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Motivated by the recent proposal for the quantification of the Bell nonlocality [Phys. Rev. A 92, 030101(R)
(2015)], we provide an extensive analysis of this concept, namely, the volume of violation. This new measure
of nonlocality has been proposed to deliver an evidence that the anomaly between maximally entangled states
and states that maximally violate a Bell inequality is caused by the method, which has been applied to quantify
nonlocality and the anomaly disappears when the volume of violation in used. We prove that such conclusion is not
true for all bipartite quantum systems with dimension d ⊗ d . In fact, if one assumes the same condition as in Phys.
Rev. A 92, 030101(R) (2015), it is limited to d � 7. Furthermore, we discuss several type of local measurements
and their influence on the quantification of nonlocality by mean of volume of violation. In particular, we propose
a set of local observers that significantly enhance the volume of violation, which may have important meaning
in a real-world application. Finally, we present a comparison between the volume of violation and the maximal
violation of a Bell inequality.
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I. INTRODUCTION

In the pioneering paper of Bell [1] it was proven that the
predictions of quantum theory are incompatible with any real-
istic interpretation of deterministic world formalized in terms
of the local hidden variable (LHV) theory. Bell considered a
situation of two spin- 1

2 particles in a singlet state and showed
that the results of measurements performed independently on
each of the particles are correlated in a way that cannot be
explained by any local model. This constraint, expressed as
so-called Bell inequality, represents one of the most profound
developments in the foundations of physics. The experiments
testing Bell inequalities are able to answer the question whether
the quantum mechanics is needed to describe the world or
whether the LHV theory is sufficient.

Over time, Bell inequalities have been introduced in many
varieties [2]. In general, they can be characterized by the
number of parties making measurements, n, the number of
measurement settings, p, and the number of possible outcomes
for each measurement, d. In particular, the most famous Bell-
type inequality, the Clauser-Horne-Shimony-Holt (CHSH)
inequality [3], has been proposed for n = p = d = 2. Later,
more general scenarios have been offered. For instance, the
Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality
developed for n = p = 2 and general d [4] or its alternative
version defined in Ref. [5], a set of Bell-type inequalities for
p = 2 and an arbitrary n and d proposed by Son et al. [6]
(hereafter referred to as the SLK inequality), to name a few.

Based on all these results several important properties of
nonlocality have been revealed. First of all, the early research
showed that the CHSH-type inequalities are violated even for
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d → ∞, but never exceeds the violation by two qubits, which
is in agreement with the Cirel’son limit [7]. Some authors
speculated that the correspondence principle suggests that
nonlocality should diminish with growing d [8,9]. However,
these studies of nonlocality were confined to some certain mea-
surements performed on maximally entangled states (MESs)
of two qudits [10,11]. Kaszlikowski et al. [12] proved that
the increase of the outcomes number d may result in even
stronger violation of local realism than it is for two qubits
if one considers general observables. Although the measure
of nonlocality used by Kaszlikowski et al. was based on the
resistance against noise, the same findings are reproduced by
the CGLMP inequality [13] given as

Id (ρ) =
�d/2�−1∑

k=0

(
1 − 2k

d − 1

)
[P (k) − P (−k − 1)] � 2,

(1)
where

P (k) = P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+P (A2 = B2 + k) + P (B2 = A1 + k) (2)

and

P (Aa = Bb + k) =
d−1∑
j=0

P (Aa = j, Bb = j + k mod d ),

(3)
with P (Aa,Bb ) = Tr(Aa ⊗ Bbρ) and Aa, Bb denoting two
different d-outcome positive measurements for spatially sepa-
rated observers A and B, respectively.

Further studies reveal that any bipartite pure entangled
state of d-dimensional subsystems violates the Bell-type in-
equality [11,14,15], which is known as the Gisin’s theorem.
Moreover, the detailed investigations of Acín et al. [13] (and
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later continued in Refs. [5,16]) performed on such system
disclosed another intriguing result, namely, the existence of
nonmaximally entangled states that lead to greater violation of
the CGLMP inequalities compared with MESs. The existence
of such anomaly was a rather unexpected result since it was
long believed that the MESs must also be the states of maximal
violation of Bell inequalities, in the same way as the CHSH
inequality is violated by two qubit states [14,17]. Nowadays it
is known that “for all measures of nonlocality invented to date,
it happens almost always that the most nonlocal state is not
the maximally entangled one” [18,19], which is caused by the
fact that entanglement and nonlocality are different resources
[20]. We note that the anomaly has been also reported for
other measures of nonlocality [21–23]. The above description
provides a potential definition of the maximally nonlocal state
(MNS) as a state that provides the maximal value of the Bell
expressions I that can be attained for quantum measurements
on an entangled state. However, in order to avoid further
confusions we will call such states as the optimal states [13,22]
(or asymmetric states [24,25]).

Interestingly, the anomaly cannot be confirmed by another
set of Bell-type inequalities, namely the SLK inequalities,
which are maximally violated by the MESs of two qudits
[6,26,27]. Another two examples of Bell-type inequalities that
are maximally violated by the MESs are given in Refs. [28,29].
The SLK inequalities are defined as

I SLK
d =

d−1∑
n=0

f (n)P (n) � I SLK
d (LR), (4)

where f (n) = 1√
2
[cot( π

d
[n + 1

4 ]) − 1], I SLK
d (LR) =

1√
2
(3 cot π

4d
− cot 3π

4d
) − 2

√
2, and P (n) is given by Eq. (2).

In particular, if one uses a specific set of local observables
proposed in Refs. [12] the maximal violation of SLK inequality
is directly proportional to the amount of entanglement,
I SLK
d = 2

√
2(d − 1)C, where C stands for two-qudit pure

states concurrence [27]. Such set of local observables
(hereafter called M1) is defined by a group of local phase
shifts, which are represented in the Schmidt decomposition
basis as |j 〉 → eiφj |j 〉, followed by unbiased d-port beam
splitters performing a unitary transformation described by the
Fourier matrix [UM1

A ]kl = d−1/2ei(2πkl/d ) for observerA and the
inverse Fourier matrix [UM1

B ]kl = d−1/2e−i(2πkl/d ) for observer
B. Note that M1 is also sufficient to confirm the existence of
the anomaly reported for the CGLMP inequality [13].

Recently, an alternative measure of nonlocality and hence,
an alternative definition of MNS, has been proposed by
Fonseca and Parisio [30]. The concept, called the volume of
violation, is given as follows: Suppose one has (preferably
tight) Bell-type inequality I . Then, the stateρ1 is more nonlocal
than ρ2 by means of a given Bell-type inequality I if ρ1

violates I , no matter by what extent, for a larger number of
experimental configurations than ρ2. To formalize this idea,
let X be a space of all possible configurations of parameters
xi which determine the local observables. If for a particular
state ρ one distinguishes the subspace �ρ,I ⊂ X that contains
all configurations leading to violation of inequality I then, the

volume of violation is given by

V (ρ, I ) =
∫

�ρ,I

dnx, (5)

where dnx = dx1 . . . dxn. According to the above definition,
all states with �ρ = ∅ have volume V = 0. Consequently,
all nonviolating states are equally local [31]. The volume of
violation can also be expressed as V (ρ, I ) = pV V (X), where
pV = p(ρ, I ) denotes the probability of violation of inequality
I [32,33] and V (X) stands for a total volume of space X [31].
In this context, the state ρ1 is more nonlocal than ρ2 by mean
of volume of violation if the probability to obtain a violation of
inequality I is larger for ρ1. Here, we assume that both states ρ1

and ρ2 have the same total volume V (X). Furthermore, since
for a given Bell scenario V (X) is just a constant value without
playing any significant role, we put V (X) = 1. At this point we
note that some properties of the volume of violation of qubit
states have been recently studied in Ref. [34]. In this paper, V

is called as a nonlocality fraction.
When the concept of the volume of violation has been

applied to the CGLMP inequality, it turns out that the supposed
anomaly disappears when the M1 transformation is used
[31] and there is no discrepancy between MES and MNS.
Therefore, the hypothesis that the anomaly may be an artifact
of the applied measure has been putted [30]. However, the
calculations presented in Ref. [30] are limited to some special
states for d = {3, 4} under a certain kind of measurement
namely, M1. For that reason, it is important to verify whether
the remarks described in Ref. [30] are valid for d > 4. In
particular, whether V attains its maximum for MES and thus,
one observes the disappearance of the anomaly for general
qudit case if the same circumstances as in Refs. [30,31] are
assumed.

Furthermore, the analysis performed in Ref. [30] can be
extended to other kinds of local observers. Specifically, if
V (ρ, I ) is considered to be a nonlocality measure for an
arbitrary state ρ, one can ask whether the unitary transforma-
tion M1 is adequate for proper detection and/or quantification
of nonlocality. In other words, for the considerations of the
maximal violation of a given Bell inequality I and a given
state ρ, it is sufficient to indicate even one set of optimal
measurements, regardless if other optimal measurements exist
[4]. However, if one is interested in the number of experi-
mental configurations providing a violation of inequality I

then possible the most general unitary transformation should
rather be applied. Then, it is an open question what kind of
local observers (as simple as possible) is sufficient in order
to fully map the nonlocality [24] and, hence, to provide an
universal frame of quantification of V for all states. On the
other hand, motivated by Refs. [32,33], one can reverse the
above question. It is known that all nonlocal states are also
entangled. However, the detection of nonlocal correlation and
hence entanglement based on the standard violation of Bell
inequality require an initial information about analyzed state.
For that reason, one can consider V (ρ, I ), which is based
on the random measurements, as an experimentally friendly
entanglement witness [32]. In this context, a carefully chosen
local measurement should be employed in order to obtain
possible the greatest V (ρ, I ) and hence to detect nonlocal
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TABLE I. The Schmidt coefficients λi for the optimal state
|ψO〉 = ∑d−1

i=0 λi |ii〉. Due to the relation λd−1−i = λi it is sufficient to
write only the first � d

2 � values of λi .

d λ1 λ2 λ3 λ4 λ5

2 0.70711 ... ... ... ...
3 0.61689 0.48876 ... ... ...
4 0.56857 0.42039 ... ... ...
5 0.53684 0.38592 0.35459 ... ...
6 0.51370 0.36443 0.32141 ... ...
7 0.49574 0.34932 0.30113 0.28824 ...
8 0.48118 0.33788 0.28725 0.26793 ...
9 0.46904 0.32877 0.27701 0.25412 0.24742
10 0.45866 0.32125 0.26904 0.24404 0.23344

correlation with a sufficient probability [33]. Both approaches
entail the need to investigate the influence of the adopted
unitary transformation on the final results.

In this paper we present an extensive investigations of
volume of violation. In particular, we show that for higher d the
anomaly between MES and MNS does not disappear when the
volume of violation in used. Furthermore, we discuss several
sets of local measurements (well known in the literature) and
show how strongly they affect the result. Finally, in order
to provide qualitative meaning of V (ρ, I ) as a measure of
nonlocality, we compare it with the violation of Id to answer
the question about the relation between these two quantities.
At this point we note that there are also other measures of
nonlocality such as Kullback-Leibler distance [22], a mea-
sure of so-called useful nonlocality [35,36], covariance Bell
inequalities [37], and measures based on the trace distance [38].

We also wish to emphasize that in our calculations none
of the possible relabeling of measurements setting and/or out-
comes is taken into account. In other words, we consider only
one Bell inequality, not the whole equivalent class obtained
by some permutation of the labels, settings and outcomes
[32,33,39].

II. COMPARISON OF MES AND OPTIMAL STATES
FOR M1 MEASUREMENTS

Let us first analyze whether the volume of violation for MES
is truly greater than the volume for the optimal states as it was
suggested in Refs. [30,31]. For this purpose we consider bipar-
tite quantum system composed of d-dimensional local parties.
It is known that for such system any pure state |ψ〉 can be
expressed in so-called Schmidt decomposition [40,41], |ψ〉 =∑d−1

j=0 αj |jj 〉, where the Schmidt coefficients αj satisfy αj > 0
and

∑
α2

j = 1. Here, we assume that the Schmidt rank, which
determines the number of nonvanishing Schmidt coefficients,
is equal to d. Based on this decomposition one can easily define
MES of a bipartite qudit system as |ψM〉 = d−1/2 ∑d−1

j=0 |jj 〉.
Similarly, the optimal states are given by |ψO〉 = ∑d−1

j=0 λj |jj 〉,
where the corresponding Schmidt coefficients λj are given in
Table I (cf. Ref. [5]).

For each of the analyzed states we have performed nu-
merical Monte Carlo integration in a 4d-dimensional space
of angles φj as it is required by the M1 transformation for

FIG. 1. The bars represent the volume of violation of the CGLMP
inequality under the M1 transformation for various number of out-
comes d . The calculations are performed for the maximally entangled
states |ψM〉 and the optimal states |ψM〉. Additionally, we present the
results calculated for the SLK inequality and the same two groups of
states.

n = 1011 randomly chosen settings. Due to the computational
demands related with the number of free parameters, our
calculations are limited to d = 10. The numerical results for
VM ≡ V (|ψM〉, Id ) and VO ≡ V (|ψO〉, Id ) are presented in
Fig. 1 and Table II.

As we see, for d = 2 the equivalence of VM and VO

is observed [30,42,43]. The probability of violating Id for
randomly chosen angles φj is approximately equal to 8.01%
and it is located between the probability of violating the
Bell-CHSH inequality via random isotropic measurements and
the probability of violating the Bell-CHSH inequality via ran-
dom orthogonal measurements, π−3

2 ≈ 7.08% and 10.326%
[32,33], respectively. A possible explanation of this feature
could be the fact that random isotropic measurements represent
a wider class than M1. When d > 2 the exponential decrease
of the volume of violations is observed for both VM and VO .

TABLE II. The estimation of volume of violation V for the
maximally entangled |ψM〉 and the optimal |ψO〉 states. The results
presented in the first two columns have been calculated for the
CGLMP inequality Id while the third column denotes the difference
between V (|ψM〉, Id ) and V (|ψO〉, Id ). Similarly, the results for I SLK

d

are written in the last three columns. For each case, the number of
random configurations used in calculations is equal to n = 1011.

10−5V for Id Difference 10−5V for I SLK
d Difference

|ψM〉 |ψO〉 % |ψM〉 |ψO〉 %

2 8011.1 8011.1 0 8011.1 8011.1 0
3 1142.2 1015.9 12.431 301.16 245.60 22.622
4 168.98 136.61 23.696 8.2256 4.4130 86.395
5 24.992 19.602 27.500 0.1917 0.0542 253.69
6 3.7061 3.0237 22.571 0.0043 0.0006 616,66
7 0.5485 0.5011 9.447 – – –
8 0.0816 0.0875 −6.726 – – –
9 0.0119 0.0162 −26.634 – – –
10 0.0018 0.0030 −40.043 – – –
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This means that despite the stronger violation of local realism
for higher numbers of outcomes d proven in Refs. [12,13] the
statistical probability for reaching such results for CGLMP
inequality Id drops rapidly with d. Of course, it is restricted
to only one CGLMP inequality and we do not take into
consideration the number of equivalent Bell expressions. The
decrease of the volume of violations for both VM and VO is
not identical for increasing d. In particular, when 3 � d � 7
the volume for MES is greater than the volume for optimal
states and our results for d = {3, 4} are in good agreement
with Ref. [30]. The highest deference between VM and VO

occurs for d = 5 and it decreases for further growth of d

(see Table II). In consequence, for d = {8, 9, 10} one observes
the opposite scenario and the volume VO exceeds VM . This
means that for d � 8 the MES cannot be considered as the
MNS either with respect to the maximal violation of CGLMP
inequality or with respect to the volume of violation. These
results are in contradiction with the hypothesis proposed in
Ref. [30] and the anomaly does not disappear in general case.
In order to verify our observation the numerical calculations for
d = 8 have been repeated ten times. Based on this results we
have found that the mean value V M = 0.08140 × 10−5 and
V O = 0.08738 × 10−5 whereas the standard deviations are
equal to �M = 0.00042 × 10−5 and �O = 0.00092 × 10−5,
which confirms the quality of our observation.

In order to explain why the anomaly appears for higher
d, let us analyze the distribution of the volume of violation
with respect to the degree of violation of CGLMP inequality.
In other words, we study the modified volume V ′ that is
limited to all random settings, which provide the violation of
CGLPM inequality in the interval {Id, Id + σ } with a given
value Id � 2. Here, we assume that all intervals are disjoint
and fully cover the entire range of attainable Id . We also
note that the sum of V ′ after all such intervals gives the total
volume of violation V . As we see in Fig. 2, for a particular
case of d = 4 the modified volume V ′(|ψM〉) > V ′(|ψO〉) for
almost all Id . Naturally, since the CGLPM inequality is more
strongly violated by the optimal states than the MES, there
exist such critical value I ′

d (hereafter the crossing point) above,
which V ′(|ψO〉) exceeds V ′(|ψM〉). In the discussed case such
crossing point is located around I ′

d = 2.67. Despite of that the
enhance of V ′(|ψO〉) above the I ′

d seems to be not sufficient
to change the relation between total VM and VO when d = 4.
However, for higher d the crossing point tends to the smallest
values Id . In the same time, the difference between V ′(|ψM〉)
and V ′(|ψO〉) below the crossing point decreases and hence,
V ′ corresponding to stronger violations Id becomes more
essential. Finally, when d = 8 the crossing point is located
below I ′

d = 2 and V ′(|ψO〉) > V ′(|ψM〉) in the entire range of
attainable Id , which causes the appearance of the anomaly, i.e.,
VO > VM . This analysis provides also a strong argument that
for d > 8 the anomaly should be even more visible, which is
in line with Table II.

Finally, let us take the SLK inequality into consideration.
Our calculations are limited to d � 6. It is caused by the fast
decay of V (see Table II), which implies that we are not able to
accumulate enough statistical data for higher d in a reasonable
time. In the case of SLK inequality, the volume of violation
for MES V (|ψM〉, I SLK

d ) is greater than the volume for optimal
states V (|ψO〉, I SLK

d ), at least for the analyzed regime of d.
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FIG. 2. The distribution of the modified volume of violation V ′

as a function of the violation of CGLPM inequality. The symbols
represent the volume V ′ limited to all random settings providing the
violation of CGLPM inequality in the interval {Id, Id + 0.1}. The
square symbols correspond to the MES while circle symbols denote
the optimal state. We present four pairs of {V ′(|ψM〉), V ′(|ψO〉)} for
d = 4, 5, 7, 8. For each case, the number of random configurations
used in calculations is equal to n = 1011.

However, it should be emphasized that the difference between
VM and VO increases significantly faster with growing d than
it is observed for the CGLMP inequality. Since the SLK
inequality is maximally violated by MES, one can interpret
this behavior as an indicator that MES is also the MNS also
by mean of maximal volume of violation, even for d > 6.
We note that further calculations are still needed to confirm
this assumption. Nonetheless, different behavior of these two
inequalities suggest that the disconnection between MES and
MNS is rather hidden in the Bell-type inequality, not in the
way of estimating the degree of nonlocality.

We note that the above results, although provide important
counterexamples to the previous analysis [30], do not settle
the question of the form of MNS estimated by means of V

for increasing d. Despite for d � 8 we have not found a state
with V > VO , the large number of Schmidt coefficients and
statistical fluctuation of numerical results do not allow us to
answer this question conclusively.

III. INFLUENCE OF THE CHOSEN MEASUREMENTS

Now, let us investigate the influence of the chosen local
observers on the volume of violation. In particular, we verify
the usefulness of various kind of unitary transformations on the
detection of V for other two-qudit states, not only MES and
optimal state. Moreover, we examine how different choices of
local observers can affect the mutual relationship between VM

and VO discussed in the previous section. In order to address
the first issues we analyze the volume of violation under several
unitary transformations, which can be found in the literature,
for the states given as

|ψα〉 = α

d−2∑
j=0

|jj 〉 + αd |(d − 1)(d − 1)〉, (6)
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FIG. 3. The normalized volume of violation Ṽ for various local
observers: (a) M1 transformation, (b) M2 transformation, (c) U
transformation, and (d) reshuffled U transformation. In order to give
some meaning to the size of the volume, we have rescaled the volume
of violation so that V (|ψM〉, Id ) = 1 for all transformation. In all
panels the blue line with circuit symbols denotes the results for d = 3;
red line with triangle symbols corresponds to d = 4; and green line
with X symbols is related with d = 5.

where 0 � α � 1/
√

d − 1 and αd =
√

1 − (d − 1) α2. These
states belong to the nontrivial family of highly symmetric
states, namely the incomplete-permutation symmetry states,
whose entanglement properties have been recently analyzed in
Refs. [44,45]. The particular advantage of using such states is
the fact that one can cross from the product states, α = 0, to the
d- and (d − 1)-dimensional MES (for α = 1√

d
and α = 1√

d−1
,

respectively) by varying only one parameter. We note that in
this section our calculations are restricted to 2 � d � 5 and
the number of random configurations n = 1010.

In Fig. 3(a) we present the volume of violation V M1
α ≡

V (|ψα〉, Id ) when the local measurements are defined by M1

transformation. As we see, the volume V M1
α is equal to zero for

α � α0, where α0 ≈ {0.38, 0.31, 0.27, 0.25} for subsequent d,
respectively. This means that pure entangled states with α � α0

are local with respect to V M1
α , which is in contrast with the

Gisin’s theorem. This outcome is caused by the fact that the
transformation M1 is not sufficient to reveal the nonlocality of
all pure states [15,24]. In particular, the exact critical values
α0 below which the CGLMP inequality cannot be violated are
equal to {0.3827, 0.3136, 0.2738, 0.2472} for subsequent d,
which naturally is in line with our results. As a consequence
of existence of α0 �= 0, the M1 transformation in not sufficient
to detect nonlocality for general qudit states.

In order to overcome this problem, one can use the unitary
transformation, M2, composed of two sets of phase shifters and
unbiased multiport beam splitters [24]. In this case, Id > 2
for all α > 0 and, hence, one can expect V M2

α > 0 for all
α > 0. However, our calculations reveal that for d > 2 the

TABLE III. The estimation of volume of violation V for Id

and two transformation: M2 and unitary U(d ) transformation. The
maximally entangled and the optimal states are denoted as |ψM〉 and
|ψO〉, respectively. The number of random configurations used in
calculations is equal to n = 1010.

10−5Vd for M2 Difference 10−5Vd for U(d ) Difference

d |ψM〉 |ψO〉 % |ψM〉 |ψO〉 %

3 7.2763 6.6522 9.382 4.7572 4.3376 9.621
4 0.6756 0.5146 31.290 0.8819 0.6743 30.79
5 0.0027 0.0019 42.105 – – –

volume V M2
α is qualitatively equal to V M1

α [Fig. 3(b)]. Specif-
ically, when d = 3 and α � 0.2 one has V M2

α < 7.8 × 10−7

[i.e., around 1% of V M2 (|ψM〉, Id ) given in Table III] and it
decreases rapidly to zero for decreasing α. For d = 4 (d = 5)
such behavior is even more pronounced and the volume V M2

α

for α � 0.18 (α � 0.26) is smaller than 10−9 [i.e., less than
0.1% of V M2 (|ψM〉, Id )]. For that reason, V M2

α of such states
can be easily disturbed by statistical fluctuation of random
configurations and hence one can assume V M2

α ≈ 0. On the
other hand, a fast increase of the volume of violation is
observed in the neighborhood of MES [see Fig. 3(b)]. In
Table III detailed values of V

M2
M and V

M2
O are presented. As

we see, although the differences between this two quantities
for d = {4, 5} are greater then the differences achieved for M1

(Table II), we still have similar qualitative behavior as for M1.
In particular, we do not observe an exponential (or even linear)
growth of such differences for successive d as it is presented for
the SLK inequality. Therefore, one can expect that for greater
d the volume V

M2
O may exceed V

M2
M as it is for M1. However,

due to the fast decay of V M2 we cannot settle whether such
inflection point for M2 truly exists as it is for M1.

Note that similar calculations can be done for other trans-
formations of this kind [12,24], which iteratively approximate
the outcomes for general unitary transformation presented in
the next section. For that reason we do not report these results
in this paper.

Another example of unitary transformation that ensure the
fulfillment of Gisin’s theorem has been proposed by Chen
et al. [15]. In this approach the unitary matrix of parti-
cle A is given by U (A) = cos ζa|0〉〈0| + sin ζae

−iφa |0〉〈1| +
sin ζae

iφa |1〉〈0| − cos ζa|1〉〈1| + ∑d−1
n=2 |n〉〈n| and for particle

B the unitary transformation, U (B ), has the same form as
U (A). As it is presented in Fig. 3(c) the volume V U

α ≡
V (|ψα〉, Id ) for the transformation U takes 0 for α = 0 and
constant value otherwise

V U
α =

{
0 for α = 0

0.0353 for 0 < α � 1/
√

d − 1
. (7)

This outcome can be easily explained if one writes the
corresponding Id inequality explicitly: IU

d = 2 + α2d
d−1 [2 −

f (ζa, φa, ζb, φb )], where f (. . . ) is an universal (for all α and
d) function of angles ζa, . . . , φb. As we see, Id > 2 if and only
if 2 − f (ζa, φa, ζb, φb ) > 0, which is independent of α and
d. Therefore, there is one common subspace of configurations
�α,Id

yielding the violation of CGLMP inequality IU
d for all
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α and hence, constant value of V U
α . In the same time, the

violation of CGLMP inequality writes maxζa,...,φb
(Id ) = 2 +

2.828 α2d
d−1 . In summary, all pure entangled states |ψα〉 defined

in an arbitrary d are equivalently nonlocal with respect to
V U

α , in spite of the fact that the violation of Id is α and d

dependent [15].
This observation has an important meaning if one is inter-

ested in detection of entanglement. As we see, the probability
pU

V of findings nonlocal correlations for the states |ψα〉 (with
including the MES) is around 3.53%, which is a significantly
greater value than for other kinds of transformations where the
probability drops exponentially with d (c.f. Tables II and III).
For instance, when d = 5 the nonlocal correlations of MES are
observed with probability around 2 × 106 greater than for the
M2 transformation, p

M2
V = 0.18 × 10−5.

On the other hand, if one reshuffles the unitary matrices
U (A) and U (B ) in such a way that |0〉 ↔ |d − 1〉 and |1〉 ↔
|d − 2〉 then Eq. (7) is no longer valid. As it is presented in
Fig. 3(d), the volume increases with α, reaching the maximum
V U

α = 0.0353 for MES and drops down to 0 forα = 1/
√

d − 1.
This means that the increase of the probability of detecting non-
local correlations and hence, entanglement, is truly achievable
if MESs are considered. For other cases of |ψα〉 states some
initial reference frames are needed in order to properly choose
the transformation U (A) and U (B ). We note that there is no
evidence that the U transformation is the most suitable for
increasing the probability of detecting nonlocal correlations
and it supplies interesting motivation for further researches.

All these examples clearly show a strong dependence of
V on the adopted unitary transformation, not only quantita-
tively but also qualitatively. Therefore, the nonlocal properties
achieved for different local observers cannot be mutually
compared. In order to quantify the volume universally it is
necessary to consider the same local observers, in particular,
the general d-dimensional unitary transformation U, which
belongs to the U(d ) group.

IV. COMPARISON OF VOLUME OF VIOLATION AND
CGLMP INEQUALITY FOR TWO-QUTRIT STATES

In this section we analyze the volume of violation, V U (3),
for two-qutrit states given by

|ψ3〉 = sin β(cos γ |00〉 + sin γ |11〉) + cos β|22〉, (8)

when the general unitary transformation U(3) is applied (for
parametrization, see, e.g., Refs. [46,47]). The construction of
random U(3) matrices was performed by mean of the method
proposed in Ref. [48]. In this section the numerical calculations
are performed on n = 1010 settings.

Let us start from the comparison with the known results.
To do this, we begin with a special case of γ = 45◦. Recently,
the probability of violation for this particular state has been
examined in Ref. [25], where the method based on the linear
programing have been used. As a result, the total probability
of violation presented in Ref. [25] is a combination of all
probabilities related with the violation of any Bell inequality.
For that reason, only the qualitative agreement with our
results is expected. Especially that we deal only with one
form of CGLMP inequality not the whole class of equivalent
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FIG. 4. The normalized volume of violation Ṽ for two-qutrit
states |ψ3〉 = sin β√

2
(|00〉 + |11〉) + cos β|22〉. Black curve with trian-

gle symbols correspond to Ṽ U (3) while the red-dashed curve with
rectangles denotes the normalized results obtained in Ref. [25]. Blue
dot-dashed line with circles is the same as in Fig. 3(d), i.e., it is
related with Ṽ U

α for the reshuffled unitary matrices U (A) and U (B )
where α = sin β√

2
and αd = cos β.

inequalities [33,39]. To reach this goal, we have simply rescale
the outcomes of Rosier et al. [25] as it is shown in Fig. 4. As we
see, both curves present similar behavior. In particular, the ratio
of the extremal points V U (3)(β = 54.74◦)/V U (3)(β = 90◦) =
7.2763×10−5

2.9542×10−5 = 2.463, while the corresponding proportion given
in Ref. [25] yield 2.419. This small disagreement may be
caused by the presence of local minimum around β → 84◦
noticed in the referenced paper. The authors explained this sur-
prising feature by the fact that CHSH and CGLMP inequalities
have different functions representing the violation probability.
In our case, such local minimum of V U (3) has not been found,
which confirms this statement and may affect the ratio between
the extremal points.

Similarly, one can compare V U (3) with the results pre-
sented in the previous section. Specifically, if one puts α =
sin β cos 45◦ and αd = cos β then the state |ψ3〉(γ = 45◦)
becomes equivalent to |ψα〉. As we see in Figs. 3 and 4,
none of the previous transformation can approximate V U (3)

in the satisfactory way, especially, for β � 70◦ (equivalently
α � 0.66). For this regime of angle β the volume V U (3) tends
slowly to the constant value of 2.9542 × 10−5, while in the
previous cases almost linear decay of V is observed.

Now, we can relax the angle γ and determine the volume
V U (3) for a general two-qutrit state (8). In this case only one
maximum around {γ, β} = {45◦, 54.74◦}, i.e., the MES, has
been found (Fig. 5). This result confirms that MES can be
truly considered as MNS with respect to V for d = 3 and the
volume for MES is around 9.6% greater than for the optimal
states V U (3)(ψO〉 (as presented in Table III), which is close to
the M2 transformation. There is also no local minimum in the
entire range of angles {γ, β}.

In order to compare these results with the violation of Bell
inequality Id , we first introduce the normalized parameter

E = Id − 2

max Id − 2
, (9)
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FIG. 5. The map of the volume of violation Ṽ U (3) for the state
|ψ3〉 and the general unitary transformation U(3). The solid lines
correspond to the contour lines of Ṽ U (3). White rectangles represent
two optimal states ({γ, β} = {38.1◦, 51.8◦} and {45◦, 61.76◦}) equiv-
alent under qutrit permutations while the white circle at {γ, β} =
{45◦, 54.74◦} denotes the MES.

where max Id is the maximal value of the Bell expression
and the constant value indicating local realism [c.f. (1)] is
subtracted. As a result, E = 1 denotes the optimal state and
E = 0 corresponds to all local states. In Fig. 6 we see that
for E � 0.6 the normalized volume Ṽ = 〈0, 0.25〉 and is
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Ṽ U (3) and the normalized violation of CGLMP inequality E. Red
line corresponds to the function fE (Ṽ ) =
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shows the difference � = E − Ṽ U (3) vs Ṽ U (3). The labels ψM, ψO

and ψ� corresponds to the MES, optimal state and the state with
highest �, respectively.
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a slowly increasing function compared to E. Consequently,
in order to estimate E for the small values of Ṽ high-
resolution experiments are needed to determine Ṽ in proper
precision. The opposite tendency takes place for E � 0.85.
The highest difference � = E − Ṽ U (3) = 0.41 is observed for
Ṽ U (3) ≈ 0.26, which corresponds to the state close to |ψ3〉 =
0.436|00〉 + 0.294|11〉 + 0.851|22〉 (up to the qutrits permuta-
tions). Finally, when Ṽ is around 1 the difference � < 0, which
is related with the canceling of the anomaly by the volume of
violation (see Fig. 7). In particular, �(ψM ) = −0.046 while
�(ψO ) = 0.088. Due to the fact that there is no analytical
solution for Ṽ U (3) we are not able to determine the extreme
states of Fig. 7 but the upper bound can be approximated by
the function fE (Ṽ ) =

√
1 − (Ṽ − 1)2. Although this fitting is

not tide, it supplies a simple picture of the relation between E

and Ṽ .
We note that similar comparison can be done for d > 3.

However, due to the large number of variables, 4(d2 − 1),
parametrizing four unitary transformations, which belong to
U(d ) group and the exponential decay of V U (d ) caused be
increasing d and/or number of variables the integration be-
comes extremely time demanding. For that reason, we limit
our studies to MES and optimal states for d = 4. In this case,
we have found that V

U (4)
M is about 31% larger than V

U (4)
O

(Table III). Once again this result is similar to the outcome
of the M2 transformation. Consequently, one may expect the
existence of the inflection point also in this case.

V. CONCLUSION

In this paper we have discussed the recent concept of
nonlocality measure, namely the volume of violation. This
new quantity has been proposed to overcome the existence
of the anomaly between MESs and the states that maximally
violate CGLMP inequality. In order to verify this hypothesis
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extensive numerical calculations have been done. We have
shown that the predictions proposed in Ref. [30] are valid
only for d < 8. When d = {8, 9, 10} the opposite tendency
is observed. The detailed analysis of the relation VM/VO

reveal that our observation is not a coincidence and one should
rather expect that the anomaly between MES and MNS for
the CGLMP inequality cannot be canceled by the volume of
violation in general.

When preparing the final version of the paper we became
engaged in a recent manuscript [49] where the authors study
a similar aspect of nonlocality without assuming any a pri-
ori Bell inequality. Although the calculations presented in
Ref. [49] are limited to d � 7, there is no evidence that the
anomaly could appear for d = 8 in the same way as described
here. All these observations suggest that, at least for d = 8,
the anomaly could be a special feature of a given facet of
correlation polytope (corresponding to the CGLPM inequality)
rather than a phenomenon of a whole polytope. Nonetheless,
our observation highlights even stronger the question about the
nature of the above-mentioned anomaly and offers a promising
insight into a measure of nonlocality.

Furthermore, we have analyzed the influence of the chosen
set of local observers on the volume of violation. In particular,
we have shown that depending on the applied transformation
the final results may differ by few orders of magnitude with
respect to M1 transformation. In order to ensure the universal
frames to detect and quantify nonlocality by means of V for all
pure states, one should use the general unitary transformation

U(d ). Nonetheless, the relation VM/VO for successive d seems
to be analogical as for M1 transformation and, hence, one may
expect that for higher values of d the optimal states are also
MNS with respect to the volume of violation.

On the other hand, we have presented an exemplary set of the
local observersU for an arbitrary d, which allow for significant
enhancement of the volume of violation, which has a strong
practical consequence if one uses V for entanglement detection
[32]. However, for this issue further calculations are needed to
estimate the robustness of our results against decoherence.

Finally, we have discussed the relation between the volume
of violation with the standard violation of CGLMP inequality,
which is commonly used as a measure of nonlocality. We
have found that two-qutrit pure states these two quantities
can be approximated by 1 − E2 ∼ (V − 1)2, where E denotes
the normalized expectation value of CGLMP inequality. In
these calculations the general unitary transformation U(3) has
been used. We have also shown that our results for some
special two-qutrit states are compatible with those presented
in Ref. [25].
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