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It is known that there exist sets of pure orthogonal product states which cannot be perfectly distinguished by
local operations and classical communication (LOCC). Such sets are nonlocal sets which exhibit nonlocality
without entanglement. These nonlocal sets can be completable or uncompletable. In this work both completable
and uncompletable small nonlocal sets of multipartite orthogonal product states are constructed. Apart from
nonlocality, these sets have other interesting properties. In particular, the completable sets lead to the construction
of a class of complete orthogonal product bases with the property that if such a basis is given then no state
can be eliminated from that basis by performing orthogonality-preserving measurements. On the other hand, an
uncompletable set of the present kind contains several Shifts unextendible product bases (UPBs) that belong to
qubit subspaces. Identifying these subspace UPBs, it is possible to obtain a class of high-dimensional multipartite
bound entangled states. Finally, it is shown that a two-qubit maximally entangled Bell state shared between any
two parties is sufficient as a resource to distinguish the states of any completable set (of the above kind) perfectly
by LOCC. This constitutes an example where the amount of entanglement, sufficient to accomplish the aforesaid
task, depends neither on the dimension of the individual subsystems nor on the number of parties.
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I. INTRODUCTION

In quantum information processing protocols, classical
information is encoded within the state of a quantum system.
Therefore, it is necessary to determine the state of a system
in order to extract information. In this sense, after information
encoding, it is required to discriminate among the possible
states of a given system to decode that information. If the
possible states of a given system are pairwise orthogonal to
each other then the state of that system can in principle be
determined perfectly by performing a suitable measurement
on the whole system. Nevertheless, if the constituent parts
(subsystems) of a composite quantum system are distributed
among several spatially separated parties then it is not pos-
sible to perform measurements on the whole system. Such
a constraint allows the parties to perform any sequence of
quantum operations only on their individual subsystems and
to make strategies they can communicate with each other
classically. This class of operations on a distributed quantum
system is commonly known as local operations and classical
communication (LOCC).

It is an established fact that the set of operations on a
distributed quantum system which can be implemented by
LOCC is a strict subset of all physically realizable quantum
operations on the whole system. Thus, after information encod-
ing the task of determining the state of a distributed quantum
system perfectly by LOCC is not always possible even if the
possible states of the system are pairwise orthogonal to each
other. However, to study various properties of any composite
quantum system, distributed among several spatially separated
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parties, LOCC plays a crucial role. Hence, to explore the
properties of distributed quantum systems and to implement
information processing tasks via distributed quantum systems,
it is highly important to determine the states of such systems
by LOCC. This particular task of determining the unknown
state of a distributed quantum system by LOCC when a
set of possible states is given is known as the LOCC state
discrimination problem or local state discrimination problem
(LSDP).

The LSDP, as it is understood now, was first considered by
Peres and Wootters [1]. During the last couple of decades, the
LSDP has gotten considerable attention [2–13]. For a given set
of pairwise orthogonal quantum states, if it is not possible to
distinguish all the states perfectly by LOCC then the states
are locally indistinguishable and the set is called a locally
indistinguishable set or a nonlocal set. On the contrary, for
a given set of pairwise orthogonal quantum states, if it is
possible to distinguish all the states perfectly by LOCC then
the states are locally distinguishable and the set is called a
locally distinguishable set. If a nonlocal set forms a basis in
a particular Hilbert space corresponding to a given quantum
system then the set is said to be a nonlocal basis. Nonlocal sets
have also found practical applications in data hiding [14,15],
quantum secret sharing [16], etc.

Due to the discovery of quantum nonlocality without en-
tanglement by Bennett et al. [17], it is now understood that
product states can also lead to local indistinguishability. In the
paper just cited, the authors constructed two distinct nonlocal
sets of orthogonal product states, forming complete bases in
C3 ⊗ C3 and in C2 ⊗ C2 ⊗ C2. Clearly, these bases constitute
nonlocal separable operations, that is, separable operations
which cannot be implemented by LOCC, though it is true that
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all quantum operations that can be implemented by LOCC are
necessarily separable. In general, a nonlocal set of orthogonal
product states that can be extended to a complete orthogonal
product basis (COPB) always corresponds to a separable
operation that cannot be realized by LOCC. In this context,
it is important to mention that the mathematical structure of
LOCC is still to be completely understood while separable
operations are rich with mathematical structure. Again, if a
quantum operation on a composite quantum system cannot be
implemented by separable operations then that task must not be
implemented by LOCC. This implies an important significance
of exploring different types of separable operations.

There are other types of sets of pure orthogonal product
states, i.e., unextendible product bases (UPBs), uncompletable
product bases (UCPBs), strongly uncompletable product bases
(SUCPBs). The details regarding these sets can be found in
Refs. [18,19]. These sets cannot be extended to COPBs. In
fact, the orthogonal states of a UPB or that of an SUCPB cannot
be perfectly distinguished by LOCC, whereas the orthogonal
states within a UCPB cannot be perfectly distinguished by
local projective measurements and classical communication
[19]. Again, an important property of a UPB is that it leads
to the generation of a bound entangled state [18,19], a mixed
entangled state from which no pure entangled state can be
obtained by LOCC even if an arbitrary number of identical
copies of the state are given. Examples of such states were first
constructed in Ref. [20]. Since then there has been no easy
technique to detect bound entangled states. Therefore, con-
structing different classes of bound entangled states is always
a nontrivial task. In the following paragraph a few important
results regarding different nonlocal sets of orthogonal product
states are discussed.

After the discovery of nonlocal COPBs by Bennett et al.,
certain useful techniques were developed [21,22] to prove the
nonlocality of those COPBs. There are many other papers
[23–48] in which nonlocal sets of orthogonal product states
(OPSs) were constructed and different properties of such sets
were studied. But multipartite systems are less explored with
respect to the bipartite systems. This is in a sense that, apart
from multipartite UPBs, mainly various structures of other
nonlocal sets were studied. In Ref. [24], different classes
of m-partite nonlocal sets of OPSs were constructed, where
the dimension of any subsystem is dependent on the number
of parties. Later [26,28], local distinguishability and indis-
tinguishability of the OPSs which belong to C2 ⊗ C2 ⊗ C2

were extensively studied. In Refs. [30,32], nonlocal COPBs
were constructed, where the OPSs are associated with Cd ⊗
Cd ⊗ Cd . Xu et al. showed that there exists a small nonlocal
set of m-partite OPSs with only 2m members in (C2)⊗m

[37]. In Ref. [40], both bipartite and multipartite UPBs were
presented. Furthermore, in Refs. [41–43,46], other forms of
nonlocal sets of multipartite OPSs were shown. However, in
this work not only distinct nonlocal sets of multipartite OPSs
are introduced but also a few interesting properties of such sets
are investigated.

Another direction of research is to explore entanglement as a
resource to distinguish quantum states of nonlocal sets [49–58]
by LOCC. In particular, the problem of distinguishing product
states of given nonlocal sets by LOCC using entanglement
as a resource was considered in Refs. [50,56,58]. In Ref. [50],

Cohen constructed entanglement-assisted local protocols (pro-
tocols implementable by LOCC) to distinguish the orthog-
onal product states of several unextendible product bases.
Later [56], separate entanglement-assisted local protocols were
constructed to distinguish the states of a class of nonlocal
bipartite COPBs. Recently [58], the problem of product state
discrimination by LOCC was considered, where multiple
copies of a maximally entangled state in C2 ⊗ C2 are used
as resource. Nonetheless, the present result of entanglement-
assisted product state discrimination by LOCC is different form
the existing results, and the resource state in this scenario is
used quite efficiently.

The remaining portion of this paper is arranged as follows.
In Sec. II, necessary definitions and other preliminary concepts
are presented. The forms of completable and uncompletable
small nonlocal sets, associated with a three-qutrit, tripartite
quantum system, are shown in Sec. III. In the same section,
a few interesting properties of those sets are also discussed.
Multipartite generalization of such sets is given in Sec. IV.
Next, in Sec. V, an entanglement-assisted product state dis-
crimination protocol is constructed to distinguish the states of
any completable set of the present kind by LOCC. Finally, the
conclusion is drawn in Sec. VI with some open problems for
further studies.

II. PRELIMINARIES

Before presenting the definitions, it is important to men-
tion that, like other works on multipartite quantum systems
[24,26,28,30,32,37,40–43,46], in this work also only multi-
partite pure orthogonal fully separable states are considered
and the states within a set are equally probable. The parties
who are holding the subsystems are spatially separated and,
thus, they are restricted to perform LOCC only. In a local
discrimination protocol, there could be several rounds and,
to complete such a protocol successfully, it is necessary to
eliminate states of a given set by LOCC in several rounds. Here
the product states are pairwise orthogonal to each other and
thus it is quite relevant to consider the perfect discrimination
of such product states. Note that in a multiround protocol it is
necessary to preserve the orthogonality of the states after each
round to distinguish the states perfectly.

In quantum theory, a measurement on a system of dimension
d can be expressed by a set of positive operator-valued
measure (POVM) elements {πl}. Such elements satisfy the
completeness relation, that is,

∑
l πl = Id×d , where Id×d is

a d × d identity matrix.
Definition 1. While distinguishing an unknown state of a

given set, if all POVM elements of a measurement are propor-
tional to the identity matrix then such a measurement is said
to be a trivial measurement since such a measurement is not
efficient to extract information useful for state discrimination.
On the other hand, if not all POVM elements of a measurement
are proportional to the identity matrix then the measurement
is said to be a nontrivial measurement.

Definition 2. Consider a measurement to distinguish a fixed
set of pairwise orthogonal quantum states. After performing
that measurement, if the postmeasurement states are also
pairwise orthogonal to each other then such a measurement
is said to be an orthogonality-preserving measurement.
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Suppose a set of multipartite orthogonal quantum states
is given. If no party is able to begin with a nontrivial
orthogonality-preserving measurement then it is not possible to
eliminate any state from the given set keeping the postmeasure-
ment states orthogonal to each other. In fact, this guarantees
nonlocality of the given set. This fact follows directly from the
arguments given in Refs. [21,22].

Definition 3. Consider an m-partite quantum system H =
⊗m

i=1Hi . Also consider a set S ∈ H of pure orthogonal product
states. The set S constitutes a COPB if it spans H while the set
S is said to be an incomplete orthogonal product basis (ICOPB)
if it spans a subspace HS of H.

Definition 4. An ICOPB in a fixed Hilbert space H consti-
tutes a UCPB if the complementary subspace H⊥

S contains a
smaller number of pure orthogonal product states with respect
to its dimension. On the other hand, an ICOPB is completable
if the complementary subspace H⊥

S is spanned by a set of
orthogonal product states.

Definition 5. Assume that an ICOPB is given. It is said to
be a UPB if there is no product state in the complementary
subspace H⊥

S .
Consider a set S of pure orthogonal product states

{|ψk〉}nk=1 ∈ H = ⊗m
i=1Hi . Suppose this set constitutes an

unextendible product basis and it spans HS of H. Then, the
normalized projector onto the complementary subspace H⊥

S is
given by

ρ = 1

D − n

(
I −

n∑
k=1

|ψk〉〈ψk|
)

, (1)

where D is the net dimension ofH andI is the identity operator
onto H. The state ρ is an entangled state with positive partial
transpose in each bipartition, that is, a multipartite bound
entangled state [18]. Next, the definition of another type of
product basis is presented.

Definition 6. Suppose a UCPB is given in a fixed Hilbert
space H. This UCPB is said to be an SUCPB if it cannot be
completable in any locally extended Hilbert space Hext, where
Hext = ⊗m

i=1(Hi ⊕ H′
i ).

Note that for a given Hilbert space a UPB is an obvious
example of an SUCPB but an SUCPB may not be a UPB.
However, here the definitions of UCPB, UPB, and SUCPB are
given according to Refs. [18,19].

III. TRIPARTITE SYSTEM

Consider a tripartite quantum system associated with a
Hilbert space H = (C3)⊗3. In the following, an explicit
construction of a small set S of pure orthogonal product
states {|ψk〉} ∈ H = (C3)⊗3 is presented with k = 1, . . . , 12.
To normalize the states of this section, consider |a ± b〉 ≡
(1/

√
2)(|a〉 ± |b〉) for a, b = 0, 1, 2. The states are given by

|ψ1〉 = |0〉|1〉|0 + 1〉, |ψ2〉 = |0〉|1〉|0 − 1〉,
|ψ3〉 = |0〉|2〉|0 + 2〉, |ψ4〉 = |0〉|2〉|0 − 2〉,
|ψ5〉 = |1〉|0 + 1〉|0〉, |ψ6〉 = |1〉|0 − 1〉|0〉,
|ψ7〉 = |2〉|0 + 2〉|0〉, |ψ8〉 = |2〉|0 − 2〉|0〉,
|ψ9〉 = |0 + 1〉|0〉|1〉, |ψ10〉 = |0 − 1〉|0〉|1〉,

|ψ11〉 = |0 + 2〉|0〉|2〉, |ψ12〉 = |0 − 2〉|0〉|2〉. (2)

Clearly, the set S does not form a COPB in H = (C3)⊗3

but it is possible to extend this set to a COPB by considering
suitable product states (pairwise orthogonal). One such choice
is given by

|0〉|0〉|0〉, |0〉|1〉|2〉, |0〉|2〉|1〉, |1〉|0〉|2〉, |1〉|1〉|1〉,
|1〉|1〉|2〉, |1〉|2〉|0〉, |1〉|2〉|1〉, |1〉|2〉|2〉, |2〉|0〉|1〉,
|2〉|1〉|0〉, |2〉|1〉|1〉, |2〉|1〉|2〉, |2〉|2〉|1〉, |2〉|2〉|2〉. (3)

The states of the setS and that of the above equation together
form a COPB in H = (C3)⊗3. However, this set leads to an
interesting property which is given in the following theorem.

Theorem 1. Let B be a complete orthogonal product basis
in a three-qutrit, tripartite Hilbert space. Then no state from
B can be eliminated by performing orthogonality-preserving
measurements if B contains S .

Proof. To prove the above, first it is shown that the states of
the setS allow each party to perform only trivial measurements
on an entire three-dimensional subsystem if they want to
preserve the orthogonality of the states.

Assume that the first party performs a measurement on his
(or her) three-dimensional subsystem. Suppose this measure-
ment is defined by a set of POVM elements {πl},

∑
l πl =

I3×3. The matrix form of πl = M
†
l Ml can be written in the

{|0〉, |1〉, |2〉} basis and it is given by

πl = M
†
l Ml =

⎛
⎜⎝

e00 e01 e02

e10 e11 e12

e20 e21 e22

⎞
⎟⎠. (4)

If this measurement is orthogonality preserving then after the
measurement by the first party the postmeasurement states re-
mains pairwise orthogonal to each other. So, the states {(Ml ⊗
I ⊗ I )|ψk〉, k = 1, . . . , 12} must be orthogonal to each other.
Setting the inner product of the postmeasurement states (Ml ⊗
I ⊗ I )|ψ5〉 and (Ml ⊗ I ⊗ I )|ψ7〉 equals to zero, it is found
that 〈1|M†

l Ml|2〉 = e12 = 〈2|M†
l Ml|1〉 = e21 = 0. Similarly,

considering the inner product of the postmeasurement states
(Ml ⊗ I ⊗ I )|ψ1〉 and (Ml ⊗ I ⊗ I )|ψ5〉, it turns out that
e01 = e10 = 0. Again, the inner product of the postmeasure-
ment states (Ml ⊗ I ⊗ I )|ψ3〉, (Ml ⊗ I ⊗ I )|ψ7〉 results in
e02 = e20 = 0. In this way, it is proved that all off-diagonal
entries of the above matrix are zero.

Now, considering the inner product of the postmeasurement
states (Ml ⊗ I ⊗ I )|ψ9〉 and (Ml ⊗ I ⊗ I )|ψ10〉 it is found
that 〈0 + 1|M†

l Ml|0 − 1〉 = 0 and this implies that e00 = e11.
Similarly, taking the inner product of (Ml ⊗ I ⊗ I )|ψ11〉 and
(Ml ⊗ I ⊗ I )|ψ12〉, it turns out that e00 = e22. So, e00 = e11 =
e22, i.e., all diagonal entries of the above matrix are equal.

So, the POVM elements {πl} that define the measurement
for the first party are all proportional to a 3×3 identity matrix.
This implies that the first party can perform only trivial
measurements if he (or she) wants to preserve the orthogonality
of the states.

Notice that there is a symmetry present in the states of
the set S . For instance, if the order of the subsystems is
rearranged in a way that the third party holds the subsystem
of the first party, the second party holds the subsystem of
the third party, and the first party holds the subsystem of the
second party, then the states |ψ1〉 and |ψ2〉 are mapped to
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|ψ5〉 and |ψ6〉, respectively. Applying the same rearrangement
rules, the following transformations are obtained: |ψ5〉 →
|ψ9〉, |ψ6〉 → |ψ10〉, |ψ9〉 → |ψ1〉, |ψ10〉 → |ψ2〉, |ψ3〉 →
|ψ7〉, |ψ4〉 → |ψ8〉, |ψ7〉 → |ψ11〉, |ψ8〉 → |ψ12〉, |ψ11〉 →
|ψ3〉, and |ψ12〉 → |ψ4〉. Because of this symmetry, if one
party cannot start with a nontrivial orthogonality-preserving
measurement then the other parties cannot either. So, the states
of the set S allow each party to start with only a trivial
orthogonality-preserving measurement on their subsystems
and this holds true for any basis B if S is fully contained in B.

Again, to eliminate any state from B by performing an
orthogonality-preserving measurement, it is necessary that
at least one party can start with a nontrivial measurement
which also preserves the orthogonality of the states. In this
sense, as no party can start with a nontrivial orthogonality-
preserving measurement then it guarantees that no state from
B can be eliminated by performing orthogonality-preserving
measurements. This completes the proof. �

Obviously, the states of the set S constitute a sufficient
condition for the basis B such that no state from this basis
can be eliminated by performing orthogonality-preserving
measurements. From the above discussion, it is also prominent
that the states ofS cannot be perfectly distinguished by LOCC.
This is because of the fact that for local distinguishability
it is necessary to eliminate state(s) of a given set, which is
not possible in the present scenario. In this way, Theorem 1
provides a sufficient condition but not a necessary one for
local indistinguishability of the states within the basis B in
a three-qutrit tripartite Hilbert space. This particular notion is
represented by the following corollary.

Corollary 1. Let B′ be a complete orthogonal product
basis in a three-qutrit tripartite Hilbert space. If no state from
B′ can be eliminated by performing orthogonality-preserving
measurements then the states of B′ cannot be perfectly dis-
tinguished by local operations and classical communication,
though the converse is not always true.

In support of the above corollary, a COPBB′ inH = (C3)⊗3

is constructed from which certain states can be eliminated by
performing an orthogonality-preserving measurement, though
it is true that all the states of such a basis cannot be perfectly
distinguished by LOCC.

Consider the states {|ψ1〉, |ψ2〉, |ψ5〉, |ψ6〉, |ψ9〉, |ψ10〉}
of the set S . It is known that these states cannot be perfectly
distinguished by LOCC [37]. Thus, if a COPB B′ contains
these states along with other product states then the basis must
be a nonlocal basis. In order to construct such a basis B′ in
H = (C3)⊗3, consider the following set of product states:

|0〉|0〉|0〉, |0〉|0〉|2〉, |0〉|1〉|2〉,
|0〉|2〉|0〉, |0〉|2〉|1〉, |0〉|2〉|2〉,
|1〉|0〉|2〉, |1〉|1〉|1〉, |1〉|1〉|2〉,
|1〉|2〉|0〉, |1〉|2〉|1〉, |1〉|2〉|2〉,
|2〉|0〉|0〉, |2〉|0〉|1〉, |2〉|0〉|2〉,
|2〉|1〉|0〉, |2〉|1〉|1〉, |2〉|1〉|2〉,
|2〉|2〉|0〉, |2〉|2〉|1〉, |2〉|2〉|2〉. (5)

The product states given above and the product states {|ψk〉}
of S with k = 1, 2, 5, 6, 9, 10 together form a COPB B′ in

H = (C3)⊗3. Interestingly, it is possible to define a nontriv-
ial and orthogonality-preserving measurement by which the
parties are able to eliminate certain states from B′. The states
given in the previous equation excluding two states |0〉|0〉|0〉
and |1〉|1〉|1〉 can be eliminated from B′. This can be done
by performing a two-outcome projective measurement, and
corresponding measurement operators are given by

π1 = |0〉〈0| + |1〉〈1|, π2 = |2〉〈2|. (6)

This measurement can be performed by all three parties. In
particular, if the measurement outcome is “2” due to the
measurement by any of the parties then the state of the system
can be perfectly determined by LOCC. Now, consider a three-
qubit subspace V spanned by the following states:

|0〉|0〉|0〉, |0〉|0〉|1〉, |0〉|1〉|0〉, |0〉|1〉|1〉,
|1〉|0〉|0〉, |1〉|0〉|1〉, |1〉|1〉|0〉, |1〉|1〉|1〉. (7)

Clearly, the states of the basis B′ that belong to the sub-
space V cannot be perfectly distinguished by LOCC. This
is solely because of the twisted states {|ψk〉} of S with k =
1, 2, 5, 6, 9, 10. So, the basis B that contains S displays an ad-
ditional feature besides just showing local indistinguishability
of the states.

Consider another small set S ′. This set contains only seven
pure orthogonal product states {|ψk〉} ∈ H = (C3)⊗3 with k =
1, . . . , 7. These states are given by

|ψ1〉 = |1〉|0 − 1〉|0 + 1〉, |ψ2〉 = |0 + 1〉|1〉|0 − 1〉,
|ψ3〉 = |0 − 1〉|0 + 1〉|1〉, |ψ4〉 = |2〉|0 − 2〉|0 + 2〉,
|ψ5〉 = |0 + 2〉|2〉|0 − 2〉, |ψ6〉 = |0 − 2〉|0 + 2〉|2〉,
|ψ7〉 = |0〉|0〉|0〉. (8)

Notice that the states {|ψ1〉, |ψ2〉, |ψ3〉, |ψ7〉} ensure the fact
that there is no other fully separable state which is orthogonal
to these states and also belongs to the subspace V (defined
earlier). In this sense, the states {|ψ1〉, |ψ2〉, |ψ3〉, |ψ7〉}
together behave like a Shifts UPB [18,19] residing in the
three-qubit subspace V . If the states {|ψk〉} with k = 1, 2, 3, 7
span VS of V then V⊥

S must be an entangled subspace, where
V = VS ⊕ V⊥

S and the normalized projector ρ onto V⊥
S must

be a tripartite bound entangled state. Now, consider another
three-qubit subspace V ′ which is spanned by

|0〉|0〉|0〉, |0〉|0〉|2〉, |0〉|2〉|0〉, |0〉|2〉|2〉,
|2〉|0〉|0〉, |2〉|0〉|2〉, |2〉|2〉|0〉, |2〉|2〉|2〉. (9)

In the same way, as described before, the states {|ψk〉} with
k = 4, . . . , 7 together behave like a Shifts UPB residing in
the three-qubit subspace V ′. If the states {|ψk〉} with k =
4, . . . , 7 span V ′

S of V ′ then V ′⊥
S must be another entangled

subspace, where V ′ = V ′
S ⊕ V ′⊥

S and the normalized projector
ρ ′ onto V ′⊥

S is another tripartite bound entangled state. Note
that the subspaces V and V ′ are not completely disjoint. In
particular, VS and V ′

S have one-dimensional overlap with each
other. However, with the help of ρ and ρ ′, it is possible to define
a new class of tripartite bound entangled states given by

σ (λ) = λρ + (1 − λ)ρ ′, (10)
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where λ takes values between 0 and 1. The states σ (λ)
are supported in V⊥

S ⊕ V ′⊥
S which is an entangled subspace.

Therefore, the states σ (λ) must be entangled states. Again,
a convex combination of two bound entangled states cannot
lead to distillable entanglement. Hence, the states σ (λ) must
be bound entangled states. In this context it is important to
mention that both ρ and ρ ′ are separable in the bipartitions
[19]. This results that the states σ (λ) are also separable in the
bipartitions.

Clearly, it is not possible to extend the set S ′ to a COPB
in H = (C3)⊗3 as this set S ′ contains several UPBs residing
in the subspaces V and V ′. Thus, it is obvious that the states
of S ′ cannot be perfectly distinguished by LOCC. This is
because of the fact that the states within a UPB cannot be
perfectly distinguished by LOCC [18]. Moreover, the set S ′
constitutes an SUCPB because those subspace UPBs lead to
the uncompletability in any locally extended Hilbert space.

In the next section, both the sets S and S ′ are generalized
for an arbitrary number of parties with high-dimensional
subsystems and then different properties of these small sets
are explored.

IV. MULTIPARTITE SYSTEM

Consider a multipartite quantum system associated with a
Hilbert space H = (Cd )⊗m (d � 3, m � 3), where m is the
number of parties and each party holds a d-dimensional sub-
system. In the following, a set S of 2m(d − 1) pure orthogonal
m-partite product states in H = (Cd )⊗m is constructed. To
normalize the states consider |0 ± i〉 ≡ (1/

√
2)(|0〉 + |i〉) for

i = 1, . . . , (d − 1). The states are given by

|ψ1i〉 = |0〉|0〉 · · · |0〉|i〉|0 + i〉,
|ψ⊥

1i 〉 = |0〉|0〉 · · · |0〉|i〉|0 − i〉,
|ψ2i〉 = |0〉 · · · |0〉|i〉|0 + i〉|0〉,
|ψ⊥

2i 〉 = |0〉 · · · |0〉|i〉|0 − i〉|0〉,
...

|ψmi〉 = |0 + i〉|0〉|0〉 · · · |0〉|i〉,
|ψ⊥

mi〉 = |0 − i〉|0〉|0〉 · · · |0〉|i〉. (11)

It is possible to extend the set S to a COPB in H = (Cd )⊗m.
For this purpose, consider a different COPB B in H= (Cd )⊗m.
The form of the product states contained in B is given by
|b1〉|b2〉 · · · |bm〉, where bi = 0, . . . , (d − 1). Next, consider a
different set of orthogonal product states S in H = (Cd )⊗m,
given by

|0〉|0〉 · · · |0〉|i〉|0〉, |0〉|0〉 · · · |0〉|i〉|i〉,
|0〉 · · · |0〉|i〉|0〉|0〉, |0〉 · · · |0〉|i〉|i〉|0〉,

...

|0〉|0〉|0〉 · · · |0〉|i〉, |i〉|0〉|0〉 · · · |0〉|i〉, (12)

where i = 1, . . . , (d − 1). Notice that both the sets S and
S span the same subspace H′ of H = (Cd )⊗m. Now, define
another set of product states as S′ = B − S. The states of the
set S and that of S′ together form a COPB in H = (Cd )⊗m.
Make a note that if one puts m = d = 3 then the setS is exactly

the same as that of S (defined in the previous section), only
the states are labeled differently. However, the set S leads to
an interesting property which is captured by the next theorem.
This theorem can be regarded as the generalized version of
Theorem 1.

Theorem 2. Let B be a complete orthogonal product basis
in an m-qudit, m-partite Hilbert space. Then no state from
B can be eliminated by performing orthogonality-preserving
measurements if B contains S.

Proof. To prove the above, it is sufficient to show that the
states of the set S allow each party to perform only trivial
measurements on an entire d-dimensional subsystem if they
want to preserve the orthogonality of the states. This argument
follows from the proof of Theorem 1.

Now, assume that the (m − 1)th party performs a measure-
ment defined by a set of POVM elements {πl}; πl = M

†
l Ml and∑

l πl = Id×d . Each πl can be represented by a d × d matrix
written in the {|0〉, |1〉, . . . , |d − 1〉} basis as the following:

πl = M
†
l Ml =

⎛
⎜⎜⎜⎜⎝

e00 e01 . . . e0,d−1

e10 e11 . . . e1,d−1

...
...

. . .
...

ed−1,0 ed−1,1 . . . ed−1,d−1

⎞
⎟⎟⎟⎟⎠. (13)

If this measurement preserves the orthogonality of the states
then the postmeasurement states must be pairwise orthogonal
to each other. Now, setting the inner product 〈ψ1i |I ⊗ I ⊗
· · · ⊗ M

†
l Ml ⊗ I|ψ1i ′ 〉 = 0, it is found that 〈i|M†

l Ml|i ′〉 =
0, or eii ′ = 0 with i, i ′ = 1, . . . , (d − 1) and i �= i ′. These
eii ′ are the off-diagonal entries of the above matrix. Next,
consider the states |ψ1i〉 and |ψmi〉. The inner product 〈ψmi |I ⊗
I ⊗ · · · ⊗ M

†
l Ml ⊗ I|ψ1i〉 must be zero and it turns out that

〈0|M†
l Ml|i〉 = e0i = ei0 = 0 for i = 1, . . . , (d − 1). Thus, all

the off-diagonal entries of the above matrix are zero.
Next, it is shown that the diagonal entries of the above matrix

are all the same. For this purpose, consider the states |ψ2i〉 and
|ψ⊥

2i 〉. Again, the inner product 〈ψ2i |I ⊗ I ⊗ · · · ⊗ M
†
l Ml ⊗

I|ψ⊥
2i 〉 = 0 and it is found that 〈0 + i|M†

l Ml|0 − i〉 = 0, or
e00 = eii . Hence, the diagonal entries of the above matrix are
all the same.

In this way, it is proved that the POVM elements that define
the measurement for the (m − 1)th party are proportional to a
d × d identity matrix. So, the (m − 1)th party performs only
trivial measurements.

Similarly, it can be shown that all other parties can perform
only trivial measurements if they want to preserve the orthog-
onality of the states. This is because of the symmetry present
in the states of the set S. Here the proof completes. �

For any COPB B ∈ H = (Cd )⊗m that contains all the states
of the set S, it is straightforward from Theorem 2 that the
states of B cannot be perfectly distinguished by LOCC. If
the construction is restricted up to a bipartite system, then
there exists a set of 4(d − 1) product states that cannot be
distinguished by LOCC. Precise construction of such a set is
given in Ref. [32]. Again, Walgate et al. showed that there does
not exist a product basis in C2 ⊗ C2 which is a nonlocal basis
[22]. When the number of parties m � 3, and every party holds
a qubit, then there are 2m product states in (C2)⊗m that cannot
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be perfectly distinguished by LOCC. Such a class of nonlocal
sets is constructed in Ref. [37]. Next, the generalized version
of the uncompletable set is presented.

Consider a setS′ of m-partite orthogonal product states inH
= (Cd )⊗m (d � 3, m � 3). Note that here m is an odd number
and can be considered as 2p + 1. The states are given by

|φ1i〉 = |i〉|α1〉|α2〉 · · · |αp〉|α⊥
p 〉 · · · |α⊥

2 〉|α⊥
1 〉,

|φ2i〉 = |α⊥
1 〉|i〉|α1〉|α2〉 · · · |αp〉|α⊥

p 〉 · · · |α⊥
2 〉,

...

|φmi〉 = |α1〉|α2〉 · · · |αp〉|α⊥
p 〉 · · · |α⊥

2 〉|α⊥
1 〉|i〉,

|φ′〉 = |0〉|0〉 · · · |0〉, (14)

i = 1, . . . , (d − 1), and the length of the set is m(d − 1) + 1.
The states |αr〉 and |αs〉 for all r �= s are chosen to be neither
orthogonal nor identical. Also, |αr〉 is a linear combination of
the states |0〉 and |i〉 for all r . Clearly, for a fixed value of i, the
states {|φ1i〉, |φ2i〉, · · · , |φmi〉, |φ′〉} form an m-partite Shifts
UPB residing in a 2m-dimensional subspace spanned by

|0〉 · · · |0〉|0〉, |0〉 · · · |0〉|i〉,
|0〉 · · · |i〉|0〉, |0〉 · · · |i〉|i〉,

...
...

|0〉|i〉 · · · |i〉|i〉, |i〉 · · · |i〉|i〉. (15)

Hence, there is a total of (d − 1) subspace UPBs for
different values of i. All these UPBs have one-dimensional
overlap and, thus, are consistent with the total number of
states m(d − 1) + 1 of the set S′. With respect to each UPB,
residing in an m-qubit subspace, one can assign an m-partite
bound entangled state and, following the earlier method, one
can define a (d − 2)-parameter family of bound entangled
states. Furthermore, these subspace UPBs certify the local
indistinguishability of the states within the set S′ and also the
uncompletability in any locally extended Hilbert space.

V. DISCRIMINATION PROTOCOL

In this section an entanglement-assisted local protocol is
constructed to discriminate the states of the nonlocal com-
pletable set S as given in the previous section. Note that
the normalization constants do not play any key role in the
discrimination protocol. So, these constants are ignored for
simplicity in this entire section. As mentioned earlier, the
mathematical structure of LOCC is still not clear and hence
it is difficult to prove local distinguishability of a given set
unless one constructs an explicit local protocol. This is why
construction of a local protocol is so important.

Theorem 3. A two-qubit, bipartite maximally entangled Bell
state as a resource is sufficient to distinguish the states of the set
S by means of local operations and classical communication.

Proof. To prove the above, it is required to build a local
protocol by which the discrimination of the states of the afore-
mentioned set S is possible using a maximally entangled Bell
state |φ+〉 = (|00〉 + |11〉) ∈ C2 ⊗ C2 as a resource. Assume
that the resource state is shared between the (m − 1)th and
the mth party. So, the last two parties hold two qubits each.

The states of the set S along with the resource state |φ+〉 are
presented by

|0〉 · · · |0〉(|i0〉|00 + i0〉 + |i1〉|01 + i1〉),

|0〉 · · · |0〉(|i0〉|00 − i0〉 + |i1〉|01 − i1〉),

|0〉 · · · |i〉(|00 + i0〉|00〉 + |01 + i1〉|01〉),

|0〉 · · · |i〉(|00 − i0〉|00〉 + |01 − i1〉|01〉),

...

|i〉|0 + i〉|0〉 · · · |0〉(|00〉|00〉 + |01〉|01〉),

|i〉|0 − i〉|0〉 · · · |0〉(|00〉|00〉 + |01〉|01〉),

|0 + i〉|0〉 · · · |0〉(|00〉|i0〉 + |01〉|i1〉),

|0 − i〉|0〉 · · · |0〉(|00〉|i0〉 + |01〉|i1〉). (16)

Next, the discrimination protocol is described step by step:
(i) First of all, the mth party does a two-outcome projec-

tive measurement while corresponding measurement opera-
tors are given by M

(m)
1 = |00〉〈00| + ∑

i |i1〉〈i1| and M
(m)
2 =

|01〉〈01| + ∑
i |i0〉〈i0|. After performing the measurement,

if the measurement outcome is “1,” then the above set is
transformed to the following set:

|0〉 · · · |0〉(|i0〉|00〉 + |i1〉|i1〉),

|0〉 · · · |0〉(|i0〉|00〉 − |i1〉|i1〉),

|0〉 · · · |0〉|i〉|00 + i0〉|00〉,
|0〉 · · · |0〉|i〉|00 − i0〉|00〉,

...

|i〉|0 + i〉|0〉 · · · |0〉|00〉|00〉,
|i〉|0 − i〉|0〉 · · · |0〉|00〉|00〉,
|0 + i〉|0〉|0〉 · · · |0〉|01〉|i1〉,
|0 − i〉|0〉|0〉 · · · |0〉|01〉|i1〉. (17)

(ii) Then, the (m − 1)th party performs a two-outcome pro-
jective measurement and the corresponding measurement op-
erators are given by M

(m−1)
1 = |01〉〈01|, M (m−1)

2 = |00〉〈00| +∑
i (|i0〉〈i0| + |i1〉〈i1|). After this measurement if the mea-

surement outcome is “1” then the states of the last two rows
of the previous equation get eliminated. These states can be
distinguished further by following two easy steps: the mth
party performs a (d − 1)-outcome projective measurement on
his (or her) system. For each measurement outcome, there are
two orthogonal states remaining which can be distinguished
perfectly by LOCC for sure according to Walgate et al. [2].

(iii) Now, go back to step (ii) again. If the measurement
outcome is “2” after the measurement by the (m − 1)th party
then the states of the first 2(m − 1) rows are left. To distinguish
these states, the first party does a projective measurement
defined by two measurement operators, M

(1)
1 = |0〉〈0| and

M
(1)
2 = ∑

i |i〉〈i|. Due to this measurement if the measurement
outcome is “1,” then the states of 2(m − 2) rows are left. If
the outcome is “2” here then the first party again performs
a (d − 1)-outcome projective measurement and, for every
outcome, two orthogonal states are to be distinguished further.
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After the first party, these measurements are also performed by
next (m − 3) parties, that is, excluding the (m − 1)th and mth
parties. This completes the distinguishability of all the states
except the states of the first two rows.

(iv) So, for the states of the first two rows, the (m − 1)th
party does a (d − 1)-outcome measurement where the cor-
responding measurement operators are M

′(m−1)
i = |i0〉〈i0| +

|i1〉〈i1|. For each i, there are two orthogonal states remaining
which can be distinguished further.

(v) Next, go back to step (i) again. If the measurement
outcome is “2” due to the measurement by the mth party then
there is another set of states like the set given in Eq. (17). This
set can be distinguished in the same way as described above.
In this way, the protocol completes. �

Recall that the resource state in the above protocol is shared
between the (m − 1)th and the mth party. But because of
the symmetry present within the states of the set S, it is
really not important which pair of parties holds the resource
state. From the above protocol it is also proved that the
amount of entanglement required to accomplish the task of
distinguishing the OPSs of S by LOCC does not depend
on the dimension of the subsystems. Again, it does not
depend on the number of parties either. So, in the above
protocol, entanglement is employed more efficiently than a
teleportation-based protocol. In this context, it is important to
mention that a teleportation-based protocol to distinguish the
OPSs of S requires (m − 1)log2d ebits. However, Theorem 3
exhibits the first ever example where the OPSs of a completable
set is distinguished so efficiently via an entanglement-assisted
local protocol. From the dimensional point of view, the present
resource is an optimal resource. But it is not known whether
a two-qubit nonmaximally entangled state can be employed
for the perfect discrimination of the states of S by LOCC
or not. This particular fact has also been pointed out before
in the context of distinguishing the states that belong to a
UPB [50]. Theorem 3 also depicts that, as long as the task
of distinguishing the states of the set S is concerned, there
exists at least one separable operation which can accomplish
this task perfectly and can be implemented by LOCC with the
help of a two-qubit maximally entangled Bell state as resource.

From the above it is clear that for a given nonlocal COPB if
the nonlocality of such a COPB is solely because of the states
of the set S then that COPB can be perfectly distinguished by
LOCC with the help of a two-qubit maximally entangled Bell
state shared between any two spatially separated parties. Note
that the present discrimination protocol does not work for all
uncompletable sets of this paper. Thus, it is yet to be known

which kind of entangled states are sufficient to distinguish the
states of the uncompletable sets.

VI. CONCLUSION AND OPEN PROBLEMS

In this paper, different classes of nonlocal sets of pure
orthogonal product states have been constructed for arbitrarily
high-dimensional multipartite quantum systems. These con-
structions are important for a better understanding about the
phenomenon quantum nonlocality without entanglement. In
particular, the completable nonlocal sets give insight regard-
ing the separable operations that are not implementable by
LOCC. As useful by-products of present nonlocal sets, a
class of COPBs has been introduced from which no state
can be eliminated by performing orthogonality-preserving
measurements and also a class of multipartite bound entangled
states has been introduced. After the present constructions,
one immediate open problem is to generalize these sets for
any high-dimensional multipartite quantum systems where the
parties do not hold the same dimensional subsystems. A local
protocol has also been constructed to distinguish the product
states of the completable sets using a two-qubit maximally
entangled Bell state as a resource. Nevertheless, it is quite
difficult to find out an optimal resource to distinguish the
states of a given set of product states by LOCC. Here are two
interesting open problems: The first is to find (if it is possible
to construct) a nonlocal orthogonal product basis for which a
teleportation-based protocol is an optimal protocol. Second,
the amount of entanglement required to realize a nonlocal
separable operation by LOCC is considered here while the task
is fixed; that is, the state discrimination task. So, if it is possible
to define a universal entanglement cost (task independent)
of separable operation then it will be interesting. In a given
Hilbert space, the sets constructed here are small sets; that
is, the number of states contained in a set is much less than
the net dimension of the Hilbert space. Hence, an essential
search in this direction is to find out the number of orthogonal
product states that is necessary to certify the fact that no state
can be eliminated from a set in a given Hilbert space by
performing orthogonality-preserving measurements. Explicit
constructions of such sets are also desired for any multipartite
quantum system.
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