), it can be observed that CT have pronounced
local maximum behaviors at the critical points related to the
TQPTs driven by the anisotropy of nearest-neighbor spins
γ with parameters α = 1, δ = 1, λ = −0.5, as well as the
TQPTs driven by the strength of three-site interaction α with
parameters γ = 1, δ = −1, λ = 1. The winding numbers as
functions of γ and α are depicted in Figs. 5(b) and 5(d), respec-
tively. The energy spectra and trajectories of winding vectors
with parameters γ = 1, δ = −1, λ = 1, and several values of
α are presented in Appendix A carefully, which indicates
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FIG. 5. Total quantum coherence as a function of γ with param-
eters (a) α = 1, δ = 1, λ = −0.5 and (c) as a function of α with
parameters γ = 1, δ = −1, λ = 1. (b) and (d) display the dependence
of winding numbers on γ with the same parameters of (a) and on α

with the same parameters of (c).

the locations of critical points are αc1 = (−√
5 − 1)/2, αc2 =

0, αc3 = (
√

5 − 1)/2, and αc4 = 2. In contrast to the results of
former works on the quantum discord [32] and the one-way
deficit [33] in this model, it is intriguing that the total quantum
coherence can directly spotlight the critical points related to
TQPTs. However, it only can be observed that the quantum
discord and the one-way deficit change dramatically around
the critical points. Therefore, pinpointing the critical points
requires the susceptibility of quantum discord and one-way
deficit with respect to the quantities which drive TQPTs. It is
noted that there is a singular point around α � 0.85, which is
highlighted by the green circle in Fig. 5(c). In Appendix B,
the numerical results with high accuracy are presented, which
indicates that this is a discontinuity point, while at the critical
points related to TQPTs, the quantum coherence behaves
continuously. Thus, the singular point can not be regarded as
a signature of TQPTs.

Moreover, the intrinsic coherence CI and local coherence
CL in the extended XY model are studied. In Fig. 6(a),
around the critical point αc = 0, the behaviors of total co-
herence and local coherence are similar. However, the ten-
dency of the intrinsic coherence is different from them. For
instance, the trade-off relation between intrinsic and local
coherence can be observed. When α > 0.2, both of total
and local coherence decrease while intrinsic coherence in-
creases. Most importantly, at the critical point, instead of
local maximum, there is a sudden change of the intrin-
sic coherence and the susceptibility of intrinsic coherence
χ (CI ) = dCI/dα can spotlight the critical points of TQPTs
directly.

Additionally, the reduced density matrices for spin-pairs
with long distance in extended XY model are considered. In
Fig. 6(b), the long-range properties of the total coherence and
local coherence, as well as the short-range properties of the

(a) (b)

(c) (d)

FIG. 6. (a) The total, intrinsic, and local quantum coherence as a
function of α with parameters γ = 1, δ = −1, λ = 1 for the reduced
density operator of nearest spin-pairs, i.e., R = 1, and the inset shows
the dependence of intrinsic quantum coherence susceptibility on α.
(b) The total, intrinsic and local quantum coherence as a function of
α with the same parameters in (a) except for the distance of spin-pairs
R = 3. (c) The dependence of total quantum coherence on α with
several different R. (d) The relation of the value of total quantum
coherence at the critical point αc = 0 and distance of spin-pairs R.
The expression of fitting curve is CT |α=αc

= 0.4853R−0.5171.

intrinsic coherence are also observed around the critical point
αc = 0. As displayed in Fig. 6(c), the total quantum coherence
can still spotlight the critical point related to TQPT efficiently
even with a long distance of spin-pairs.

Furthermore, although the total quantum coherence decays
polynomially at the critical point associated with the second-
order QPT in the XY model, the scaling law Eq. (16) is still
worthwhile to demonstrate for TQPTs. In Fig. 6(d), the relation
between total quantum coherence at the topological critical
point CT |α=αc

and R indicates that the scaling law Eq. (16) is
satisfied for the critical point αc = 0 of TQPT.

However, as shown in Fig. 7(a), around the critical point
αc = 2, it can be directly observed that the value of CT

with R = 2 is larger than R = 1, hence CT does not decay
monotonically with the increase of R. Then, the dependence
of CT |α=2 and R is displayed in Fig. 7(b), which indicates
that the scaling law Eq. (16) is not valid for all critical
points associated to TQPTs. The main difference of the
TQPTs at αc = 0 and αc = 2 is that the latter is related to a
topological phase with high winding number, that is ν = −2.
Enlightened by recent works which show that the quantum
fisher information fails to characterize the topological phases
with high winding numbers, while it can characterize them
efficiently in dual lattices via scaling laws [34,35], we employ
the duality transformation to explore the scaling law of total
quantum coherence at αc = 2 (see Appendix C for details). It is
noted that the duality transformation provides mathematically
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(a) (b)

(c) (d)

FIG. 7. (a) The total quantum coherence CT as functions of α

close to the critical point αc = 2 for several values of R without duality
transformation. (b) The relation of CT |α=2 and the distances of spin-
pairs R without duality transformation. (c) CT as functions of α near
the critical point αc = 2 for several values of R in the dual lattice. (d)
The relation of CT |α=2 and the distances of spin-pairs R in the dual
lattice, which can be fitted perfectly by CT |α=2 = 0.3696R−1.371.

different but physically equivalent descriptions for the same
physical phenomenon [36–39]. In Figs. 7(c) and 7(d), the
results of CT near αc = 2 in the dual lattice are presented.
The critical point related to TQPT can be detected by the
total quantum coherence in the dual lattice. Moreover, it is
remarkable that the data of CT |α=2 and R in the dual lattice are
fitted perfectly by the scaling law Eq. (16).

C. Total, local, and intrinsic quantum coherence
in the A-T model

After investigating the capabilities of total, local, and
intrinsic quantum coherence in detecting the second-order QPT
and TQPTs, we explore the relation of quantum coherence
and infinite-order QPT. Here we study the total, local, and
intrinsic quantum coherence of the frontal spin-pairs for the
Ashkin-Teller (A-T) model, i.e., the reduced density operator
Eq. (12).

First of all, we prove that the intrinsic coherence CI = 0 for
Eq. (12). The intrinsic coherence is independent of the chosen
basis [9,26,27]

CI

(
ρσi−τi

) = CI

(
Uσi

⊗ Uτi
ρσi−τi

U †
σi

⊗ U †
τi

)
. (17)

We intuitively apply the unitary transformation

Uσi
= Uτi

= 1√
2

(
1 1
1 −1

)
, (18)

which transforms the representation from σ z to σx . After that,
we obtain the reduced density operator in σx representation,

(a) (b)

FIG. 8. The total quantum coherence CT (a) and coherence sus-
ceptibility with respect to � χ (CT ) (b) as functions of � with various
values of β.

that is

ρx
σi−τi

= Uσi
⊗ Uτi

ρσi−τi
U †

σi
⊗ U †

τi

= 1

4

⎛
⎜⎝

2u + v + 1 0 0 0
0 1 − v 0 0
0 0 1 − v 0
0 0 0 v − 2u + 1

⎞
⎟⎠.

(19)

Because ρx
σi−τi

∈ S is a separable state, CI (ρσi−τi
) =

CI (ρx
σi−τi

) = 0 and CT (ρσi−τi
) = CL(ρσi−τi

).
Then, the total quantum coherence in the A-T model

with N = 16 spins is simulated numerically by performing
exact diagonalization. In Fig. 8, the total quantum coherence
CT and coherence susceptibility with respect to �, that is,
χ (CT ) = dCT /d�, as functions of � for several values of
β are displayed. It is shown that the the local extreme point
of CT , which satisfies χ (CT ) = 0, coincides with the critical
point associated to infinite-order QPT of the A-T model. Thus,
although the intrinsic coherence cannot give any signatures of
the infinite-order QPT in the A-T model, the local quantum co-
herence, which is equal to the total coherence, can characterize
the infinite-order QPT efficiently.

IV. CONCLUSION

In summary, the local, intrinsic and total quantum coher-
ence, measured via the relative entropy in critical systems,
including the XY model, extended XY model, and A-T
model, are studied. All of them can pinpoint the critical point
associated with the second-order QPT in the XY model. It
is intriguing that the local coherence have nontrivial at the
factorization point. However, the total coherence is anesthetic
to factorization. Moreover, the nonanalytical behaviors of
total coherence and local coherence can directly spotlight the
critical points related to TQPTs in the extended XY model.
Whereas, instead of local maximum, a significant change of
the intrinsic coherence can be observed around the critical
points. In addition, for the frontal spin-pairs of the A-T model,
intrinsic coherence is proven to be zero and the local coherence
is equal to the total coherence. The extreme points of the total
coherence can characterize the infinite-order QPT in the A-T
model.

Furthermore, the critical behaviors of quantum coherence
for the spin-pairs with long distance of the XY model and
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FIG. 9. (a) The energy spectra as a function of α with parameters
γ = 1, δ = −1, λ = 1. (b, c) Trajectories of winding vectors in Y–Z

plane for parameters γ = 1, δ = −1, λ = 1 with various values of
α. For α = −2.5, −1.5, −0.5, 0.5, 1.5, 2.5, the winding numbers are
ν = 2, 0, 0, 1, −1, −2, respectively.

extended XY model are investigated. It is shown that the
long-range properties of total quantum coherence are origi-
nated from the local coherence, while the intrinsic coherence
is regarded as a short-range correlation. Additionally, the
connection between the distance of spin-pairs and the value of
total coherence at a critical point reveals the power-law decay
of the total quantum coherence at critical points related to the
second-order QPTs in the XY model as well as the TQPTs in
the extended XY model. It is noted that the power-law decay
of total coherence can only be observed in the dual lattices in
the case of the TQPTs are related to topological phases with
high winding numbers.

The results of this work suggest that not only the total
quantum coherence, but also the local and intrinsic quantum
coherence can recover rich physics in condensed-matter sys-
tems and are worthwhile to explore for other critical systems,
such as spin-1 chains [40] and transverse-field XXZ model
[41], as well as the quantum optics systems with the QPTs
between the normal phase and the superradiant phase, for
instance, the quantum Rabi model [42,43] and the Dicke model
[44]. Although the computation of intrinsic quantum coherence
is a heavy numerical task [45], with the rapid developments
of calculation methods for multipartite entanglement [46,47],
the properties of local and intrinsic quantum coherence in the
above systems will be investigated.
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FIG. 10. The dependence of total quantum coherence CT and α

around (a) α = −0.85 and (b) α = (−√
5 − 1)/2.

APPENDIX A: GROUND-STATE ENERGY SPECTRUM
AND TRAJECTORIES OF WINDING VECTORS FOR THE
PARAMETERS γ = 1, δ = −1, λ = 1 WITH DIFFERENT α

IN THE EXTENDED XY MODEL

In Appendix A, we give the calculation results of the energy
spectra and trajectories of winding vectors with parameter
γ = 1, δ = −1, λ = 1 for various values of α. In this case,
the characteristic function is g(ξ ) = αξ 2 + 1

ξ
− 1 = 0 with

ξ = exp(ik) and |ξ | = 1. The critical points associated with
TQPTs are αc1 = (−√

5 − 1)/2, αc2 = 0, αc3 = (
√

5 − 1)/2,
and αc4 = 2 with ξ1 = exp{± arccos [(1 − √

5)/4]}, ξ2 =
1, ξ3 = exp{± arccos [(1 + √

5)/4]}, and ξ4 = −1, respec-
tively. The location of critical points can also be highlighted
from the energy spectrum as shown in Fig. 9(a). In addition,
from the trajectories of the winding vectors in the Y–Z plane
displayed in Figs. 9(b) and 9(c), the winding number as a
function of α, that is, the Fig. 5(d) in the main text, can be
directly obtained.

APPENDIX B: NUMERICAL RESULTS WITH HIGH
ACCURACY AROUND α = −0.85 AND α = (−√

5 − 1)/2

In this Appendix, we present the numerical results of total
quantum coherence CT with high accuracy around α = −0.85
and α = 0. The parameters are set as γ = 1, δ = −1, and
λ = 1. At α = (−√

5 − 1)/2, the TQPT occurs. In Fig. 10(a),
we can observe the discontinuity of CT around α = −0.85.
However, at the critical points associated with TQPTs, the CT

is continuous. Therefore, the singular behavior of CT around
α = −0.85 cannot be regarded as a signature of TQPT.

APPENDIX C: DUALITY TRANSFORMATION

In this Appendix, we present the details of the duality
transformation. Since the critical point αc = 2 is related to the
topological phase with winding number ν = −2, we employ
the duality transformation

Zn = σy
n σ

y

n+1, (C1)

Yn =
n∏

l=1

σ z
l , (C2)

Xn = −
(

n−1∏
l=1

σ z
l

)
σx

n σ
y

n+1. (C3)
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In the dual lattice, the reduced density operators for the spin-
pairs ρmn can be written as

ρmn = 1

4

⎛
⎜⎝

w+ 0 0 v−
0 z v+ 0
0 v+ z 0
v− 0 0 w−

⎞
⎟⎠, (C4)

where w± = 1 ± (〈Zm〉 + 〈Zn〉) + 〈ZmZn〉, z = 1 −
〈ZmZn〉, and v± = 〈XmXn〉 ± 〈YmYn〉.

The correlation functions in the dual lattice read

〈Zm〉 = 〈
σy

mσ
y

m+1

〉
, (C5)

〈ZmZn〉 = 〈
σy

mσ
y

m+1σ
y
n σ

y

n+1

〉
, (C6)

〈YmYn〉 =
〈

m∏
l=1

(
σ z

l

) n∏
j=1

(
σ z

j

)〉

= 〈
σ z

m+1σ
z
m+2 · · · σ z

n

〉
, (C7)

〈XmXn〉 =
〈

n−1∏
l=m

(
σ

y

l σ z
l+1σ

y

l+2

)〉
, (C8)

which can be calculated by applying the Wick theorem and the
transformation

σx
n = An

n−1∏
l=1

AlBl, (C9)

σy
n = −iBn

n−1∏
l=1

AlBl, (C10)

σ z
n = −AnBn, (C11)

The operators An and Bm satisfy

〈AmAn〉 = δmn, 〈BmBn〉 = −δmn, (C12)

and

〈AmBn〉 = GR = − 1

π

∫ π

0
dk cos(Rk − θk ), (C13)

where R = |m − n| and θk is given in the Eq. (3) of the main
text.

For instance, in the case of R = 2,

〈Zm〉 = 〈Zn〉 = G1, (C14)

〈XmXm+2〉 = 〈AmBm+2Am+1Bm+3〉
= G2

2 − G3G1, (C15)

〈YmYm+2〉 = 〈AmBmAm+1Bm+1〉
= G2

0 − G1G−1, (C16)

〈ZmZm+2〉 = 〈AmBm+1Am+2Bm+3〉
= G2

1 − G3G−1. (C17)
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