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Exotic dynamical evolution in a secant-pulse-driven quantum system
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We investigate an explicitly time-dependent quantum system driven by a secant-pulse external field. By
solving the Schrödinger equation exactly, we elucidate exotic properties of the system with respect to its
dynamical evolution: On the one hand, the system is shown to be essentially nonadiabatic, which prohibits
an adiabatic approximation for its dynamics; on the other hand, the loop evolution of the model can induce a
geometric phase which, analogous to the Berry phase of the cyclic adiabatic evolution, is in direct proportion
to the solid angle subtended by the path of the state vector. Moreover, we extend the model and show that the
described properties coincide in a special family of secant-pulse-driven models.
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I. INTRODUCTION

Exact solution to driven quantum systems with time-
dependent external fields has long been a subject of particular
interest in the field of quantum mechanics [1,2]. The mo-
tivation of the study comes not only from the fundamental
interest about the solvability of the driven quantum system
itself, but also from the nontrivial aspect of the dynamics
that may be generated through an explicitly time-dependent
Hamiltonian. For example, the cyclic adiabatic evolution of
a time-dependent quantum system may induce a geometric
phase, the so-called Berry phase [3,4], which indicates an
intriguing connection between quantum physics and the gauge
field theory. The Berry phase has been demonstrated to play
important roles in various areas of physics, e.g., in exploring
the property of electrons in crystals [5,6] and in designing
fault-tolerant quantum operations for information processing
[7–10].

In light of the application to quantum control, the driven
systems of the following form have attracted considerable
attention [11–19]:

H (t ) = �xJx + �z(t )Jz, (1)

where Jx,z denote the angular-momentum operators satisfying
[Ji, Jj ] = iεijkJk , the field component �z(t ) takes a time-
dependent form, and �x is assumed to be a constant. Relevant
study on this type of driving protocol can be retrospected to
the original Landau-Zener model [11,12]; the model and asso-
ciated variants have been extensively investigated and applied
to, e.g., the controllable quantum state transfer [13,15–19],
Landau-Zener interferometry [20–23], and the charge transfer
and chemical reactions [2,24–26]. To our best knowledge,
the previous studies on this kind of driven system had not
involved the geometric phase. In fact, a simple analysis on
the adiabatic solution of the Hamiltonian (1) displays that
no geometric phase could be generated in any such scan-
ning protocols through the adiabatic process. Let |m〉 de-
note the eigenstate of Jz with magnetic quantum number m.
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The instantaneous eigenstate of the Hamiltonian is given by
|ψad

m (θad )〉 = eiθadJy |m〉 with θad = arccos −�z√
�2

x+�2
z

. For any

cyclic evolution the parameter θad should retrace itself and no
Berry connection could be induced in the parametric space:

Am ≡ i
〈
ψad

m (θad )
∣∣∂θad

∣∣ψad
m (θad )

〉 = −〈m|Jy |m〉 = 0. (2)

At this stage, we mention that this consequence resulted from
the adiabatic evolution and it does not indicate the necessity
of restriction to the nonadiabatic quantum process. So the
question arises naturally: Could one find a system with the
form of Eq. (1) that can generate nonadiabatic geometric
phase during its evolution?

The Aharonov-Anandan phase [27] has often been used
to describe the geometric phase for nonadiabatic processes.
Differing from the Berry phase in the cyclic adiabatic evolu-
tion, the Aharonov-Anandan phase can hardly be interpreted
as a geometric object because it usually depends on certain
dynamical quantities, e.g., the rotating angular speed of the
evolving state vector [28–30]. In this article we shall present
a driven model with the form of Eq. (1) and demonstrate that
its nonadiabatic evolution can generate the geometric phase.
Astonishingly, we show that the nonadiabatic geometric phase
induced here is in close analogy to the adiabatic Berry phase:
A curvature vector could be identified for the loop evolution
in the Bloch space (instead of the parametric space); the
phase factor can then be understood as the geometric object
of the solid angle subtended by the closed path of the state
vector. On the other hand, our study reveals that the system
is essentially nonadiabatic, which prohibits an adiabatic ap-
proximation for its evolution. So the existence of the geomet-
ric phase in the present model distinguishes itself from the
conventional Berry phase as it is rooted in the nonadiabatic
dynamics.

The rest of the article is organized as follows. In Sec. II
we will introduce the secant-pulse-driven model and solve
the Schrödinger equation analytically by invoking a gauge
transformation approach. The explicit form of the dynamical
invariant is achieved and the solution of the system is then
characterized in virtue of the Lewis-Riesenfeld (L-R) theory
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FIG. 1. The scanning process of the secant-pulse-driven model
specified by Eq. (3). (a) The time dependency of the field component
�z(t )/ν during the interval t ∈ (− π

ν
, π

ν
). (b) The diabatic energy

levels E±(t ) over ν for the j = 1
2 case. The energy difference at t = 0

is given by E+(0) − E−(0) = −ν.

[31]. In Sec. III A we investigate the nonadiabatic geometric
phase induced by the loop evolution and elucidate the linkage
between it and the geometry of the evolving path in the Bloch
space. In Sec. III B we describe the essential characteristic
of the nonadiabaticity of the model. In Sec. IV we extend
the system to a more general form and show that the pre-
viously described properties coincide in a family of secant-
pulse-driven models. Finally, a summary of the manuscript is
presented in Sec. V.

II. EXACT SOLUTION TO THE SECANT-PULSE-DRIVEN
QUANTUM MODEL

We address the driven model described by

H (t ) = h̄ν

(
Jx − 1

2
sec

νt

2
Jz

)
, (3)

where the field component �z(t ) assumes a secant-shape
pulse (see Fig. 1) and the x component �x is fixed by
�x/h̄ = ν (we set h̄ = 1 afterwards) with ν the scanning
frequency of �z(t ). Consider the time evolution of the
system during the pulsing interval t ∈ (t0, tf ) with |t0,f | �
π
ν

. In view of the Lie algebraic structure of the Hamilto-
nian, a potentially effective way to solve the Schrödinger
equation,

i
∂

∂t
|ψ (t )〉 = H (t )|ψ (t )〉, (4)

is to find out a specific gauge transformation [32], |ψg (t )〉 =
G†(t )|ψ (t )〉, via which the system is transformed into a new
representation with a simpler Hamiltonian. Most of the suc-
cessful cases in previous studies [14,17–19] have exploited the
gauge transformation G(t ) in the form of eiz(t )Jzeiy(t )Jy . Nev-
ertheless, here we adopt a slightly different form (although
equivalent mathematically), G(t ) = eiα(t )Jx eiβ(t )Jy , and show
that it is an efficient and convenient choice for this partic-
ular model. Under this transformation, one obtains a new
Schrödinger equation, i∂t |ψg (t )〉 = Hg (t )|ψg (t )〉, and the

effective Hamiltonian Hg (t ) reads

Hg (t ) = G†(t )H (t )G(t ) − iG†(t )∂tG(t )

= �X(t ) · �J , (5)

in which Xi (t )’s are given by

X1(t ) = α̇ cos β − ν

2
sec

νt

2
sin β cos α + ν cos β,

X2(t ) = β̇ + ν

2
sec

νt

2
sin α,

X3(t ) = −α̇ sin β − ν

2
sec

νt

2
cos β cos α − ν sin β. (6)

From Eq. (6), one can verify that by setting

α(t ) = β(t ) = 1
2 (π − νt ), (7)

there are X1,2(t ) = 0 and X3(t ) = − ν
2 sec( νt

2 ), thus

Hg (t ) = −ν

2
sec

νt

2
Jz. (8)

As a result, the dynamical basis in this transformed repre-

sentation is obtained as |ψg
m(t )〉 = e

−im
∫ t

t0
X3(τ )dτ |m〉 and the

basic solution to the original Schrödinger equation (4) is then
yielded via |ψm(t )〉 = G(t )|ψg

m(t )〉. Not only that, the above
gauge transformation approach also indicates that the system
possesses a dynamical invariant, the so-called L-R invariant
[31],

I (t ) = G(t )JzG
†(t )

= − sin βJx + cos β(sin αJy + cos αJz)

= − cos
νt

2
Jx + sin

νt

2

(
cos

νt

2
Jy + sin

νt

2
Jz

)
, (9)

which satisfies i∂t I (t ) = [H (t ), I (t )].
Let us express I (t ) as I (t ) ≡ �R(t ) · �J in which �R(t ) =

(sin θ cos ϕ, sin θ sin ϕ, cos θ ) and the angles θ (t ) and ϕ(t ) are
given by

θ (t ) = arccos

(
sin2 νt

2

)
, ϕ(t ) = π − arctan

(
sin

νt

2

)
.

(10)

Note that these two equalities constitute the set of parametric
equations for the evolving trajectory of I (t ). In the parametric
space spanned by �R(θ, ϕ), I (t ) will evolve along a fixed
path χ on the surface of the unit sphere (see Fig. 2). The
orientation of I (t ) goes from θ = 0 at t0 = −π

ν
to (θ, ϕ) =

( π
2 , π ) at t = 0, and then returns to the initial orientation at

tf = π
ν

. According to the L-R theory, the eigenvector |φm(t )〉
of I (t ), specified by I (t )|φm(t )〉 = m|φm(t )〉, differs from the
basic solution |ψm(t )〉 of the system only by a phase factor:
|ψm(t )〉 = ei�m(t,t0 )|φm(t )〉, where �m(t, t0) is given by

�m(t, t0) =
∫ t

t0

〈φm(τ )|i∂τ − H (τ )|φm(τ )〉dτ. (11)

The two terms of the above integration represent the geometric
phase and the dynamical phase, respectively. The kernel of the
latter, accounting for the diabatic energy levels of the system,
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FIG. 2. Illustration of the loop evolution of the dynamical invari-
ant I (t ) along the path χ in the parameter space spanned by �R(θ, ϕ).
It also characterizes the trajectory of the state vector |φ+(t )〉 evolving
on the surface of the Bloch sphere for the j = 1

2 case. The enclosed
surface of the loop evolution is denoted as S(χ ).

is worked out to be

Em(t ) = 〈φm(t )|H (t )|φm(t )〉

= −mν

2

(
cos

νt

2
+ sec

νt

2

)
, (12)

of which the two-level case, i.e., with the azimuthal quantum
number j = 1

2 , is depicted in Fig. 1(b).

III. EXOTIC DYNAMICAL PROPERTIES OF THE MODEL

A. Nonadiabatic Berry phase induced in the model

We now consider the geometric phase induced by the
dynamical evolution of the model. To be specific, we focus on
the case of j = 1

2 . The eigenstates of the dynamical invariant
I (t ) in this case are expressed as

|φ+(t )〉 = cos
θ (t )

2
|+〉 + sin

θ (t )

2
eiϕ(t )|−〉,

|φ−(t )〉 = sin
θ (t )

2
e−iϕ(t )|+〉 − cos

θ (t )

2
|−〉, (13)

in which we have used the notation “±” for m = ± 1
2 , respec-

tively. Up to a phase factor, the basis state |φ±(t )〉 undergoes
a loop evolution from the spin-up (spin-down) state |±〉 at
t → −π

ν
to a state

√
2

2 (|+〉 ∓ |−〉) at t = 0, and then returns
to the initial spin-up (spin-down) state at the ending point
t → +π

ν
. The total phase �±(t, t0) induced in the process

can be written as �±(t, t0) ≡ �d
±(t, t0) + �

g
±(t, t0), and the

geometric phase �
g
±(t, t0) is worked out to be

�
g
±(t, t0) =

∫ t

t0

〈φ±(τ )|i∂τ |φ±(τ )〉dτ

= ±
∫ νt

νt0

cos3 q

2

4
(
1 + sin2 q

2

)dq, (14)

with q ≡ ντ . For the overall evolution with t0,f = ∓π
ν

, the
above integration gives rise to �

g
±(tf , t0) = ± 1

2 (π − 2).
To manifest the geometric feature of the above phase

factor, let us change the variable t into �R(θ, ϕ). In the Bloch
space, the basis state |φ+(t )〉 will evolve along the same path
χ as that of I (t ) depicted in Fig. 2. The definite integral in
the first line of Eq. (14) can then be recast as the line integral
along the path,

�
g
±(t, t0) = i

∫ �R

�R0

〈φ±( �R)| �∇|φ±( �R)〉 · d �R. (15)

At this stage, it should be noted that the field component �z(t )
diverges as t → ±π

ν
and the path of the state vector is not

strictly closed owing to the singularity at the point θ = 0 (the
point P in Fig. 2). However, it is seen from Eqs. (11)–(15)
that this divergency does not occur in the loop integral of the
geometric phase �

g
±(χ ) but only affects that of the dynamical

part of the total phase �±(χ ). So we can regard the integral
path of Eq. (15) a closed loop along which the geometric
phase can be calculated by integrating the curvature over the
enclosed surface,

�
g
±(χ ) = i

∮
χ

〈φ±( �R)| �∇|φ±( �R)〉 · d �R

= −
∫∫

S(χ )

�∇ × �A±( �R) · d �S, (16)

where

�A±( �R) ≡ i〈φ±( �R)| �∇|φ±( �R)〉 (17)

denotes the nonadiabatic Berry connection. The occurring of
the minus in the second line of Eq. (16) is due to the clockwise
direction of the path χ . It is direct to obtain

�A±( �R) = ∓ sin2(θ/2)

R sin θ
ϕ̂. (18)

Thus the curvature �∇ × �A±( �R) = ∓ R̂
2R2 and the surface inte-

gral in Eq. (16) is obtained as

�
g
±(χ ) = ±1

2

∫∫
S(χ )

sin θdθdϕ = ±1

2
�(χ ), (19)

where �(χ ) = π − 2 is just the solid angle swept by the loop
evolution. It is remarkable that the nonadiabatic geometric
phase induced here is independent of any dynamical quantity,
e.g., the scanning frequency ν or the angular speed of the
evolving state vector.

In real physical systems the driving field cannot be infinite
and the truncation of the secant pulse is inevitable. The ex-
pression of Eq. (14) then describes the nonadiabatic geometric
phase for the noncyclic dynamical process. It is worthy to
note that, as the integral kernel in Eq. (14) tends to zero
as τ → ±π

ν
, the truncation of the field pulse results in very

small influence on the amount of the geometric phase. In
Fig. 3 we depict the cutoff error to the geometric phase �

g
+(χ )

induced by the symmetric truncation of the filed pulse, i.e.,
with νt0,f = ∓|π − δ|. It is shown that the relative error is
less than 10−3 even when there is dramatic truncation δ ∼ π

10 .
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FIG. 3. Influence of the truncation of the field pulse on the
geometric phase. The curve of the inset describes the integral kernel
in Eq. (14) as a function of q ≡ ντ . It is shown that the relative error
[specified by 1 − �

g
+(tf , t0)/�g

+(χ )] is almost negligible when the
cutoff is within δ � 0.2π .

B. Nonadiabaticity of the model

In spite of the geometric feature described above, the nona-
diabatic Berry connection �A±( �R) obtained in Eq. (17) could
not recover the adiabatic one shown in Eq. (2). In particular,
we show below that the dynamical evolution generated by
the present model is essentially nonadiabatic and does not
allow an adiabatic approximation. That is to say, the geometric
phase induced in the model differs from the conventional
Berry phase since it is rooted in the nonadiabatic dynamics
but not the commonly known adiabatic process.

First, we mention that the basis state |φm(t )〉 of I (t ) could
never recover the adiabatic instantaneous eigenstate |ψad

m (t )〉
of the Hamiltonian (3). This can be intuitively understood in
view of the fact that in the parameter space |φm(t )〉 always
evolves along the fixed trajectory which is independent of
the scanning frequency ν [cf. Eq. (10)]. More specifically,
one can verify that the quantitative condition of the adiabatic
approximation,∣∣∣∣∣

〈
ψad

m (t )
∣∣ψ̇ad

n (t )
〉

Ead
m (t ) − Ead

n (t )

∣∣∣∣∣ =
∣∣∣∣∣
〈
ψad

m (t )
∣∣Ḣ (t )

∣∣ψad
n (t )

〉
[
Ead

m (t ) − Ead
n (t )

]2

∣∣∣∣∣ � 1, (20)

cannot be fulfilled for the present model since both the nu-
merator and denominator above are dominated by the same
power of the parameter ν. For the j = 1

2 case a straightforward
calculation gives∣∣∣∣∣

〈
ψad

+ (t )
∣∣ψ̇ad

− (t )
〉

Ead+ (t ) − Ead− (t )

∣∣∣∣∣ =
∣∣sin νt

2

∣∣
2

sin θad cos2 θad, (21)

with θad (t ) = arccos[(1 + 4 cos2 νt
2 )−1/2]. So the adiabatic

condition should be violated during the evolution, whatever
how slow the scanning rate ν is.

Another perspective to exhibit the nonadiabaticity of the
model is to compare the state evolution generated by H (t )
of Eq. (3) and that by H ′(t ) ≡ −H (t ). Although the two
Hamiltonians H (t ) and H ′(t ) possess completely identical in-
stantaneous eigenvectors, the dynamical evolution generated
by them is different. In view of the fact that H ′(t ) relates to
H (t ) by a transformation ν → −ν, the dynamical invariant

I ′(t ) (hence the basis state |φ′
m(t )〉) of the model H ′(t ) can be

obtained from I (t ) of the original system H (t ) by changing
ϕ(t ) into ϕ′(t ) = π + arctan(sin νt

2 ) but with θ ′(t ) = θ (t ) [cf.
Eq. (10)]. So the nonadiabatic effect can be displayed by the
loss of fidelity between the basis sets of the two models:
δm(t ) ≡ 1 − |〈φm(t )|φ′

m(t )〉|2. For the j = 1
2 case, one obtains

δ±(t ) = sin2 θ (t ) sin2 ϕ(t ) = sin2 νt

2
cos2 νt

2
. (22)

It is clear that the nonadiabaticity displayed above does not
depend on the scanning frequency ν, which reconfirms that
the model is essentially nonadiabatic.

IV. GENERALIZATION OF THE SECANT-PULSE-DRIVEN
MODEL

We now extend the above proposed model to a more
general form of which the field component �x assumes an
arbitrary time-dependent scanning pulse. Specifically, this
family of driven models are shown as

H̃ (t ) = �x (t )

{
Jx − 1

2
Jz sec

[
1

2

∫
�x (t )dt + ϑ0

]}
, (23)

in which �x (t ) is a general function of t and the con-
stant ϑ0 in the integral ϑ (t ) ≡ 1

2

∫
�x (t )dt + ϑ0 is set such

that |ϑ (t )| < π
2 . By invoking a similar gauge transformation

G̃(t ) = eiα̃(t )Jx eiβ̃(t )Jy with

α̃(t ) = β̃(t ) = π

2
− ϑ (t ), (24)

one can obtain an effective Hamiltonian in the transformed
representation:

H̃ g (t ) = G̃†(t )H̃ (t )G̃(t ) − iG̃†∂t G̃(t )

= −1

2
�x (t ) sec ϑ (t )Jz. (25)

Subsequently the dynamical invariant of the system is
achieved as

Ĩ (t ) = − cos ϑ (t )Jx + sin ϑ (t )[cos ϑ (t )Jy + sin ϑ (t )Jz].

(26)

For the time interval during which ϑ (t ) goes from −π
2 to π

2 ,
Ĩ (t ) will evolve along the same path χ as that of I (t ) shown
in Fig. 2. So the geometric phase �̃m(χ ) induced during the
loop evolution is identical to �m(χ ) [cf. Eq. (19)] obtained
in the former model. That is to say, the sort of driven models
possess the universal geometric property with respect to the
dynamical evolution.

V. CONCLUSION

In summary, we have explored the dynamics generated by
a secant-pulse-driven model. The Schrödinger equation of the
system is solved exactly by virtue of the gauge transformation
approach. The nonadiabatic Berry phase, or the so-called
Aharonov-Anandan phase, induced by the loop evolution of
the model is shown to possess quite exotic properties: It
can be understood as the geometric object of the solid angle
subtended by the evolution path and is independent of the
evolving speed of the state vector in the Bloch space; on
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the other hand, the geometric phase achieved in the present
model distinguishes itself from the adiabatic Berry phase
as the model does not allow the adiabatic assumption for
the dynamical evolution. Furthermore, we have extended the
system to a more general form and show that the described
feature of the dynamics is universal in the specified family of
secant-pulse-driven models.

For the potential application of the model, we note that
the spin geometric phase driven by magnetic field textures
has been exploited to manipulate electronic quantum states

in semiconducting nanostructures [33,34]. Very recently, the
role of the nonadiabatic A-A phase of the spin carriers subject
to in-plane magnetic textures has also been investigated in re-
lation to the topological transition in electronic spin transport
[35,36]. The model proposed in the present manuscript offers
a renewed way to address the relevant issue. To this goal, a
possible design of the described model in one-dimensional
conducting rings, which takes into account the matching of
the intrinsic Rashba field and the magnetic textures from an
external source, should be a research topic in future study.
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