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Constrained quantum annealing of graph coloring

Kazue Kudo*

Department of Computer Science, Ochanomizu University, Tokyo 112-8610, Japan

(Received 14 June 2018; published 1 August 2018; corrected 18 December 2018)

We investigate a quantum annealing approach based on real-time quantum dynamics for graph coloring. In this
approach, a driving Hamiltonian is chosen so that constraints are naturally satisfied without penalty terms and
the dimension of the Hilbert space is considerably reduced. The total Hamiltonian, which consists of driving and
problem Hamiltonians, resembles a disordered quantum spin chain. The ground state of the problem Hamiltonian
for graph coloring is degenerate. This degeneracy is advantageous and is characteristic of this approach. Real-time
quantum simulations in a small system demonstrate interesting results and provide some insight into quantum
annealing.
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I. INTRODUCTION

Quantum annealing (QA) [1–3], which is also known as
adiabatic quantum computation [4], is a quantum-mechanical
approach for optimization problems [5–10]. QA has attracted
considerable interest from a wide variety of fields since
experimental results by the first commercial quantum annealers
were reported [11]. In a QA framework, the Hamiltonian
consists of two parts: a problem Hamiltonian Hp and a driving
Hamiltonian Hd. The initial state is taken as the ground state of
Hd, which is supposed to be unique and easily prepared. The
total Hamiltonian is changed from Hd to Hp,

H (s) = sHp + (1 − s)Hd, (1)

where s(t ) is a time-dependent parameter and 0 � s � 1. The
QA process starts from s = 0 at t = 0 and ends with s = 1
at time t = T . If the process is adiabatic, the solution of an
optimization problem is obtained as the ground state of Hp.
The time required for an adiabatic process is proportional to
a polynomial of the inverse of the energy gap between the
ground and the first-excited states. A number of attempts to
avoid exponentially small energy gaps have been proposed for
accelerating an adiabatic process [4,12–14].

QA can be simulated by either a quantum Monte Carlo
(QMC) method or by solving the time-dependent Schrödinger
equation. The QMC method (the path-integral Monte Carlo
method, in particular) is often used as a QA approach. Although
relatively large systems can be simulated using this method,
the simulation dynamics do not represent true real-time quan-
tum evolution. In contrast, the time-dependent Schrödinger
equation provides true quantum dynamics. However, solving
the Schrödinger equation requires significantly more com-
putational resources than the QMC method. QA based on
real-time Schrödinger evolution has another difficulty in that
practical optimization problems often include constraints.
The standard approach to imposing constraints is to include
penalty terms in the problem Hamiltonian [15–19]. In real

*kudo@is.ocha.ac.jp

quantum devices, constraints are accommodated by using
minor embedding techniques [20,21]. These approaches are
often disadvantageous for QA performance. Recently, another
approach called constrained quantum annealing (CQA) was
proposed [22,23], and an extension of the approach called
quantum alternating operator ansatz was also proposed [24,25].
In the CQA approach, the driver Hamiltonian is chosen so
that it commutes with the constraint operators but not with
the problem Hamiltonian. This approach, which utilizes the
symmetry of the system, naturally restricts the Hilbert space
to a subspace with a considerably small dimension.

In this paper, we focus on graph coloring, which is one of the
optimization problems in which CQA is effective. For example,
in a standard QA approach using the transverse-field Ising
model, real-time quantum simulation requires 2qN dimensions
to color a graph with N nodes with q colors. However, in a
CQA approach, the dimension of the Hilbert space reduces
to only qN . The dimension reduction is essential for the
simulation of real-time quantum dynamics since it leads to a
reduction of memory usage and computation time. The number
of avoided crossings (small energy gaps) is small in a small
Hilbert space since the number of energy levels is small.
Therefore, the dimension reduction is expected to result in
better performance. Although the size of the system to which
CQA is applicable is still smaller than that of the QMC method,
real-time Schrödinger evolution has an advantage over the
QMC method in solving a graph coloring problem. When a
graph is colorable with q colors, there are at least q! solutions.
In other words, the ground state of the problem Hamiltonian is
degenerate. Although this type of degeneracy is resolved in the
formulation proposed in Refs. [9,10], a standard QMC method
is ineffective in such a highly degenerate case [7]. By contrast,
in real-time quantum dynamics, the degenerate ground state is
favorable since populations of several low-energy states merge
at the end of an annealing process.

The rest of the paper is organized as follows. In Sec. II,
models, which consist of problem and driving Hamiltonians,
are presented, and methods of numerical simulations are
outlined in detail. Two types of driving Hamiltonians are also
introduced. One consists of chains with nearest-neighbor (NN)
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FIG. 1. Schematic of the model which consists of Eqs. (4) and (5).
The solid lines represent the edges of a graph, namely, the interaction
in the problem Hamiltonian. The broken lines correspond to the
driving Hamiltonian.

coupling, and the other consists of fully connected (FC) chains.
Results are presented on the dependence of the annealing
time in Sec. III. The residual energy and success probability,
which measure the performance of QA, are examined. These
two quantities are compared for NN and FC cases using two
different annealing methods: linear annealing and exponential
annealing. In Sec. IV, the time evolution in the linear-annealing
case is analyzed. The time dependence of the ground-state
population and population distributions demonstrate interest-
ing behavior of real-time quantum dynamics. Conclusions are
highlighted in Sec. V.

II. MODELS AND METHODS

Graph coloring is coloring the nodes of a graph such that
no pair of nodes connected by an edge has the same color. The
classical Hamiltonian for coloring a graph G = (V,E) with q

available colors is given by

Hcl =
∑

(ij )∈E

q∑

a=1

Si,a + 1

2

Sj,a + 1

2
, (2)

where i and j represent nodes V = {1, . . . , N}, and (ij ) ∈
E denotes the edge which connect the pair of nodes i, j ∈
V . If node i is colored a, the Ising spin variable is Si,a = 1;
otherwise, Si,a = −1. Since one node has only one color, the
constraint of this problem is expressed as

q∑

a=1

Si,a = 1 × 1 + (−1)(q − 1) = 2 − q (3)

for i = 1, . . . , N . Next, consider the quantum version of the
Hamiltonian (2), namely, the problem Hamiltonian. We define
the problem Hamiltonian as

Hp = J
∑

(ij )∈E

∑

a

σ z
i,aσ

z
j,a, (4)

where σ z
i,a denotes the Pauli matrix and the first and second

indices are for node and color, respectively. We take J = 1,
which has a unit of energy. Here, constant terms and a factor
of 1/4 which arise from Eq. (2) are eliminated for convenience.
When a given graph with m edges is colorable with q colors,
the ground-state energy of Hp is E0 = m(q − 4). If we choose
an extended XY model as a driving Hamiltonian, we have

Hd = −J
∑

i

∑

a,b

(
σx

i,aσ
x
i,b + σ

y

i,aσ
y

i,b

)
, (5)

then the total Hamiltonian becomes a kind of XXZ model.
Since 〈∑q

a=1 σ z
i,a〉 is conserved in this model, the constraint

corresponding to Eq. (3) is naturally satisfied if the initial state
is prepared accordingly.

In a special case, the total Hamiltonian corresponds to, in a
sense, an ensemble of one-dimensional tight-binding chains. If
the summation over a and b in Eq. (5) is restricted to b = a +
1, Hd is merely the summation of N -independent XY chains.
Now that each chain has only one up spin, it is equivalent
to a tight-binding chain. As depicted in Fig. 1, each site of
a tight-binding chain (represented as a broken line) interacts
with the corresponding site of other chains through the problem
Hamiltonian (represented by solid lines). If we focus on one
of the chains, it resembles a tight-binding chain with random
local potentials. We refer to this driving Hamiltonian as a NN
type. Although this type is sufficient to realize CQA, additional
connections between nodes in each chain may enhance the
efficiency of the transition. For comparison, we also consider
a FC type in which the summation over a and b in Eq. (5) is
taken for all combinations of a < b.

In order to investigate the performance of QA, numerical
simulations are performed in the cases where one or more
solutions exist. In Sec. III, we consider four-coloring (q = 4)
of regular random graphs of connectivity c = 3, which is far
below the transition threshold below which graphs are expected

10-4

10-3

10-2

10-1

100

101

 1  10  100

E
re

s/
J

τli

(a) NN
FC
τli

-2

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0.1  1  10

E
re

s/
J

τex

(b)

NN
FC

τex
-2

FIG. 2. Annealing-time dependence of residual energy Eres for (a) linear annealing and (b) exponential annealing. Data for two different
driving Hamiltonians are compared: NN and FC types. If the annealing process is adiabatic, the residual energy is expected to obey the power
law with respect to the annealing time: Eres/J ∝ τ−2

li , τ−2
ex .
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FIG. 3. Annealing-time dependence of the success probability Psuc for (a) linear annealing and (b) exponential annealing. Data for NN and
FC types of driving Hamiltonians are compared.

to be colorable in the large-N limit. The transition threshold
for regular random graphs is cs = 10 (for q = 4) [26,27].

In the following sections, we consider only the subspace
that satisfies a constraint 〈∑q

a=1 σ z
i,a〉 = 2 − q and refer to the

lowest-energy state in the subspace as the ground state. The
initial condition is given by the lowest-energy state of Hd

in the subspace. Note that the initial state is not the global
ground state. If the initial state is prepared in the whole Hilbert
space of the system (i.e., without restriction to the subspace),
one can add an additional Zeeman term with an appropriate
magnetic field to achieve the desired state as mentioned in
Ref. [23]. Time evolution is calculated by solving the time-
dependent Schrödinger equation by the fourth Runge-Kutta
method. Two different annealing schedules are examined:
linear annealing s(t ) = t/τli and exponential annealing s(t ) =
1 − exp(−t/τex). The final time for linear annealing is T = τli,
which leads to s(T ) = 1. For exponential annealing, however,
s = 1 at T → ∞. To reach sufficiently close to s = 1, we take
T = 15τex, and then 1 − s(T ) < 10−6. Time is measured in
units of h̄/J .

III. DEPENDENCE ON ANNEALING TIME

In this section, we consider four-coloring of regular ran-
dom graphs with several solutions. Numerical simulations are
performed for 100 realizations of random graphs with N = 6
nodes and connectivity c = 3. The performance of QA is
often demonstrated by the residual energy, which is the energy
difference between the expected value at the final time and the
ground-state energy of the problem Hamiltonian. The residual
energy is defined by

Eres = 〈�f |Hp|�f〉 − E0, (6)
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FIG. 4. Energy gap �g(s )/J between the ground and the first-
excited states of the Hamiltonian of an example. The graph corre-
sponding to the problem Hamiltonian is given by Fig. 5(a). Data for
the NN and the FC types of driving Hamiltonians are compared.

where |�f〉 is the final state and E0 is the ground-state energy
of Hp. The residual energy averaged over 100 realizations is
plotted as a function of the annealing time in Fig. 2. For an
adiabatic QA process, the residual energy is expected to obey
a power law with respect to the annealing time τ , specifically,
Eres/J ∝ τ−2 [28]. In Fig. 2(a), the case of linear annealing,
one sees that Eres/J ∝ τ−2

li in a large-τli regime for both the
NN and the FC types of driving Hamiltonians. However, in
Fig. 2(b), the case of exponential annealing, the power-law
behavior appears only for the FC type. For the NN type, Eres/J

maintains a large value even in a large-τex regime.
Another practical measure is success probability. This is the

probability that a selected answer at the end of QA is one of the
solutions. The final state can be written as the superposition
of state bases: |�f〉 = ∑

i ci |i〉, where Hp is diagonalized
with |i〉’s. Each state basis |i〉 denotes a combination of z

components of spins, namely, a color combination of nodes.
When 〈i|Hp|i〉 = E0, |ci |2 represents the probability that the
ith state (namely, color combination) is a solution. Therefore,
the success probability is defined as

Psuc =
∑

i

|ci |2δ(〈i|Hp|i〉, E0), (7)

where δ(·, ·) denotes the Kronecker δ. The success probability
averaged over 100 realizations as a function of the annealing
time is shown in Fig. 3. The success probability for linear
annealing is quite high in a large-τli regime as shown in
Fig. 3(a). This result is consistent with the result of Fig. 2(a).
However, in Fig. 3(b), the case of exponential annealing, the
success probability for the NN type is much lower than that of
the FC type. This low success probability is demonstrated by
the large residual energy in Fig. 2(b) for the NN type.

According to the adiabatic theorem of quantum mechanics,
a quantum state evolves adiabatically if the evolution time T

FIG. 5. Examples of graphs that correspond to the problem
Hamiltonian. (a) Regular random graph with connectivity c = 3. (b)
Graph with only 4! degenerate solutions in a four-coloring problem.
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FIG. 6. Time dependence of the instantaneous residual energy, which is measured in units of J , for NN-type and FC-type driving
Hamiltonians. Annealing time is τli = 20. The problem Hamiltonians for (a) and (b) correspond to Figs. 5(a) and 5(b), respectively.

satisfies the following condition [3,4]:

T �
max

0�s�1

∣∣〈φ1(s)| dH (s)
ds

|φ0(s)〉∣∣

min
0�s�1

�2
g (s)

, s = t/T , (8)

where |φ0(s)〉 and |φ1(s)〉 are the instantaneous ground state
and first-excited state, respectively, and �g (s) is the instan-
taneous energy gap between the two states. In the system
considered here, the ground state is degenerate at s = 1.
Whenever 0 � s < 1, the gap of the FC type is larger than that
of the NN type as shown in Fig. 4. We naturally expect that the
performance of QA for the FC type should be better than the
NN type. This expectation appears to be correct for exponential
annealing as shown in Figs. 2(b) and 3(b). However, Figs. 2(a)
and 3(a) show opposite results. This unexpected behavior in
the linear-annealing case is analyzed in the next section.

IV. TIME EVOLUTION IN A LINEAR-ANNEALING CASE

In this section, we focus on linear annealing and investigate
what causes the unexpected result of the previous section. We
take Fig. 5(a) as an example of a regular random graph with
connectivity c = 3. In the case of four-coloring, the ground
state of Hp is highly degenerate for this graph. In contrast,
for Fig. 5(b), the degree of degeneracy is only 4!. Note that
the ground state of the total Hamiltonian is nondegenerate for
0 � s < 1 and degenerate only at s = 1.

Time dependence of the instantaneous residual energy is
defined by

Eir (s) = 〈�(s)|Hp|�(s)〉 − E0, (9)

where |�(s)〉 is the wave function at s and is illustrated in Fig. 6.
Here, the annealing time is taken as τli = 20. In Fig. 6(a), Eir

is almost zero at s = 1, which is consistent with the result in
Fig. 2(a). The residual energy at s = 1 in Fig. 6(b) is slightly
higher than that shown in Fig. 6(a). This is because the graph

of Fig. 5(b) has more edges, and thus, coloring is more difficult
in Fig. 5(b) than in Fig. 5(a). Note here that a faster decay in Eir

does not mean better performance of QA because Eir depends
on the total Hamiltonian, which is different between the NN
and FC types.

A peculiar behavior is observed during the time evolution
of the ground-state population as shown in Fig. 7, which is
defined by

fg (s) = |〈φ0|�(s)〉|2, (10)

where |φ0(s)〉 is the instantaneous ground state of the total
Hamiltonian. When a QA process is adiabatic, fg = 1 all the
time. In Fig. 7(a), fg maintains a value of almost 1 for the
FC type. In contrast, for the NN type, fg apparently decays
from s 	 0.8 and jumps back to 1 at s = 1. A similar behavior
appears in Fig. 7(b): fg for the NN type starts to decay earlier
than the FC type and jumps back to approximately 1 at s =
1. This peculiar behavior is caused by the degeneracy of the
ground state at s = 1. Since the energy gap for the NN type is
smaller than that of the FC type, it is natural that the ground-
state population becomes smaller for the NN type than for
the FC type. During an annealing process, the population can
transfer to low-excited states. Some of the lowest-excited states
merge to the ground state at the end. This causes a jump of the
ground-state population at s = 1.

The population distributions in Fig. 8 demonstrate how the
ground-state and low-excited-state populations change in the
last stage. The data in Fig. 8 correspond to Fig. 7(b), which
shows a larger difference between the NN and the FC types
than Fig. 7(a). The population distributions at s = 0.8 for the
NN type [Fig. 8(a)] and the FC type [Fig. 8(b)] have similar
properties. The ground-state population is the largest, and a
low-excited state has a small fraction. At s = 0.9, the ground-
state population is smaller for the NN type than for the FC type.
However, an excited state that is very close to the ground state
has a small but recognizable fraction for the NN type. The small
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FIG. 7. Time evolution of the population fg (s ) = |〈φ0|�(s )〉|2 of the instantaneous ground state for NN-type and FC-type driving
Hamiltonians. Annealing time is τli = 20. The problem Hamiltonians for (a) and (b) correspond to Figs. 5(a) and 5(b), respectively.
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FIG. 8. Population distributions in a low-energy range for (a) NN-
type and (b) FC-type driving Hamiltonians. The problem Hamiltonian
corresponds to Fig. 5(b). Annealing time is τli = 20. Energy is
measured in units of J .

fraction merges to the ground-state population at s = 1, and the
population distributions for the NN and FC types appear to be
almost the same. This is the scenario of the abrupt jump of fg

at s = 1 in Fig. 7.
At this point we still have an unanswered question: Why is

the residual energy lower for the NN type relative to the FC
type in the linear-annealing case? Figure 8 gives some insights.

Although the energy gap between the ground and the first-
excited states is smaller for the NN type, the gaps between the
energy bands are smaller for the FC type. This implies that
the population spreads to the excited states which eventually
merge to an excited state of Hp more easily for the FC type
than for the NN type. A smaller population in higher excited
states results in a smaller residual energy for the NN type than
for the FC type.

V. CONCLUSIONS

Real-time quantum dynamics using a CQA approach has
some advantages with regard to solving a graph coloring prob-
lem. In particular, the reduction in the dimension of the Hilbert
space is a remarkable advantage of CQA. Small dimensions
are favorable for searching for solutions and are of practical
convenience for simulations. When a graph is colorable with
q colors, there are at least q! solutions. In other words, the
ground state is degenerate. The degeneracy is advantageous in
real-time quantum evolution since populations of low-excited
states merge with the ground state at the end of QA. This
implies that we are likely to obtain a solution, even if an
annealing process is less adiabatic. The model used in this
paper, which is a kind of XXZ model, resembles disordered
tight-binding or fully connected chains. This analogy indicates
the possibility for analysis from the viewpoint of disordered
low-dimensional quantum systems. The interesting results for
linear annealing suggest that real-time quantum dynamics in
many-body systems may reveal unexpected or overlooked
properties of quantum annealing.
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