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Approach to coherent interference fringes in helium-surface scattering
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The conventional notion of elastic, coherent atom-surface scattering originates from the scattering particles
acting as a quantum-mechanical matter wave, which coherently interfere to produce distinct Bragg peaks which
persist at finite temperature. If we introduce inelastic scattering to this scenario, the result is that the surface
particles become displaced by the scattering atoms, resulting in emission or absorption of phonons that shift the
final energy and momentum of the scatterer. As the lowest-lying phonons are gapless excitations, the ability to
measure these phonons is very difficult and this difficulty is exacerbated by the roughly 1-eV resolution found in
high-energy helium scattering experiments. Even though the surface has in effect measured the presence of the
scatterer which decoheres the particle, we retain the diffraction spots which are referred to as coherent scattering.
How do we reconcile these disparate viewpoints? We propose an experiment to more precisely examine the
question of coherence in atom-surface scattering. We begin with an initially coherent superposition of helium
particles with equal probabilities of interacting with the surface or not interacting with the surface. The beams
are directed so that after the scattering event, the atoms are recombined so that we can observe the resulting
interference pattern. The degree to which phonons are excited in the lattice by the scattering process dictates the
fringe contrast of the interference pattern of the resulting beams. We use semiclassical techniques to simulate
and test the viability of this experiment and show that for a wide range of conditions, despite the massive change
in the momentum perpendicular to the surface, we can still expect to have coherent (in the superposition sense)
scattering.
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I. INTRODUCTION

Helium scattering is a valuable nondestructive experimental
probe that has been useful for characterizing surface structure
[1–4], measuring surface phonons [5,6], detecting surface
impurities [7], and elucidating surface chemical dynamics.
Over the past decade, the field has been reinvigorated due to
newer, higher-energy helium sources that have allowed obser-
vation of diffraction peaks [8] from both insulator [9] (e.g.,
lithium fluoride) and metallic [10] (e.g., silver) surfaces. In
the literature, the phrase coherent scattering has been attached
to this process and strides have been made in understanding
the different regimes of scattering [11] and the specifics of the
outgoing diffraction pattern [12]. Seifert et al. [13] alluded to
the notion of a Feynman-style [14] which-way measurement
process caused by the scatterer-surface interaction, which we
explore in more detail here in a gedanken experiment to clarify
the notion of coherence (or loss thereof due to surface lattice
excitations) in atom-surface scattering.

The conventional notion of coherent atom-surface scat-
tering originates from experiments demonstrating nominally
elastic Bragg peaks. The scatterer, in truly elastic scattering,
acts as a quantum mechanical matter wave; it is infinite
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in spatial extent and is coherent with itself (represented as
the wave function ψ ∝ ei�k·�r ). The scatterer does not in fact
measure a single particle on the surface, but instead experiences
the translational symmetry and maintains its inner phase co-
herence as it diffracts from all the lattice sites collectively and
simultaneously. The outgoing waves constructively interfere
and scatter into new directions �k → �k + �G, where the { �G} are
the reciprocal lattice vectors of the surface. For a purely elastic
process, the so-called crystal momentum is hence conserved as
is the scatterer energy. Moreover, we still observe diffraction
peaks when scattering off a lattice at finite temperature. While
the surface atoms are at any instant displaced from their
equilibrium positions (effectively eliminating the constructive
interference condition at any instant), the mean atomic posi-
tions are still at the sites indexed by the crystal lattice. We thus
still observe diffraction spots, although they are diminished
by either an effective Debye-Waller term or another factor
depending on the scattering conditions [15,16]. The description
of scattering remains coherent.

However, we must include the effect of inelastic scattering.
The surface particles are displaced by the scattering atom itself
and may emit or absorb one or more quanta of vibrational exci-
tations (phonons) to the scatterer. This effect occurs regardless
of whether the lattice is at finite temperature or not (although
the ratio of emission and absorption of phonons changes
with temperature). Acoustic phonons produced by this process
are gapless excitations; hence, extremely long-wavelength
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phonons will contribute vanishingly small shifts in energy
and momentum, making it increasingly difficult to actually
observe their influence. These aspects have been studied with
great success in neutron-bulk scattering [17]; however, the
fundamentally different nature of the atom-surface interaction
(long ranged and gradual over many sites vs short ranged
and impulsive) and the challenge of generating monoener-
getic atomic beams may mask this detection in atom-surface
scattering. This difficulty is exacerbated by the resolution
limits of the helium scattering experiment; the highest-energy
phonon in lithium fluoride is approximately 80 meV [18],
while the energy spread in high-energy helium scattering
experiments is on the order of 10 eV for a 1-keV beam.
The ability of the surface to measure the particle’s presence
via phonon excitation acts to destroy quantum coherence,
though we still observe finite-width diffraction spots which
had been taken to imply phase coherent scattering. In another
work by Siefert and Winter [19], the phrase “Young-type
interference” was used to denote the helium beam’s self-
coherence throughout the scattering process along the rows
of adsorbed oxygen atoms on a Mo〈112〉 surface; however,
the notion from a quantum measurement perspective of Young
interference is a result of avoiding any emission or absorption
of particles which would act to characterize which path the
particle had taken. How can we reconcile these disparate
perspectives?

We propose a way of looking at the question of coherence
in atom-surface scattering. Instead of a single beam of helium
particles, we are motivated by coherent atomic interferometric
measurements [20] and start with a beam splitter to create
an initially coherent superposition with equal probabilities of
interacting with the surface or not interacting with the surface.
The atoms then propagate along both paths simultaneously,
both scattering and not scattering at the same time in the
quantum mechanical sense, and then are recombined. In the
case where the scattering is perfectly elastic, the two beams will
have wavelike interference patterns with perfectly well-defined
interference fringes. In the case of perfectly inelastic scattering,
the phonon generation acts to measure the particle; we have
performed a which-way measurement and we will observe no
interference pattern. For partial inelasticity, we will observe
behavior between these two regimes; while there will be an
interference pattern, it will no longer have perfect contrast but
instead have weakened fringes atop a broad background which
reveals the degree of scattering inelasticity. The experiment
we propose is analogous to placing a light source behind the
wall of the double-slit experiment in order to test which slit
the electron emerged from. The degree of lattice excitation in
different scattering conditions is analogous to the strength (and
hence measurement capability) of the light source.

II. MEANING OF COHERENCE

A. Self-coherence

To make this distinction and the notion of coherence more
explicit, let us consider the schematic of the scattering process
in the preceding experiments. If we treat the incident beam
as a plane wave of wave vector �k = ( �K, kz), the total wave
function representing a helium atom elastically scattering off

FIG. 1. Regimes of partially inelastic scattering (a) wave-vector
scattering and (b) wave-packet scattering.

of a crystal surface can be expressed as

ψ (x, y, z) = exp(i �K · �R + ikzz)

+
∑

�G
c �G exp[i( �K + �G) · �R − ikz �Gz],

where �R = (x, y) and the { �G} are the reciprocal lattice vectors
of the surface and kz �G is chosen to conserve energy and
momentum. This expresses the fact that at the surface the beam
is coherent with itself, and the resulting emitted wave from
each atom (in the Kirchhoff sense [21]) is a spherical wave;
far from the surface we have the constructive interference
condition �ai · �G = 2πn with n ∈ Z, i.e., crystal momentum
conservation. For elastic collisions, we further have the energy
conservation condition

�k2 = (�k′ + �G)2.

The conventional way of introducing inelastic scattering
is to simply examine the consequence of the generation or
absorption of a phonon (of momentum �q and frequency ω�q) on
the helium particle as the wave vector goes from �k to �k′. In this
case, for a surface phonon, the crystal momentum conservation
condition becomes

�K = �K ′ + �G + �q,

with energy conservation condition

�k 2 = (�k′ + �G)2 + ω�q .

Studies by Benedek and Toennies [6] and others have demon-
strated the use of time-of-flight spectroscopy to measure
surface phonon modes as a method of characterizing surface
structure.

However, the above treatment does not consider the full
quantum mechanical effect of including the lattice as part of the
dynamics. Moreover, the phrase “coherent scattering” belies a
notion of quantum mechanical coherence that cannot be justi-
fied in the sense of the absence of measurement capability of a
system. Consider a hypothetical scattering event as depicted in
Fig. 1(a). The helium atom scatters off an initially ground-state
lattice where one single quantum of one single-phonon mode
(regardless of �q or ω�q) becomes excited with probability |c1|2.
We may then write the total wave function of the outgoing

022137-2



APPROACH TO COHERENT INTERFERENCE FRINGES IN … PHYSICAL REVIEW A 98, 022137 (2018)

system as

|�out〉 = c0|�k0〉|∅〉 + c1|�k1〉|1〉. (1)

Looking at the density matrix of the combined system yields

|�out〉〈�out| = |c0|2[|�k0〉|∅〉〈∅|〈�k0|] + |c1|2[|�k1〉|1〉〈1|〈�k1|]
+ c0c

∗
1[|�k0〉|∅〉〈1|〈�k1|] + c∗

0c1[|�k1〉|1〉〈∅|〈�k0|].

Using the orthogonality of wave vectors 〈�k0|�k1〉 = δ(�k0 − �k1)
and the orthogonality of the phonon modes 〈n|m〉 = δnm,
we may compute the purity η = Tr[ρ2

red] [22], the quantity
frequently used in the literature on decoherence phenomena
in quantum mechanics to denote the coherence remaining in
the system. Performing this calculation, we obtain

η�k = |c0|4 + |c1|4,
which yields an extremely rapid decrease in the coherence of
the final wave packet; in essence, a small purity value gives a
sense of the magnitude of the off-diagonal elements of the bath.
The possibility of exciting more quanta of other modes causes
a further reduction in the purity; this is intuitive as exciting a
single phonon acts to measure that the helium atom did in fact
impact the surface. This is independent of phonon frequency
and wave vector; as acoustic excitations are gapless excitations,
there could indeed be many excitations of practically zero-
frequency and zero-momentum phonons. Within this scheme,
how can there possibly then be any coherent scattering if there
are these types of inelastic excitations destroying the coherence
of the incident wave packet?

While the idea of measurement coherence is lost, the pos-
sibility of generating finite width diffraction peaks is rescued
by the fact that the incoming helium atoms are not strictly a
plane wave but instead a coherent superposition of energies
and momenta; the helium atoms can be considered a wave
packet in momentum space (and effectively in position space as
well). We might recall the requirement that x-ray scattering has
either a continuum of energies or other conditions that ease the
δ(�k0 − �k1) limit for coherent scattering to take place; similarly,
the finite spread in wave-packet energy actually acts to increase
the coherence of the scattered atomic beam. Consider Eq. (1)
and replace the plane-wave states with a generic wave packet
(considered in either momentum or position space or both)
|χi〉, given by

|χ0〉 =
∑

�k
a(�k)|�k〉,

so that the full postscattering wave function becomes
[as depicted in Fig. 1(b)]

|�out〉 = c0|χ0〉|∅〉 + c1|χ1〉|1〉, (2)

where the state |χ1〉 captures all the distortion of the wave
packet as a consequence of the scattering process. If we again
calculate the purity, we obtain

ηχ = |c0|4 + |c1|4 + 2|c0|2|c1|2|〈χ0|χ1〉|2 � η�k,

which will in general be much closer to unity. Moreover, in
the limit that |〈χ0|χ1〉|2 → 1, we have ηχ → 1. Looking at the

distortion in the wave packet after phonon excitation yields

〈χ0|χ1〉 =
∑

�k
a∗(�k)b(�k + �q ), (3)

where b(�k) represents the final wave-packet momentum
spread. It is clear that if the momentum-space width of the
wave packet is greater than the �q excitation, there may very
well be (although not necessarily need to be) a vanishingly
small decrease in the purity (and hence coherence) of the out-
going wave packet. The experiment by Bundaleski et al. [10]
used a beam with a full width at half maximum energy
resolution of 5 eV for a 1-keV beam; even if we include the
possibility of electronic excitations, if we assume the initial
momentum distribution a(�k) of the wave packet is Gaussian
and a(�k) = b(�k − �q ), we obtain, by integrating over Eq. (3), a
possible overlap as large as ∼0.95.

Even if we consider a pure plane wave, we may still get
diffraction spots from inelastic scattering, though they will be
broadened. To cast the previous discussion in a more physically
intuitive picture, if the scatterer disturbs the lattice to produce
a phonon of wavelength λ, the Kirchhoff sum of emitted waves
will produce an outgoing beam pattern with elastic diffraction
peaks corresponding to the static interaction, plus a contribu-
tion to each peak of a momentum k ∼ π

λ
to a phonon depending

on the strength of the interaction. Roncin and Debiossac [23]
describe a complementary picture to the decoherence scheme
we have discussed; they note that the scattering atom acts
to measure the surface atoms and induces decoherence via
either position measurement (local measurements of thermal
motion that is the traditional source of the Debye-Waller
factor in diffraction) or momentum transfer (analogous to the
surface particles undergoing emission with recoil). Toennies
and co-workers [24,25] postanalyzed the scattered beam for
specific energy loss, recovering Bragg peak coherence and
measuring properties of surface phonons. However, when other
modes with random phases are included in this sum, the
scattering yields broadened diffraction peaks. If the width
of the Bragg peaks produced is substantially smaller than
the momentum precision of the measurement apparatus, this
will be experimentally indistinguishable from perfectly elastic
scattering. In this way Bragg peaks, already broadened by
experimental factors like momentum dispersion in the incident
beam, may mask detection of phonon production by the effect
of the peak widths as outlined above.

B. Superposition coherence

Suppose that we instead took our starting beam of helium
particles and sent them through a beam splitter to obtain a
coherent superposition in both a left path that will undergo the
scattering process and a right path absent of any coupling to
the lattice degrees of freedom. The full initial wave function
then becomes

|ψI 〉 = 1√
2

[|�kiL〉sys + |�kiR〉sys]|{∅}〉bath,

where we take for purposes of discussion the initial lattice state
to be the ground state. Now suppose that the left wave will
experience the same interaction process as in Eq. (2), exciting
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FIG. 2. Recombined scattered beam interference pattern.

one single phonon. The full final wave function becomes

|ψF 〉 = 1√
2

[c0|�kf L〉sys|{∅}〉bath + c1|�k′
f L〉sys|{1}〉bath

+ eiη|�kf R〉sys|{∅}〉bath],

where η is a relative path-dependent phase difference accu-
mulated between the two beams; this process is schematically
depicted in Fig. 2. Note again that this is completely indepen-
dent of what the final lattice excitation was or what its length
and energy scale are. When a detector or some other process
measures the position of the scattered beam, we again trace
(average) out the lattice coordinate, using the orthogonality of
the phonon mode states. This yields the probability distribution

ρred(�r, �r ) = 〈�r |Trbath[|ψF 〉〈ψF |]|�r 〉
= 1 + |c0| cos[(�kf L − �kf R) · �r ]. (4)

This provides a very clear picture; the degree to which the
lattice has been excited from the ground state by the scattering
process (|c0|) directly determines the degree to which the
particle has been measured by the lattice, and reduces the
fringe contrast between the two outgoing quantum matter
waves. These notions can be extended to wave packets and
their respective Fourier-transformed energy eigenstates. The
degree of energy loss, or stopping power, the helium particle
has experienced is not directly related to |c0|; while high
stopping power implies small |c0|, the converse is not true.
This formalism leads to an interpretation of the strength of this
measurement process and can be extended to any number of
quanta of any number of phonon modes or any other type of
excitation. This is the actual notion of coherence that we seek
to understand in this work.

C. Vibrational versus electronic excitation

This work focuses primarily on the possibility of studying
the measuring capabilities of phonon excitation in surfaces,
which directly maps to the study of scattering from insulating
surfaces. The fraction of incoherent scattering events for
helium scattered off of lithium fluoride has been reported to be
less than 10% for 2-keV incident kinetic energy [26]. However,
we recall that “coherent” diffraction spots persist in atom-
surface grazing scattering off of metallic surfaces, despite
the possibility of gapless electronic excitation present in the
bulk. More surprisingly, the diffraction spots persist despite an
average energy loss. For instance, in He-Ag 〈110〉 scattering,
Bundaleski et al. [10] report diffraction spots despite average
scatterer energy losses of 1 eV for scattering at 500 eV, well
below the work function threshold; these peaks persist despite
blurring at higher energies [27]. Moreover, the energy loss
scales superlinearly with incident helium energy. The work by
Rubiano et al. [28] described the energy loss of the helium atom

by viewing it as a frictional loss as the atom scraped against the
electron selvage of the surface. A more quantum mechanical
description of the helium-surface electronic interaction can be
seen via the hybridization potential [29] from the helium atom’s
occupied electron states and the empty electronic states of the
material (from, for instance, the image charges of the helium
atom). In the limit of slow atoms, these surface interactions
are adiabatic and do not contribute to decoherence or energy
transfer. At higher energies, there is the possibility of exciting
both these states as well as the gapped empty surface state noted
by Goldmann et al. [30] which sits ∼1.8 eV above the Fermi
level at the surface Brillouin zone ky edge for Cu〈110〉. One
can use time-of-flight postselection techniques (as outlined by
Busch et al. [31]) to look at the helium atoms that have, or have
not, excited these surface states. Combining the information
provided by classical rainbow diffraction with these energy loss
measurements can provide a picture of the surface-scatterer
interaction.

Relative to other neutral atomic species, helium is a rel-
atively difficult species to detect as it is light and inert. The
above thought experiment, naively stated, requires observing
a standing-wave pattern rather than projecting diffracted beams
onto a screen, and the corresponding fringe spacing (for
shallow incident angle θ ) goes as h̄πθ2/

√
8mE, which gives

subangstrom distances for the parameters given here. While
designing the experiment to explicitly test the results presented
here is beyond the scope of this work, one possibility for
realizing this experimental setup could come via an initial
beam split using an initial scattering into low diffraction orders
followed by recombination via a Mach-Zehnder interferometer
[32]. While for this work we have focused on the regime
used by recent helium scattering experiments, there is nothing
in the above formalism presented that precludes these ideas
from being applied to the previous generation of scattering
experiments; the purpose of using the regime chosen here is to
limit the possibilities of the types of interactions to vibrational
effect and allow the separation of regimes afforded by the slow
and fast momenta.

III. SYSTEM EVOLUTION

A. Semiclassical models

Given the difficulty of exactly simulating quantum me-
chanics, it is necessary to employ approximations in order to
obtain meaningful predictions in systems with many degrees of
freedoms. Semiclassical methods based on classical mechanics
are a natural choice as they can capture quantum behavior while
providing an intuitive picture of the system. Moreover, in-
crementally adding additional quantum features (for instance,
different orders of expansions of the semiclassical propagator
[33]) to these approximations can provide insight into which
effects are indeed quantum mechanical and which are artifacts
of classical mechanics.

1. Thawed Gaussians

The thawed Gaussian approximation (TGA), introduced by
Heller [34], has been a remarkably successful semiclassical
approach to quantum dynamics [35]. Moreover, this technique
has been used in time-dependent studies of helium scattering
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and was found to have superior convergence properties relative
to other semiclassical evolution techniques [36]. The approach
is to assume that the wave packet is at all times a Gaussian
following a classical guiding central trajectory that is in motion
in a perpetual locally quadratic potential. The wave function
has the form

�({�q}) = exp
[
i(�q − �qt )

ᵀA(�q − �qt ) + i �p ᵀ
qt

(�q − �qt ) + iγt

]
,

which undergoes evolution in the effective Hamiltonian

ĤTGA =
∑

i

p2
qi

2mi

+ V ( �qt ) +
∑

i

∂V

∂qi

∣∣∣∣
�q= �qt

(
qi − qit

)

+ 1

2

∑
ij

(qi − qit )
∂2V

∂qi∂qj

∣∣∣∣
�q= �qt

(
qj − qjt

)
.

This approximation is reasonable when the second derivative
is approximately constant for the width of the wave packet or
when the wave packet experiences rapid periodiclike variations
that get averaged out over its evolution (a sort of rotating-wave
approximation). For the system derived here, we have verified
that the thawed Gaussian approximation agrees well in the
static case using a reduced-dimensional model evolution of the
split-operator fast Fourier transform method (selecting “special
angles” so that the particle travels down furrows of an effective
one-dimensional potential [37]). We thus expect that it will
work well upon inclusion of phonon modes.

2. Sum of Gaussians plane-wave approach

Drolshagen and Heller [38] introduced a method to repre-
sent a plane wave as a superposition of Gaussian wave packets
to model particle-surface scattering and replicate the relative
strengths of diffraction peaks in atom-surface scattering mea-
sured in experiments. This method captures a greater degree
of the wavelike nature of the incident scatterer atoms at the
expense of much more expensive computation. We extend this
technique using thawed Gaussians for the full system-bath
configuration as a means to approach the “standard” way of
representing the scattering process in terms incoming and
outgoing plane-wave states. We write the initial-state wave
function as the superposition

exp(i�k0 · �r ) ≈
NxNy∑
nxny

ψTGA
nxny

(�r ) exp
[
i�k0 · �rnxny

]
, (5)

where we include NxNy wave packets within a single surface
unit cell at positions �rnxny

= nx

Nx
�a1 + ny

Ny
�a2 within the unit cell

defined by �a1 and �a2. We can then evolve all the trajectories
together and look at the ground-state overlap |c0| once again
(integrated over the unit cell). It is necessary to wrap trajecto-
ries that exit the unit cell back into the unit cell by including the
appropriate phase, as well as include trajectories whose wave
packet extends into the unit cell of integration.

B. Interaction potential

We describe the nonrelativistic surface scattering problem
by considering Schrödinger’s equation Ĥ�(�r, �q ) = i ∂�

∂t
with

the Hamiltonian

Ĥ = �p 2
r

2ms

+
∑

i

�p 2
qi

2mi

+ V ({�qi}) + Vint(�r, {�qi}),

where �r refers to the helium particle’s coordinates and the {�qi}
denote the surface atom coordinates. We looked at a Cu surface
cut at 〈110〉 as our model surface. Many different models
for the He-Cu interaction potential have been used; for static
interactions the corrugated Morse potential has proven quite
successful [3]. However, we are interested in modeling the
lattice dynamics (and hence the possibility of true elasticity)
through the scattering process and so must go to a model that
allows us to capture these features.

In order to incorporate the lattice motion and obtain rea-
sonable results compared with static cases, we described the
surface-scatterer potential as a pairwise sum of scaled distance
exponential potentials, given by

V (�r, { �qi}) =
∑

i

v(�r, �qi ),

v(�r, �qi ) = A exp

⎡
⎣−β

√∑
�

α(�)
(
r (�) −q

(�)
i

)2

⎤
⎦,

where � ∈ (x, y, z). This choice of potential is motivated by
the directionality of corrugation as described by Dondi et al.
[39]; other pairwise atom-surface scattering potentials have
been developed (for example, LiF scattering [40,41]). We
used parameters found for E⊥ ≈240 meV to be A = 6 eV

and β = 2.14 Å
−1

, and αx = 0.6, αy = 1.4, and αz = 1.6.
This matched existing empirical fits by Eichenauer et al.
[42] and Salanon et al. [43] which we verified by comparing
potential contours and their relative corrugation and steepness.
Finally, we found large overlap of the wave functions evolved
in the aforementioned potential versus the trial potential,
demonstrating good agreement within the thawed Gaussian
approximation.

In order to model the lattice-lattice interaction potential,
we treated the Cu〈110〉 lattice as being a harmonic lattice
of spherically symmetric atoms with nearest-neighbor inter-

actions with the coupling coefficient λ = 2.28 eV/Å
2
. We

use the dynamical matrix approach by Maradudin et al. [44]
to generate the harmonic lattice potential, giving full pe-
riodicity in the surface vectors �a1 = ax̂ and �a2 = a/

√
2ŷ

while including the aperiodicity at the surface boundary. This
sidesteps dealing with the ω = 0 frequency modes of the lattice
and allows us to discover which modes are most excited in the
scattering process.

IV. RESULTS

A. Single wave packet

We now examine one set of parameters for the simulation
of our thought experiment. We first consider a 100-eV helium
particle with an energy spread of ∼1 eV incident upon a
Cu〈110〉 surface with a polar angle of θ = π/64 ≈ 2.812◦ and
an azimuthal angle of φ = 0 with respect to the �a1 surface
lattice vector. We evolve two separate scattering particle wave
packets; the first wave packet ψU is sent up toward the surface
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FIG. 3. Lattice ground-state overlap and purity versus time during
surface scattering for a thawed Gaussian with 〈p2/2m〉 = 100 eV,
θ = 2.8◦, and φ = 0.

with wave vector �k = ( �K, �kz) to interact with the lattice. The
second wave packet ψD is sent down with ( �K,− �kz) towards
a mirror lattice that is held completely static to prevent any
interaction. The wave packets are recombined, at which point
we may take a snapshot of the reduced total system density
matrix to examine the interference fringes. In order to ensure
that there are no edge effects in scattering off of the lattice we
mirror the lattice points a total of ±3 times in each direction (in
effect, manually inserting the periodic boundary conditions we
have established). The lattice is furthermore chosen to be large
enough so that by the time the scattering event has finished the
particles at the back edge of the slab remain static. We further
verified the convergence of our results versus lattice size.

We evolve the semiclassical dynamics using both the forced
simple harmonic oscillator (FSHO) model (spiritually equiv-
alent to the frozen Gaussian method [45]) with a plane-wave
scatterer and the thawed Gaussian approximation (treating the
scatterer and lattice modes together as a wave packet) and look
at the resulting dynamics for a 10×10×6 lattice. We plot the
ground-state overlap |c0| and purity η = Tr[ρ2

red] versus time
in Fig. 3.

As we discussed in Sec. II, there is a dramatic differ-
ence between evolving a single wave vector versus a wave
packet. Both the forced harmonic oscillator and the thawed
Gaussian approximation result in rather small degrees of
lattice excitation; the final ground-state overlap is slightly
lower for the thawed Gaussian case but would produce almost
identical degrees of lattice excitation. The thawed Gaussian
approximation proves to be a much better method for capturing
the self-coherence of the wave packet as the state purity
remains high and wavelike throughout the scattering. Note
that the diffraction experiments by Schüller et al. [9] and
Bundaleski et al. [10] were performed at higher energies
than these parameters; higher-energy scattering excites more
phonons and hence have greater degrees of coherence loss.

By looking at a slice in the xz plane at the moment where
the outgoing Gaussian wave packets recombine, we can see the
instantaneous interference pattern after tracing out the bath.
We can compare this to the case where both wave packets
interact with completely stationary lattices where the lattice
atoms are pinned in place and no excitations are allowed to be
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FIG. 4. Slice of the interference pattern of recombined wave
packets at the moment of maximal overlap, with z = 0 at the center
of overlap.

generated. We note an ever so slight diminution of interference
fringes, shown in Fig. 4. The static-static case yields perfect
fringe contrast while the full-static superposition yields a fringe
contrast of 0.90, in agreement with our calculations for |c0|
with these parameters. While there is a phase shift between the
two traces due to the change in path length from the interaction
with the surface, it does not affect the fundamental result.

In a laboratory setting, the particles sent at the surface
are more properly treated as plane waves centered around
a given energy and momentum rather than a single time-
dependent wave packet. We can take the energy-space Fourier
transform of the total system-bath wave function ψ (x,E) =∫

eiEtψ (x, t )dt , fixing our energy E to reflect this picture. If
we again slice along the xz plane, as shown in Fig. 5, we obtain
a similar fringe contrast of 0.90 which is consistent with our
time-dependent result (i.e., the spread in energy we chose for
our thawed Gaussian wave packet does not drastically affect
the result).

B. Phonon excitations

We can also look at which lattice modes are excited for
a given set of scattering parameters. We can compute the
expectation value of the phonon number operator 〈n̂i〉 for
each lattice mode i from the density matrix of the combined
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FIG. 5. Slice of the interference pattern of recombined energy-
domain transformed wave packets, with z = 0 at the center of overlap.
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FIG. 6. Individual lattice mode expectation 〈ni〉 for (a) all wave
vectors and (b) kx = 0.

scatterer-lattice wave function. Then we sum all modes with
a given �k (3Nz modes) and look at the relative contribution of
each �k to the decoherence process, shown in Fig. 6.

While no particular single mode gets heavily excited by the
scattering process, it is possibly surprising that the highest ex-
citation occurs for the highest ky mode (i.e., short-wavelength
excitations). This is perhaps more surprising when we consider
the classical force vs time that the scatterer experiences, shown
in Fig. 7 (note the similarity to the force shown in the work
by Roncin and Debiossac [23]): fy (t ) ≈ 0. Zugarramurdi and
Borisov [46] note that for typical experimental fast atom
diffraction conditions, there is very little diffraction into
reciprocal lattice vectors parallel to the beam direction; this
analysis shows very little inelastic scattering in that direction
as well.

If we consider the response of the surface atoms to the
scatterer as it skitters along the surface, we see that the scatterer
experiences a series of “kicks” from each surface atom with a
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FIG. 7. Force experienced by the scatterer versus time.

broad repulsive background for the z force fz(t ) and a series of
spikes for the x force fx (t ) that yield small net x-momentum
transfer. Suppose that at a given instant, the scatterer interacts
strongly with a particular lattice atom centered at �r . As the
scatterer kicks the lattice atom, that lattice atom will then
compress the springs connecting it to its nearest-neighbor
atoms at �r ± a/2x̂ ± a

√
2/4ŷ + a

√
2/4ẑ. This causes waves

to ripple outward in the ±y directions of the lattice creating
phonons, while the kx-momentum transfer is negligible due
to the rapid attraction-repulsive cycles of the kicks off of
the individual atoms in the lattice, parallel to the surface.
Aigner et al. [47] considered this aspect using a Lindblad
master equation formulation with a Monte Carlo ensemble of
trajectories to understand the system dynamics and decrease in
self-coherence length and observed that the potential parallel
to the direction of motion became effectively averaged out;
Manson et al. [16] described a similar effect in that the fast
motion would act as effectively classical dynamics, while the
slower motion is more appropriate to describe via quantum
dynamics. This effect explains the robustness of our potential
model with respect to the parameters we used.

If one looks at the energy distribution of the excited phonon
spectra, one can see that the majority of the created phonon
quanta emerge from the lowest-energy acoustic modes. The
energy deposited into the lattice for the parameters used
above (∼2.56 meV, which is on the order of the results given
by Manson et al. [16] for grazing angle collisions) is far
smaller than the energy spread in typical helium scattering
experiments; as mentioned earlier, the low-energy phonon
modes that are excited can be masked by the small total energy
change from the lattice nuclear stopping power.

C. Parameter sweeps

We then swept across both parameters to test the robust-
ness of the interference coherence. We found a very weak
dependence on the azimuthal angle (with |c0| varying between
0.86 and 0.91) and found a similarly weak dependence from
sweeping the impact factor along the unit cell (|c0| varying
between 0.84 and 0.91). There is a large variance as a
consequence of varying the energy; at 400 eV (close to the
energy where electronic excitations become important), |c0|
approaches 0.54, while as the incident energy decreases the
ground-state overlap increases. Decreasing the polar angle θ

while keeping energy fixed also strongly affects the fringe
contrast; below 2.8◦ the fringe contrast approaches 1, however
the fringe contrast begins to sharply decrease to |c0| = 0.59
for θ = 5◦. We might anticipate this as steeper angles involve
fewer, stronger, more localized impacts resulting in the surface
more precisely measuring the location of the particle and thus
destroying the initially coherent superposition. We can finally
adjust the energy and angle together while keeping the momen-
tum perpendicular to the surface fixed at 240 meV; while below
θ = 2◦ the ground-state overlap reached a fixed asymptote of
|c0| = 0.96, above θ = 4◦ the ground-state overlap decreases
to |c0| = 0.60 for θ = 11.2◦, despite a paltry scatterer energy
of 6.3 eV.

We also altered the physical parameters of our thought
experiment to try to see how different systems might pro-
duce more or less decoherence. For realistic lattice constants
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FIG. 8. Recombined interference pattern for the plane wave from
the sum of wave packets scattered off of the full lattice, with figure
coordinates centered about recombination in z.

between a = 2.5 and 5 Å, we saw |c0| range between 0.86
and 0.93; above a = 5.5 Å there was a greater dependence;
however, the potential as used here would require further tuning
for it to be reasonable. Changing the lattice mass between 20
and 100 amu did not affect the ground-state overlap more
than 5%; however, increasing the scatterer mass (keeping
energy fixed at 100 eV, hence increasing momentum) produced
an approximately linear decrease of �|c0| ≈ 0.014 amu−1

between 2 and 40 amu. This result was anticipated from the
previous discussion [48]. Finally, the results we obtained were
very robust to the interaction potential steepness and ranges
β and A; there was negligible change in changing β from

0.37 Å
−1

to 0.67 Å
−1

and from changing A from 2 eV to
12 eV, implying that the exact details of the potential were
not particularly important.

D. Superposition plane wave

We can use the same fundamental approach for our treat-
ment of the plane wave as a sum of wave packets: We can
split the incident beam into an interacting component and
a noninteracting component to obtain the full initial wave
function

|�i〉 = 1√
2

(|ψ int〉sys + |ψnon〉sys)|0〉bath, (6)

where the second ket refers to the collective lattice state, taken
at t = 0 to be in the ground state. We can then obtain the fringe
contrast after interaction by computing∫ ∣∣∣∣

∫
ψ int(�r, {q})ϕ∗

0 ({q}) d �q
∣∣∣∣
2

d�r = |c0|2,

where ϕ0({q}) denotes the ground-state lattice wave function.
This wave function depicts a time-dependent plane-wave front
impinging on the surface.

We used 20×20 wave packets initially assembled in a grid
within one unit cell and included a grid of 3×3 neighboring
unit cells to avoid edge effects, and computed all quantities
by wrapping wave packets (with the appropriate Bloch phase
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FIG. 9. Slice through the recombined interference pattern from
Fig. 8.

contribution) within a unit cell and numerically integrating
over those single unit cells. We found a slightly reduced value
for the ground-state overlap |c0| ≈ 0.89, which agrees well
with the single-wave-packet result and is close to the average
of the impact factor results. The time-dependent interference
pattern is shown in Fig. 8. There is some blurring in both figures
due to the rainbow effect (whose phase contributions yield
the Bragg diffraction peaks), but careful examination reveals a
slight diminution in the fringe contrast when including the full
lattice dynamics.

Taking a slice through the interference pattern [i.e., looking
at ρred(�r, �r ) from Eq. (4), taking �r = (x0, y0, z) for fixed x0

and y0] as shown in Fig. 9 reveals a fringe contrast in the
full scatterer plus lattice of 0.89, consistent with the ground-
state overlap |c0| calculated above. We note that there is some
reduction in contrast away from the central overlap region of
the two beams for both the full and static lattice cases due
to the diffracted portions of the beams. The consistency of
these results with the single-wave-packet results (both the time-
and energy-dependent versions) furthermore indicates that the
possibility of diffraction would not affect our primary result.

V. CONCLUSION

The results of this work demonstrate that the existence of
diffraction peaks in atom-surface scattering is insufficient to
demonstrate whether or not the scattering event was elastic or
inelastic. While the existence of truly elastic neutron scattering
has been demonstrated in previous works, the radically differ-
ent nature of atomic scattering (which involves long-range and
long-lived interactions with collections of atoms as opposed
to the Dirac δ-like interactions characterizing atomic-neutron
scattering) has been studied here to examine the possibil-
ity of long-wavelength phonon production. Our alternate,
interference-pattern-based thought experiment looks to the
fundamental quantum notions of the which-way measurement
to determine whether these grazing atom-surface scattering
events are truly elastic and whether the scattering process acts
as a measurement.
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