
PHYSICAL REVIEW A 98, 022134 (2018)

Anomalous dynamics in multilevel quantum decay
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A metastable quantum state coupled to a continuum undergoes an exponential decay in the Weisskopf-Wigner
(Markovian) approximation. However, quantum theory strictly predicts deviations from an exponential decay law
both at small and long time scales. In multilevel systems, even in the Markovian approximation strong deviations
from an exponential decay can be observed in the intermediate time scale owing to interference of overlapping
resonances. Such interference effects are simply described by an effective non-Hermitian Hamiltonian and are
known to explain, for example, the existence of dark states and fractional decay. Here we show that the wide
variety of anomalous behaviors observed in multilevel quantum decay are rooted in the non-normal nature of
the effective non-Hermitian Hamiltonian, revealing strong similarities between anomalous quantum mechanical
decay and non-normal dynamics found in hydrodynamic flows. Major signatures of non-normal dynamics include
delayed decay, accelerated decay, and exponential-power-law decay at an exceptional point. Such signatures are
exemplified by suggesting simple tight-binding lattice realizations of multilevel quantum decay, which could be
emulated in integrated photonic experiments. Finally, it is shown that for noninteracting particles with fermionic
statistics the usual exponential decay law is restored, i.e., all anomalous decay effects arising from single-particle
non-normal dynamics are washed out.

DOI: 10.1103/PhysRevA.98.022134

I. INTRODUCTION

Decay of an unstable quantum state into a continuum
is a fundamental physical process which has received great
theoretical interest since the early developments of quantum
mechanics [1–8]. Quantum decay is ubiquitous in a wide
variety of physical systems involving unstable elementary
particles, nuclei, atoms, and molecules. Examples include the
nuclear alpha decay [1], spontaneous emission of a photon
from an atomic excited state [2], atomic autoionization [5], tun-
neling escape from a potential trap [3], etc. In the Weisskopf-
Wigner (Markovian) approximation [2], an exponential law is
known to well describe quantum mechanical decay. However,
exact quantum mechanical calculations predict that the survival
probability is definitely not exponential at short and long times
(see, e.g., Refs. [4–12] and references therein). Such deviations
have been clearly observed in some recent experiments [13,14].
Major consequences of nonexponential decay at short times are
Zeno and anti-Zeno effects, i.e., deceleration or acceleration
of the quantum decay by frequent or infrequent measurements
(see, e.g., Refs. [15–20] and references therein). In many-body
systems, the decay dynamics can be modified by particle statis-
tics and contact interactions [21,22]. Quantum decay is further
modified when two or more metastable states decay into a com-
mon continuum. Long-time behavior of the decay dynamics in
multilevel quantum systems has been studied, for example,
in Ref. [23]. Major features in multilevel quantum decay are
related to the appearance of quantum interference among dif-
ferent resonances of the system. Such features can be captured
rather generally within the Markovian approximation. Under
certain conditions, perfect destructive interference of different
decay channels can arise, resulting in a limited decay and the
existence of bound states in the continuum (also referred to

as dark states) [24,25]. However, it is generally impossible to
satisfy the destructive interference conditions simultaneously
for all the transitions when many metastable states are involved,
i.e., limited decay is observed in very special cases. Nonethe-
less, interference of resonance states generally results in appre-
ciable deviations from an exponential decay in the intermediate
time scale, even when the Markovian approximation is used.
Such deviations include damped oscillations [26], resilient
periods followed by decay bursts [27], and exponential-power-
law decay near an exceptional point (EP) [28].

In this work it is shown that the wide variety of anomalous
decay behaviors observed in multilevel quantum decay are
rooted in the non-normal nature of the effective non-Hermitian
Hamiltonian that describes interference of the resonance states,
thus sharing a strict connection with the non-normal dynamical
behavior observed in hydrodynamic flows [29,30]. Major
signatures of non-normal dynamics include delayed decay, ac-
celerated decay, and exponential-power-law decay at an excep-
tional point. Such effects are here exemplified by suggesting
simple tight-binding lattice realizations of multilevel quantum
decay, which could be emulated using photonic waveguide
lattices [31]. Finally, we briefly discuss multiparticle quantum
decay and show that for noninteracting fermionic particles all
anomalous decay effects arising from non-normal dynamics
can be washed out and an exact single exponential decay law
is restored.

II. MULTILEVEL QUANTUM DECAY: BASIC EQUATIONS
AND EFFECTIVE NON-HERMITIAN MODEL

A rather general framework to study multilevel quantum de-
cay is provided the Friedrichs-Lee (or Fano-Anderson) model,
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which describes the decay of N discrete states coupled to one
(or more) continuum of states. For the sake of definiteness,
we will focus our analysis to the case where the N discrete
states are coupled to a common continuum of states; however,
a similar study could be extended mutatis mutandis to the
case where more than one continuum is involved in the decay
dynamics (see Sec. III C for an example involving more than
one continuum). The second-quantization Hamiltonian of the
N -level Friedrichs-Lee model reads

Ĥ =
N∑

n=1

ωnĉ
†
nĉn +

∫
dk ω(k)ĉ†(k)ĉ(k)

+
N∑

n=1

∫
dk[gn(k)ĉ†nĉ(k) + g∗

n(k)ĉ†(k)ĉn]. (1)

In the above equation, ĉn, ĉ
†
n are the annihilation and creation

operators of particles for the bound states at energies ωn

(n = 1, 2, . . . , N ), ĉ(k), ĉ†(k) are the annihilation and creation
operators of particles in the continuum states at the energy
ω(k), and gn(k) is the spectral coupling function between the
nth discrete level and the continuum. The operators ĉn, ĉ

†
n,

ĉ(k), ĉ†(k) satisfy the usual commutation or anticommutation
relations of bosonic or fermionic particles. The Hamiltonian Ĥ

commutes with the particle number operator Ĝ = ∑
n ĉ

†
nĉn +∫

dk ĉ†(k)ĉ(k), which is thus a constant of motion. In the
single-particle case G = 1, particle statistics is not of relevance
and the state vector of the system can be expanded as

|ψ (t )〉 =
N∑

n=1

cn(t )ĉ†n|0〉 +
∫

dk c(k, t )ĉ†(k)|0〉, (2)

where cn(t ) and c(k, t ) are the probability amplitudes to find
the particle at the nth discrete level or in the continuum,
respectively, with the normalization condition

∑
n |cn(t )|2 +∫

dk|c(k, t )|2 = 1. Assuming h̄ = 1, the evolution of the
amplitude probabilities is governed by the coupled equations

i
dcn(t )

dt
= ωncn +

∫
dk gn(k)c(k, t ), (3)

i
∂c(k, t )

∂t
= ω(k)c(k, t ) +

N∑
n=1

g∗
n(k)cn(t ). (4)

The degrees of freedom of the continuum can be formally
eliminated from Eqs. (3) and (4), yielding the following
integro-differential equations for the occupation amplitudes cn

of the discrete states

i
dcn

dt
= ωncn − i

N∑
m=1

∫ t

0
dξ Gn,m(t − ξ )

× exp[−iωm(t − ξ )]cm(ξ ), (5)

where we have set

Gn,m(τ ) ≡
∫

dk gn(k)g∗
m(k) exp {i[ωm − ω(k)]τ } (6)

and assumed c(k, 0) = 0. The Weisskopf-Wigner (Markovian)
approximation is introduced as usual by considering the
weak-coupling limit gn → 0 and assuming a nonstructured
continuum. This yields an effective non-Hermitian dynamics

for the evolution of the amplitude probabilities cn(t ), which
reads

i
dcn

dt
=

∑
m

Hn,mcm(t ), (7)

where the elements of the N×N non-Hermitian matrix H are
given by

Hn,m = ωnδn,m − i�n,m (8)

and where we have set

�n,m ≡
∫ ∞

0
dτ Gn,m(τ )

=
∫ ∞

0
dτ

∫
dk gn(k)g∗

m(k) exp{i[ωm − ω(k)]τ }. (9)

The survival probability, i.e., the probability that the particle
has not decayed into the continuum at time t , is given by

P (t ) =
N∑

n=1

|cn(t )|2, (10)

with P (0) = 1 and P (t ) � 1 for any t � 0. In the following,
we will assume that the frequencies ωn of discrete levels are
embedded in the continuous spectrum of scattering states and
that there are not bound states in the continuum, i.e., P (t ) → 0
as t → ∞.

III. NON-NORMAL DECAY DYNAMICS

A. General aspects

In the Markovian approximation, the decay dynamics P (t )
is determined by the properties of the non-Hermitian matrix
H. At first sight one could think that the decay dynamics is
essentially established by the energy spectrum, i.e., eigenval-
ues of H, and that the eigenvalue with the largest imaginary
part (i.e., minimum decay rate) gives the dominant term of the
decay dynamics of P (t ). This picture is rather satisfactory in
many cases, for example, to describe limited decay when there
exist bound states in the continuum, signaled by the existence
of one (or more) eigenvalues of H with vanishing imaginary
part, or wheneverH is a normal operator. However, it can fail to
describe important dynamical effects when H is non-normal,
i.e., when the commutation relation

H†H = HH† (11)

is not satisfied. For non-normal operators, i.e., when H†H �=
HH†, the energy spectrum of H and the spectral dominance
established by the long-lived resonance mode may have little
to do with the dynamical behavior of the system [29,30].
This somewhat unusual behavior is observed, for example,
in hydrodynamics flows, where turbulence can arise in spite
of eigenvalue stability of the underlying flow [29]. In the
following, we will assume that there are not dark states,
and that P (t ) undergoes a complete decay. Let us indicate
by λ1, λ2, . . . , λN the eigenvalues of H, ordered such that
0 < Im(λ1) � Im(λ2) � · · · � Im(λN ), and let us set

P (t ) = F (t ) exp(−t/τ ), (12)
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where

1

τ
≡ 2|Im(λ1)|. (13)

Note that τ is the lifetime of the long-lived resonance mode of
the decaying system. Deviations of the decay law P (t ) from
the exponential decay of the long-lived resonance mode are
embedded in the function F (t ). The following general proper-
ties of F (t ) and P (t ) can be readily proven (see Appendixes
A and B for some technical details).

(i) The upper and lower bounds for P (t ), when the ini-
tial condition c(0) ≡ (c1(0), c2(0), . . . , cN (0))T is varied, are
given by

σmin(t ) � P (t ) � σmax(t ), (14)

where σmin(t ) and σmax(t ) are the smallest and largest eigenval-
ues of the matrixA†A and where we have setA ≡ exp(−iHt ).
The largest (smallest) value σmax (σmin) is assumed for the
initial excitation c(0) of the system which is the eigenvector
of A†A with eigenvalue σmax (σmin).

(ii) If the non-Hermitian matrix H is normal, i.e., if H
satisfies the commutation relation (11), then

σmax(t )=exp(−t/τ ), σmin(t )=exp(−2t |Im(λN )|). (15)

In other words, for a normal matrix H the decay cannot be
slower than the long-lived resonance mode nor faster than the
less-lived resonance mode of the system. In particular, this
means that F (t ) � 1, and F (t ) = 1 if and only if the initial
state c(0) ≡ (c1(0), c2(0), . . . , cN (0))T of the system is the
eigenvector of H corresponding to the eigenvalue λ1.

(iii) Let us assume that H is a defective matrix and that
the eigenvalue λ1 is an EP of H of order h, with 2 � h � N .
This means that h eigenvalues and corresponding eigenvectors
of H coalesce [32,33]. Indicating by v1 the eigenvector of
H with eigenvalue λ1 and by u2, u3, . . . , uh the chain of
associated (generalized) eigenvectors (see Appendix B for the
definition of associated eigenvectors of a defective matrix), in
the asymptotic limit t → ∞ one has

F (t ) � (v1|v1)

[(h − 1)!]2(uh|uh)
t2(h−1), (16)

where (f |g) ≡ ∑
n g∗

nfn denotes the usual l2 scalar product.
Moreover, the initial system excitation c(0) that realizes the
largest survival probability in the t → ∞ asymptotic limit is
the generalized eigenvector uN .

The above properties highlight the major impact that the
non-normal nature of H plays in the appearance of anomalous
decay behaviors. In fact, owing to property (ii), in a decaying
multilevel system described by a normal HamiltonianH effects
such as transient initial resilient (nondecaying) behavior or
power-exponential decay in the intermediate or long time
scales are prevented. Such effects could be of major interest
in quantum decay control contexts; for example, initial non-
decaying dynamics could be exploited to slow down quantum
decay by infrequent interruptions, i.e., by kicking the system
at time intervals much longer than the characteristic Zeno
time [26].

Here we illustrate two non-normal decay behaviors in a
multilevel system occurring at short and intermediate or long
time scales, suggesting simple tight-binding lattice realizations
of the proposed models.

B. Delayed and accelerated decay

An interesting behavior of a non-normal Hamiltonian H
is to allow for delayed and accelerated decays arising from
quantum interference of decaying resonance modes. Such
effects are very different than well-established Zeno or anti-
Zeno effects, i.e., the deceleration or acceleration of quantum
decay by frequent observations of the system below or above
the Zeno time [15–19], and received little attention so far.

Delayed decay occurs when σmax(t ) remains very close
to one for some interval 0 < t < τd , after which the decay
starts, usually with an abrupt drop of P (t ). Such a resilient
behavior, with the decay effectively starting after the delay
time τd , was earlier noticed in Ref. [27] in the case of two and
three interference resonances in an atom interacting with the
quantum vacuum of electromagnetic field, suggesting a way
to slow down spontaneous emission decay. Clearly, delayed
decay is a signature of non-normal dynamics since it is for-
bidden for a normal Hamiltonian H [according to property (ii)
stated in Sec. III A]. Here we present an example of a decaying
multilevel system showing a resilient time τd that can be made
arbitrarily long as the number N of interfering resonances is
increased, suggesting a very simple realization of the model
based on hopping dynamics in a tight-binding lattice. This
model also provides a very simple and intuitive explanation of
the delayed decay behavior, and could be emulated in photonic
waveguide lattices. Likewise, we show that accelerated decay
as a result of non-normal dynamics is possible in such a model
for a different initial preparation of the system. This means
that, by changing coherent initial excitation of the N levels, the
decay dynamics can be either slowed down or accelerated as
compared to the lifetimes of the long-lived and less-long-lived
resonance states of the system.

Let us specialize the Friedrichs-Lee Hamitonian (1) by
assuming the following form of energies ωn, ω(k) and spectral
coupling functions gn(k):

ωn = 2κ cos

(
nπ

N + 1

)
, (17)

ω(k) = 2� cos k, (18)

gn(k) = ρ√
π (N + 1)

sin

(
nπ

N + 1

)
, (19)

where n = 1, 2, . . . , N , −π � k < π , and κ , �, and ρ are
some positive constants. Clearly, the continuum of scattered
states, into which the N discrete levels decay, is a tight-binding
continuum with a bandwidth 4�, and the discrete levels are
homogeneously coupled to the continuum, i.e., the spectral
coupling functions gn are independent of k. The model (17)–
(19) has a very simple physical realization, which is illustrated
in Fig. 1 and discussed in details below. After some lengthy but
straightforward calculations, the coefficients �n,m entering in
the non-Hermitian matrixH [Eqs. (8) and (9)] can be calculated
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FIG. 1. (a) Tight-binding model of multilevel quantum decay
showing non-normal anomalous decay. The system comprises a chain
of N discrete Wannier states |n〉, n = 1, 2, . . . , N , for example a
quantum dots chain, attached to a tight-binding array (a quantum wire)
that provides the continuum of states where the discrete levels decay.
� and κ are the hopping rates between adjacent sites in the lattice and
in the chain, respectively, whereas ρ < � is the chain-lattice coupling.
An (n = 0,±1, ±2, . . .) and Bn (n = 1, 2, . . . , N ) are the occupation
amplitudes of sites in the quantum wire and in the quantum dots chain,
respectively. (b) Schematic of the energy levels of the corresponding
Friedrichs-Lee Hamiltonian in the Bloch basis.

in a closed form and read

�n,m = ρ2

�(N + 1)

1√
1 − (

ωm

2�

)2

× sin

(
nπ

N + 1

)
sin

(
mπ

N + 1

)
. (20)

Figure 2 shows a typical behavior of the boundaries σmin(t )
and σmax(t ) of the survival probability P (t ), and corresponding
exponential decay of long-lived and less-long-lived resonance
modes of the system, for a few increasing values of number
N of discrete states. Note that σmax(t ) remains very close to
one for a resilient time τd , after which a rather abrupt drop
is observed, corresponding to a delayed decay [see lower
panels in Figs. 2(a)–2(c)]. Interestingly, the resilient time τd

is an increasing function of the number N of discrete levels,
as shown in Fig. 2(d). Conversely, the behavior of σmin(t )
shows an abrupt drop in the initial stage of decay, well below
the less-long-lived resonance of the system, indicating that
the decay can be accelerated by a suitable initial coherent
preparation of the discrete states. Figure 3(a) shows an ex-
ample of the numerically computed behavior of the survival
probability P (t ) for two different initial preparations of the
system, corresponding to the eigenvectors of A†A (calculated
at the time t = t0 ∼ τd ) with largest and smallest eigenvalues
[see Figs. 3(b) and 3(c)]. Solid and dashed curves, almost
overlapped, refer to the numerical results obtained with and
without the Markovian approximation. The plots clearly show
delayed and accelerated decay dynamics, and demonstrate the
accuracy provided by the Markovian approximation.

The Friedrichs-Lee Hamiltonian with frequencies and spec-
tral couplings defined by Eqs. (17)–(19) has a very simple
physical implementation, based on particle hopping in a tight-
binding lattice as illustrated in Fig. 1(a). The system comprises
a chain of N Wannier sites (such as a chain of quantum dots)
with hopping amplitude κ , which is attached via a hopping
constant ρ to a one-dimensional infinite tight-binding lattice
(i.e., a quantum wire) with hopping rate �. The quantum
wire provides the tight-binding continuum of scattering states
where excitation is in the chain decay. This system can be
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FIG. 2. (a)–(c) Numerically computed behaviors of the upper
(σmax) and lower (σmin) boundaries of the survival probability P (t )
versus normalized time for the tight-binding lattice model of Fig. 1(a)
and for parameter values ρ/κ = 1 and �/κ = 3. The number N

of discrete levels is N = 5 in (a), N = 10 in (b), and N = 15 in
(c). The dashed lines correspond to the exponential decay behaviors
of long-lived (eigenvalue λ1) and less-long-lived (eigenvalue λN )
resonances of the decaying levels. The lower panels in (a)–(c) show
an enlargement of the upper boundary σmax in the early stage of the
decay, clearly demonstrating resilient dynamics and delayed decay.
Panel (d) shows the numerically computed behavior of the resilient
(delay) time τd versus N . The delay time τd is conventionally defined
by the relation σmax(τd ) = 0.997.

readily implemented in photonics using coupled waveguide
arrays, as discussed, e.g., in Refs. [31,34]. The tight-binding
band of the lattice is described by the dispersion relation
ω(k) = 2� cos(k), where −π � k < π is the Bloch wave
number, whereas the discrete chain of N sites, when decoupled
from the continuum, sustains N normal modes with energies
ωn = 2κ cos[nπ/(N + 1)] and with excitation amplitudes (in
the Wannier basis)

b
(n)
l =

√
2

N + 1
sin

(
nlπ

N + 1

)
, (21)

where l = 1, 2, . . . , N is the Wannier site. The normal modes
satisfy the orthonormality condition (b(n)|b(m) ) = δn,m. In-
dicating by B̂n the destruction operator of particles at the
n-Wannier site of the chain (n = 1, 2, . . . , N) and by Âα the
destruction operator of particles at the αth site of the quan-
tum wire (α = 0,±1,±2,±3, . . .), in the nearest-neighbor
tight-binding approximation the evolution equations for the
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FIG. 3. (a) Numerically computed behavior of the survival prob-
ability P (t ) in the lattice model of Fig. 1(a) for N = 10, ρ/κ = 1,
�/κ = 3 and for two different initial coherent preparation cn(0) of the
system, corresponding to delayed decay and accelerated decay. Curve
1 corresponds to the survival probability for the initial condition that
maximizes P (t ) at t = t0 = 10/κ (delayed decay), whereas curve 2
corresponds to the survival probability for the initial condition that
minimizes P (t ) at t = t0 = 10/κ (accelerated decay). Panels (b) and
(c) show the amplitudes and phases of the initial coherent excitations
Bn(0) that minimize and maximize the decay in the Wannier basis
of Fig. 1(a).

operators B̂n and Âα read

i
dB̂n

dt
= κ (B̂n+1 + B̂n−1) (1 < n < N ),

i
dB̂1

dt
= κB̂2 + ρÂ0,

i
dB̂N

dt
= κB̂N−1,

i
dÂα

dt
= �(Âα+1 + Âα−1) + ρB̂1δα,0. (22)

The Friedrichs-Lee model (1) of quantum decay is readily
obtained from Eqs. (22) after switching from Wannier to Bloch
basis representation of operators. In fact, let us introduce the
Bloch basis representation of operators via the relations

ĉn =
N∑

l=1

b
(n)
l B̂l (n = 1, 2, . . . , N ), (23)

ĉ(k) = 1√
2π

∞∑
α=−∞

Âα exp(ikα). (24)

From Eqs. (22)–(24) it then readily follows that the evolution
equations for the operators ĉn, ĉ(k) in the Bloch basis are
given by

i
dĉn

dt
= ωnĉn(t ) +

∫ π

−π

dk gn(k)ĉ(k, t ), (25)

i
∂ĉ(k, t )

∂t
= ω(k)ĉ(k, t ) +

N∑
n=1

g∗
n(k)ĉn(t ), (26)

Δ ρ
κ

1c

......
2c 3c

1
κ2 3ρ2 Δ

quantum wire quantum wire

FIG. 4. Schematic of quantum mechanical decay of three Wannier
sites (e.g., three quantum dots) attached to two leads (quantum wires).
Anomalous decay from a third-order EP arises when conditions
(32), (33) on intrahopping rates κ1 and κ2 are met.

where ωn, ω(k), and gn(k) are given by Eqs. (17)–(19). Clearly,
Eqs. (25) and (26) are the Heisenberg equations of motion
for operators that one would obtain from the Friedrichs-Lee
Hamiltonian (1).

The tight-binding lattice model of Fig. 1(a) is very helpful
to provide a rather simple physical explanation of the resilient
dynamics observed in the decay dynamics (Figs. 2 and 3), and
the fact that the resilient time τd increases with the number N

of discrete levels. In fact, let us assume that at initial time t = 0
the chain in Fig. 1(a) is excited in the site n = N , i.e., in the
opposite edge of the chain coupled to the continuum. Clearly,
the decay process into the continuum starts when the site n =
1, attached to the quantum wire, becomes excited. Since the
excitation in the chain propagates by hopping at a finite speed
v � 2κ , for a time τ at least of the order τ ∼ N/v ∼ N/(2κ )
the site n = 1 remains unexcited, and thus the decay into the
continuum is delayed by such a time interval. This explains in a
very simple (albeit qualitative) way why a resilient dynamics is
observed in the multilevel quantum decay, and why the resilient
time increases as the number N of levels is increased.

C. Anomalous decay at an exceptional point

In hydrodynamics flows, it has been known for a long time
that non-normal dynamics is responsible for excess noise in the
system and transient growth of perturbations, even by several
orders of magnitude, despite the linear stability of the under-
lying flow [29,30]. A similar behavior occurs in multilevel
quantum decay when the non-Hermitian matrix H is close to
an EP. In fact, according to the general property (iii) stated
in Sec. III A, the amplitude F (t ), that describes deviations
from the exponential decay of the long-lived resonance of
the system, undergoes a secular algebraic growth in time,
indicating that—like in non-normal hydrodynamic flows—the
spectral dominance of the long-lived resonance has little to do
with the temporal behavior of the system. This property was
earlier studied in the special case of two coalescing quantum
resonances [31]; however, it was not related to non-normal
dynamics of hydrodynamic flows. Here we suggest a rather
simple model of quantum decay that gives rise to non-normal
quantum decay at a third-order EP, thus showing a cubic
behavior of F (t ) (rather than a quadratic one as in [31]). Also,
in the proposed model we have two continuum of scattered
states into which the discrete levels can decay. The system is
schematically depicted in Fig. 4 and comprises three Wannier
sites |1〉, |2〉, and |3〉, for example, three quantum dots, two
of them attached to two semi-infinite tight-binding lattices
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(i.e., two quantum wires) into which excitation decays. The
quantum decay for this model can be emulated using photon
transport in waveguide arrays, as discussed in [22,34]. Indicat-
ing by c1, c2, and c3 the amplitude probabilities of excitation
in the three Wannier sites |1〉, |2〉, and |3〉, respectively, after
elimination of the excitation in the two quantum wires, the
following effective non-Hermitian decay dynamics is obtained:

i
d

dt

⎛
⎜⎝

c1

c2

c3

⎞
⎟⎠ = H

⎛
⎜⎝

c1

c2

c3

⎞
⎟⎠, (27)

where

H =

⎛
⎜⎝

0 κ1 0

κ1 −iγ2 κ2

0 κ2 −iγ3

⎞
⎟⎠. (28)

In Eq. (28), κ1 and κ2 are the hopping amplitudes between sites
|1〉, |2〉 and |2〉, |3〉, respectively (see Fig. 4), whereas γ2 and
γ3 are the decay rates of sites |2〉 and |3〉 into the two quantum
wires. They are given by

γ2 � ρ2
2

�
, γ3 � ρ2

3

�
, (29)

where ρ2, ρ3 are the hopping rates of Wannier states |2〉 and
|3〉 to the attached quantum wire sites and � > ρ2,3 is the
hopping rate between adjacent sites in the two quantum wires.
The eigenvalues of the matrix (28) are the roots of the cubic
equation

λ3 + i(γ2 + γ3)λ2 − (
γ2γ3 + κ2

1 + κ2
2

)
λ − iγ3κ

2
1 = 0, (30)

which are given by Cardano’s formulas. From Cardano’s
relations, it can be readily shown that the three eigenvalues
of H coalesce to the common value

λ = −i(γ2 + γ3)/3 (31)

when the intracoupling constants κ1 and κ2 satisfy the
conditions

κ1 =
√

(γ2 + γ3)3

27γ3
, (32)

κ2 =
√

(γ2 + γ3)2(8γ3 − γ2) − 27γ2γ
2
3

27γ3
. (33)

The corresponding eigenvectors also coalesce to the common
vector

v1 ∝

⎛
⎜⎝

3κ1

−i(γ2 + γ3)
3κ2(γ2+γ3 )

γ2−2γ3

⎞
⎟⎠. (34)

Therefore, as the hopping amplitudes κ1 and κ2 are tuned to
satisfy Eqs. (32) and (33), a third-order EP is found: the matrix
H, besides being non-normal, becomes nondiagonalizable at
such values of hopping amplitudes. This means that, for a
generic initial state preparation of the system, the survival
probability shows an exponential-algebraic decay, rather than
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FIG. 5. (a) Numerically computed behaviors of the upper (σmax)
and lower (σmin) boundaries of the survival probability P (t ) versus
normalized time for the tight-binding lattice model of Fig. 4. Pa-
rameter values are given in the text. The dashed curve shows the
exponential decay behavior of the coalescing resonance modes at the
EP. (b) Survival probability P (t ) versus normalized time (upper plot),
and corresponding envelope F (t ) (lower plot), corresponding to the
initial excitation of the three Wannier states in the eigenvector of the
adjoint matrix H†. Solid and dashed curves, almost overlapped, refer
to numerical results obtained for the full model and for the reduced
matrix (28) (Markovian approximation).

a purely exponential decay with the decay rate given by the
unique eigenvalue (31) of H.

As an example, Fig. 5 shows numerical results of quantum-
mechanical decay in the structure of Fig. 4 for parameter
values ρ3/ρ2 = 1, �/ρ2 = 4 and for the intercoupling hopping
amplitudes κ1 and κ2 tuned to satisfy Eqs. (32) and (33), i.e.,
κ1/ρ2 � 0.1361 and κ2/ρ2 � 0.0481. Figure 5(a) depicts the
behavior of upper (σmax) and lower (σmin) boundaries of the
survival probability P (t ), along with the exponential decay of
the coalescing resonances of the system. The behavior of P (t ),
corresponding to the initial excitation of the three quantum
dots in the eigenvector of the adjoint matrix H, is shown in
Fig. 4(b). Deviation from exponential decay, corresponding to
an algebraic (cubic) increase of F (t ), is clearly observed.

IV. MULTIPARTICLE QUANTUM DECAY

The previous analysis has been focused to the decay dynam-
ics of a single particle. However, in many particle systems the
decay dynamics is known to be largely influenced by contact
interactions and particle statistics [21,22]. For example, for
noninteracting particles the long-time algebraic decay law of
indistinguishable particles differs from the single-particle de-
cay law and depends on the statistics of the particles, fermions
showing a faster decay than bosons. A recent experiment
[22] that used polarization-entangled photon states to emulate
different particle statistics clearly showed that quantum decay
is affected by particle statistics. Thus a main question arises:
in the case of multilevel and multiparticle quantum decay, how
does particle statistics affect non-normal decay dynamics? An
important and rather simple result, that is proved below, is the
following one: all anomalous decay features arising from non-
normal dynamics in the single particle case, such as resilient
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(delayed) decay, accelerated decay, and exponential-power-
law decay at an EP, are fully washed out when considering the
decay of G = N noninteracting fermionic particles. In fact, let
us consider the N -level Friedrichs-Lee Hamiltonian (1), and
let us assume that G = N spineless particles with fermionic
statistics are initially occupying the N discrete levels. Owing
to the Pauli exclusion principle, each level can be empty
or occupied by one particle solely. The survival probability
P (ferm)(t ) that at time t none of the G particles has decayed
into the continuum is given by [22]

P (ferm)(t ) = |det(A)|2, (35)

where A = exp(−iHt ) and H is the non-Hermitian matrix
given by Eq. (8). Using the property that det(exp(−iHt )) =
exp(−it Tr(H)), from Eq. (8) one obtains

P (ferm)(t ) = exp(−γ t ), (36)

where we have set γ = 2
∑N

n=1 �n,n. Equation (36) shows that
in the Markovian approximation the survival probability is
exactly given by an exponential curve with effective decay
rate γ , i.e., anomalous decay features, observed for the single-
particle decay and arising from the non-normal nature of H,
are fully canceled. Note that this result holds only for fermionic
particles and provided that the number G of particles equals
the number N of discrete states.

V. CONCLUSION

Quantum mechanics predicts that, beyond the Weisskopf-
Wigner approximation, the decay of a metastable state coupled
to a continuum deviates from an exponential law at both short
and long time scales. Such deviations, in particular the lower-
than-exponential decay at short times, have attracted great
interest, since frequent observations of the decay state could
in principle slow down or even suppress the decay process
(quantum Zeno effect). The decay of several metastable states
into a continuum shows a richer dynamical scenario that
arises from interference of decaying resonances. For example,
destructive interference of different decay channels can lead
to fractional (limited) decay owing to the existence of bound
states in the continuum (dark states). In this work we have
theoretically studied on a general basis anomalous decay
behaviors in multilevel quantum systems under the Markovian
approximation. Our results show that the variety of behaviors
observed in multilevel quantum decay originate from the non-
normal nature of the effective non-Hermitian Hamiltonian that
describes quantum decay, revealing strong similarities between
multilevel quantum decay and non-normal dynamics observed
in hydrodynamic flows. Major signatures of non-normal dy-
namics include resilient dynamics and delayed decay, acceler-
ated decay, and exponential-power-law decay at an exceptional
point. Such signatures have been exemplified by suggesting
simple tight-binding lattice realizations of multilevel quan-
tum decay, which could be emulated in integrated photonic
experiments. Finally, we have shown quite remarkably that
non-normal dynamical features of multilevel quantum decay
are fully washed out and exponential decay is restored when
considering the decay dynamics of noninteracting spinless
particles with fermionic statistics.

APPENDIX A: GENERAL PROPERTIES OF
NON-NORMAL QUANTUM DECAY

In this appendix we prove the general properties of non-
normal quantum decay given in Sec. III A. For a system
prepared in a coherent superposition of amplitudes c(0) ≡
(c1(0), c2(0), . . . , cN (0))T , in the Markovian approximation
[Eq. (7)] the amplitudes c(t ) at a subsequent time t are
given by

c(t ) = Ac(0), (A1)

where the evolution operator A is given by

A = exp(−iHt ). (A2)

The survival probability P (t ) at time t is thus given by

P (t ) = (c(t )|c(t )) = (Ac(0)|Ac(0)) = (c(0)|A†Ac(0)),

(A3)

where (f |g) ≡ ∑
n g∗

nfn denotes the usual l2 scalar product.
From Eq. (A3) it then follows that

σmin(t ) � P (t ) � σmax(t ), (A4)

where

σmax ≡ max
(c(0)|c(0))=1

(c(0)|A†Ac(0)), (A5)

σmin ≡ min
(c(0)|c(0))=1

(c(0)|A†Ac(0)). (A6)

Note that σmax(t ) is the 2-norm of the self-adjoint matrix
A†A. Since A†A is a self-adjoint and positive-definite matrix,
σmax(t ) and σmin(t ) correspond to the largest and the smallest
eigenvalues of A†A, respectively. Moreover, the equalities in
Eq. (A4) are attained when c(0) is equal to the eigenvector of
A†A with eigenvalue σmax and σmin, respectively. This proves
property (i) given in Sec. III A.

If H is a normal operator, i.e., if H commutes with H†, one
has

A†A = exp(iH†t ) exp(−iHt ) = exp(Lt ), (A7)

where L =≡ i(H† − H). Note that L is a Hermitian operator
and its eigenvalues are real and positive. The largest eigenvalue
σmax of exp(Lt ) is clearly given by exp(−t/τ ), where 1/τ =
−2 Im(λ1), and it is assumed when c(0) is the eigenvector of
H with eigenvalue λ1, i.e., when the system is prepared in the
long-lived resonance mode. Likewise, the smallest eigenvalue
of exp(Lt ) is given by exp(−2t |Im(λN )|). This proves property
(ii) given in Sec. III A.

Finally, let us assume that the non-Hermitian matrix H is
defective and its eigenvalue λ1 is an EP of order h. For the
sake of simplicity, let us assume h = N , i.e., let us assume that
all eigenvalues and corresponding eigenvectors of H coalesce;
however, the results given below can be extended to the more
general case h < N . Let us indicate by v1 the eigenvector
of H with eigenvalue λ1, and by u2, u3, . . . , uN the chain
of associated (generalized) eigenvectors, defined by the chain

022134-7



STEFANO LONGHI PHYSICAL REVIEW A 98, 022134 (2018)

(see also Appendix B)

(H − λ1)v1 = 0,

(H − λ1)u2 = iv1,

. . . . . . . . . ,

(H − λ1)uN = iuN−1. (A8)

A set of N linearly independent solutions to Eq. (7) is
given by

c1(t ) = exp(−iλ1t )√
(v1|v1)

v1,

c2(t ) = exp(−iλ1t )√
(u2|u2)

(u2 + tv1),

c3(t ) = exp(−iλ1t )√
(u3|u3)

(
u3 + tu2 + t2

2!
v1

)
,

. . . . . . . . . ,

cN (t ) = exp(−iλ1t )√
(uN |uN )

(
uN + tuN−1 + · · · + tN−1

(N − 1)!
v1

)
.

(A9)

Clearly, in the asymptotic limit t → ∞ the dominant (long-
lived) contribution to c(t ), for a given initial condition c(0),
is provided by the term cN (t ), which shows a power-law
exponential decay ∼tN−1 exp(−iλ1t ). Therefore, in this limit
the largest value σmax(t ) is attained when the system is initially
prepared in the state c(0) = uN/

√
(uN |uN ), so that c(t ) =

cN (t ) and

σmax(t ) � (v1|v1)t2(N−1)

[(N − 1)!]2(uN |uN )
exp(−t/τ ) (A10)

as t → ∞. This proves property (iii) given in Sec. III A.

APPENDIX B: EXCEPTIONAL POINTS, JORDAN
FORM, AND ASSOCIATED EIGENVECTORS

Let H = H(R) be an N×N matrix, which depends on
some real parameters described by R, and let us indicate
by λ1(R), λ2(R), . . . , λN (R) the N eigenvalues of H, which
are generally complex since H is not a Hermitian matrix.
A remarkable property of non-Hermitian matrices compared
with Hermitian ones is that, as R is varied, eigenvalues and
eigenstates of H can show bifurcation and accompanying
nonanalyticity. A point R = R0 in parameter space where
this kind of bifurcation takes place is called an exceptional
point (EP) [32,33]. At an EP, a non-Hermitian degeneracy
occurs, i.e., h � 2 eigenvalues and corresponding eigenvectors
of H(R = R0) coalesce. h is referred to as the order of
EP. Since at an EP there is at least one eigenvalue with a
geometric multiplicity (i.e., dimension of its eigenspace) which
is strictly less than its algebraic multiplicity (so-called defective
eigenvalue), the eigenvectors of H at R = R0 do not form
a complete basis and the matrix H cannot be diagonalized.
However, H can always be reduced to Jordan normal form
[35,36]. To overcome the deficiency of eigenvectors of a non-
Hermitian matrix at the EP, one should introduce the so-called

generalized (or associated) eigenvectors, which can in turn be
used to find the Jordan form of the matrix H [35,36]. At an EP
of order h, the eigenvalues λ1(R0), λ2(R0), . . . , λh(R0) take
the same value λ1 with the same eigenvector v1,

(H − λ1)v1 = 0, (B1)

while the other eigenvalues λh+1(R0), λh+2(R0), . . . , λN (R0)
are distinct or not defective, i.e.,

(H − λn)vn = 0 (B2)

(n = h + 1, h + 2, . . . , N), with {vn}n>h linearly indepen-
dent. The chain of associated eigenvectors u2, u3, . . . , uh

of H, corresponding to the defective eigenvalue λ1, is de-
fined by Eq. (A8). Note that, for each n = 2, 3, . . . , h, one
has (H − λ1)nun = 0 but (H − λ1)n−1un �= 0. The vectors
v1, u2, . . . , uh, vh+1, . . . , vN are linearly independent and thus
form a complete basis of Hilbert space. By the similarity
transformation

H = CJ C−1, (B3)

the matrix H can be reduced to the Jordan normal form

J =
(
A 0
0 B

)
, (B4)

where the h×h and (N − h)×(N − h) matrices A and B are
given by

A =

⎛
⎜⎜⎜⎜⎜⎝

λ1 1 0 0 . . . 0

0 λ1 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 λ1 1

0 0 . . . 0 0 λ1

⎞
⎟⎟⎟⎟⎟⎠, (B5)

B =

⎛
⎜⎜⎜⎜⎜⎝

λh+1 0 0 0 . . . 0

0 λh+2 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 λN−1 0

0 0 . . . 0 0 λN

⎞
⎟⎟⎟⎟⎟⎠. (B6)

The matrix C is constructed from the eigenvectors and the
chain of associated eigenvectors ofH [35,36]. Also, the matrix
C can be used to find a set of linearly independent solutions
to the ordinary differential system of equations idv/dt = Hv
[35,36]. In particular, for the limiting case h = N the set of N

linearly independent solutions of the linear system are given
by Eqs. (A9).

As a final remark, we note that non-normality of the matrix
H is a necessary (but not sufficient) condition for H to
show an EP. In fact, the matrix H is normal if and only if
it is unitarily diagonalizable: hence a normal matrix cannot
show EPs. However, the condition of nondiagonalizability of
H, i.e., the appearance of an EP, is a much more stringent
requirement than non-normality. Indeed, a non-normal matrix
can be diagonalizable, while EPs of a non-normal matrix arise
for some special values of the control parameters (see the
example of Sec. III C).
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