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Impact of the quantized transverse motion on radiation emission in a Dirac harmonic oscillator
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We investigate the radiation emitted by an ultrarelativistic electron traveling in a one-dimensional parabolic
potential. Having in mind a simplified model for beamstrahlung, we consider the realistic case of the electron
motion being highly directional, with the transverse momentum being much smaller than the longitudinal one.
In this case, we can find approximate solutions of the Dirac equation and we calculate the radiation emission
using first-order perturbation theory. We compare our results to those obtained via the semiclassical method of
Baier and Katkov, which includes quantum effects due to photon recoil in the radiation emission but ignores the
quantum nature of the electron motion. On the one hand, we confirm a prediction of the semiclassical method
that the emission spectrum should coincide with that in the case of a linearly polarized monochromatic wave. On
the other hand, however, we find that the semiclassical method does not yield the exact result when the quantum
number describing the transverse motion becomes small. In this way, we address quantitatively the problem of
the limits of validity of the semiclassical method, which is known, generally speaking, to be applicable for large
quantum numbers. Finally, we also discuss which beam conditions would be necessary to enter the studied regime
where the motion of the particles must also be considered quantum mechanically to yield the correct spectrum.
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I. INTRODUCTION

Strong-field QED is the study of electromagnetic phe-
nomena in the presence of background electromagnetic
fields, whose strength approaches a critical limit, called the
“Schwinger limit” [1–5]. In this limit, phenomena that are
of a purely quantum mechanical nature arise, such as pair
production and vacuum birefringence [6–26], and quantum
effects in radiation emission become essential [2,13,27–50].
Most of the mentioned studies consider a plane wave as a
background field, having in mind processes occurring in the
presence of a strong laser field. In this respect, there is also
a growing interest in finding out how the basic strong-field
QED processes mentioned above are altered in the presence
of a laser beam tightly focused in space and not only in time
[49,51–56]. In this paper, however, our focus is on a solution
to the Dirac equation in a parabolic potential, valid within
certain limitations and on different methods of calculating
radiation emission; in particular a comparison between a fully
quantum calculation, based on the obtained solution to the
Dirac equation, compared to a semiclassical method, which
can also be used for the case of lasers [8].

The semiclassical operator method developed by Baier and
Katkov in 1968 [57] is a powerful method to calculate radiation
emission and the probabilities of other quantum processes.
Quantum effects such as spin and recoil during emission are
included in the method, but the motion of the charged particle
is considered as classical, i.e., along a trajectory. Thus, in
order to calculate the quantum observables, only the particle’s
trajectory is needed, which can be found numerically in an
arbitrary field configuration. Use of this method to calculate
nonlinear Compton scattering in more complex field configu-
rations was the focus of [47]. Now, finding the wave function
of an electron in any given field configuration is, in general,
an impossible task and it is therefore prudent to ask exactly

when the method of Baier and Katkov is applicable. This is, of
course, discussed by the authors themselves and the mentioned
conditions are that the particle should be ultrarelativistic and
that the commutator among the operators corresponding to
different velocity components should be negligibly small, in
the sense that [27]

|〈[�̂μ, �̂ν]〉|
ε2

= |Fμν (x)|
Ecγ 2

� 1, (1)

where �̂μ = p̂μ + eAμ(x), p̂μ is the four-momentum oper-
ator, e > 0 is the elementary charge, Aμ(x) = [ϕ(x), A(x)]
is the four-vector potential of the external field, Fμν (x) is
the electromagnetic field tensor, Ec = m2/e is the Schwinger
critical field, γ is the Lorentz gamma factor, and ε is the
particle energy. This means one needs, at least, a field strength
of the order of the Schwinger field for this inequality to
no longer hold. This condition is, indeed, fulfilled for any
currently available electromagnetic field of relevance for the
present paper. For the well-known exact solutions of the Dirac
equation in the field configurations of a plane wave [2], the
semiclassical operator method yields exactly the same result
as the full quantum calculation. Therefore, one may ask if
there even is a case where the semiclassical operator method
would be inadequate. In the final step of the derivation of the
method in [27,57], it is stated that since the unfolding of a
certain operator has been performed, the expectation value of
this operator can be replaced by its corresponding classical
value, provided the initial state has large quantum numbers.
This is in line with Bohr’s correspondence principle. In this
paper we find a solution of the Dirac equation in a combined
electric and magnetic parabolic potential, assuming only that
the typical transverse momentum scale is much smaller than
the longitudinal one. In fact, we solve two problems at once
since the magnetic component of the field can be turned off,
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leaving us with the conventional parabolic electric potential.
Using these wave functions, we quantitatively corroborate
the statement of Baier and Katkov on the validity of their
semiclassical method: For large quantum numbers, we obtain
agreement between the two methods, whereas for low quantum
numbers, the semiclassical method shows large deviations
compared to our calculation. In [58–62] among others, what
has been dubbed the “Dirac oscillator” has been studied.
All of these studies, however, have in common that they
do not introduce the coupling between the charge and the
electromagnetic potential Aμ in the usual way by the minimal
coupling pμ → pμ + eAμ. The motivation for the alternate
coupling in these papers is that it yields an exactly solvable
equation which reduces to the quantum harmonic-oscillator
problem in the nonrelativistic case. But this is, in fact, not
the solution to the problem of a spin- 1

2 Dirac particle in a
parabolic potential in the standard model. The importance of
the harmonic-oscillator problem is, in part, that if one Taylor
expands any potential around a local minimum, the first term
in this expansion will typically be a parabolic term, and so
small excitations around the minimum could be explained by
applying the model of the harmonic oscillator. In contrast
to these papers, we introduce the electromagnetic field by
minimal coupling, which yields terms of higher than second
order in position, and is thus not exactly solvable. However, we
find that under the mentioned circumstance, which is often the
case for ultrarelativistic electrons, the terms standing in the way
of an analytical solution are small and can be neglected. In [27],
the semiclassical method has, naturally, also been employed to
study the radiation from the relativistic harmonic oscillator.
We included a magnetic field such that the field can also be
employed as a simplified model of “beamstrahlung,” i.e., the
radiation emitted when high-energy dense charged bunches
collide. Usually, in future linear colliders, the colliding bunches
are of identical shape and oppositely charged, i.e., an electron
bunch colliding with a positron bunch. In this case, during
the collision, the field from one bunch will alter the shape of
the other bunch, and vice versa. The full problem is therefore
multiparticle, making it complicated to fully solve it quantum
mechanically. However, the classical motion can be solved in
this case and therefore the semiclassical method of Baier and
Katkov can be applied. To consider when beamstrahlung would
become modified due to the quantized transverse motion, we
consider a simplified model of beamstrahlung where a single
electron interacts with the field of a positron bunch as in this
way the positron bunch can be assumed not to change shape
during the collision. This solution would still be valid if one
studies the collision of a low-density bunch with a high-density
bunch, such that the low-density bunch has only a negligible
effect on the dense one.

As shown in [27], the result of the semiclassical operator
method applied to the one-dimensional oscillator problem
yields simply the spectrum obtained in the case of nonlinear
Compton scattering in a linearly polarized monochromatic
plane wave, as found in, e.g., [2]. However, since this com-
parison is an important point, below we will also apply the
semiclassical operator method to this problem. In Sec. II, we
will first consider the electromagnetic field generated from the
relativistic positron bunch and indicate how one arrives at the
parabolic potential approximation. In Sec. III, we will gain an

intuition of the problem and find an approximated analytical
solution of the classical equations of motion of the problem,
enabling us to apply the semiclassical method of Baier and
Katkov in Sec. VI. In Sec. IV, we find the approximate
wave functions for the problem at hand and, in Sec. V, we
use these wave functions to calculate the transition matrix
element of the single-photon radiation emission. In Sec. VII,
we do a side-by-side comparison of the power spectra obtained
using the two methods of calculation and discuss the different
regimes of radiation emission which arise. Finally, in Sec. VIII,
we draw the main conclusions of the paper.

We use units where h̄ = c = 1, α = e2 and the Feynman
slash notation such that /a = aμγ μ, where γ μ are the Dirac
gamma matrices and aμ is an arbitrary four-vector. We adopt
the metric tensor ημν = diag(+1,−1,−1,−1).

II. MODEL OF THE FIELD

Let us now consider a model of the electromagnetic field
from the dense positron bunch. The bunches to be used in linear
colliders are ultrarelativistic and usually shaped like sheets,
that is, they are much longer than they are wide and much
thinner than they are wide. By assuming that the positron bunch
propagates along the negative x direction and lies such that the
normal vector to this sheet is in they direction, the rms values of
the charge distribution in space are then such that �y � �z �
�x in the laboratory frame. The electron, counterpropagating
to the positron bunch, then moves in the positive x direction.

We first consider the field in the comoving frame of the
bunch. Here, the transverse beam sizes �y and �z remain
unchanged, while the longitudinal becomes longer by a factor
of γb, which is the Lorentz factor of the bunch, due to the effect
of Lorentz contraction. Therefore, in this comoving frame, the
bunches are still sheets. The charge density is often modeled
as a Gaussian function, that is,

ρ ′(r ′) = Ne

(2π )3/2�′
x�

′
y�

′
z

e
−

(
x′2

2�′2
x

+ y′2
2�′2

y
+ z′2

2�′2
z

)
, (2)

where primed quantities refer to quantities in the comoving
frame and N is the number of positrons in the bunch. In [63],
analytical expressions are given for the potential and electric
field from such a charge distribution. There, it can be seen,
based on the linear expansion around the center of the bunch,
that the field gradient in the y direction is greater by a factor of
�x/�y than in the x direction. The fact that one component of
the field will drive the dynamics can be intuitively understood
by thinking of the electric field from a uniformly charged plane.
In this case, the electric field is normal to the surface. In our
case, when one is close to the center of the bunch, one sees
“nearly” such an infinite plane of charge. It is not necessary
here to repeat the derivation of [63] and we only mention
that the linear expansion of the field component driving the
dynamics can be obtained in a quick fashion by using this
intuitive picture. In Gauss’ law ∇′ · E′(r ′) = 4πρ ′(r ′), we can
then neglect ∂E′

x/∂x ′ and ∂E′
z/∂z′ and simply integrate the

resulting equation ∂E′
y/∂y

′ = 4πρ ′(r ′) with respect to y. This
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FIG. 1. The y-component Fy of the force exerted by a positron
bunch propagating along the negative x direction on an electron
propagating in the positive x direction in the x-z plane as a function
of position and time. Here, Fmax is the magnitude of the force at
x + t = 0 and y/�y = 0.75, λ = 2π/ω0 [see Eq. (25)]. The magenta
dash-dotted line corresponds to the approximation valid around the
center of the bunch, i.e., the field of Eq. (4). The green dashed line
corresponds to the field of Eq. (3), while the continuous black line
corresponds to keeping just the first term from the error function in
Eq. (3).

results in

E′
y ′ (r ′) = 4πNe

(2π )3/2�′
x�

′
y�

′
z

× e
−

(
x′2

2�′2
x

+ z′2
2�′2

z

)
�′

y

√
π

2
erf

(
y ′

√
2�′

y

)
, (3)

where erf (x) is the error function. Close to the center of the
bunch we can keep only the leading-order expansion of the
exponential and error function. In this way, we obtain

E′
y ′ (r ′) � 4πNe

(2π )3/2�′
x�

′
y�

′
z

y ′. (4)

To obtain the field in the laboratory frame, we perform a
Lorentz transformation with velocity given by −βb, with βb
being the velocity of the bunch. The orthogonal component of
the electric field becomes boosted by a factor of the bunch
Lorentz factor γb, which simplifies with the corresponding
change in the bunch length �′

z = γb�z, and one obtains

Ey (r ) = 4πNe

(2π )3/2�x�y�z

y. (5)

A magnetic field arises according to the Lorentz transformation
of the electromagnetic fields,

B⊥(r ) = −γbβb × E′(r ′) = −βbEy (r )e3, (6)

where e3 is a unit vector in the z direction. In order to neglect the
dependence of the fields on x and t , we assume that the dynam-
ics in the y direction occurs on a timescale much shorter than
�x . In Fig. 1, we show a comparison of the classical trajectory
of the electron through the positron bunch corresponding to the
different approximations made for the field from the positron
bunch. One can see that even for a quite large initial amplitude

of y/�y = 0.75, our approximations result in a trajectory close
to the exact one, especially around the center of the bunch. Due
to the fact that in a number of situations one can approximate an
electromagnetic field as a linear function of a coordinate, this
model is still useful not only as a toy model for beamstrahlung,
but also to identify the regime where the transverse motion
must be treated quantum mechanically, instead of classically.
In conclusion, in the remainder of this paper, we will deal
with the problem from the laboratory frame and work within
the approximation that the only nonzero components of the
background electromagnetic field, in the laboratory frame, are
given by

Ey (r ) =κy, (7)

Bz(r ) = − βbκy, (8)

where

κ = 2Ne√
2π�x�y�z

(9)

is the field gradient.

III. CLASSICAL MOTION

To gain a basic understanding of the problem at hand, we
first consider the classical motion in the given field configura-
tion. We are interested in the case of an ultrarelativistic electron
with the motion being mainly directed along the positive x axis,
i.e., the x component of the velocity v fulfills the condition
vx � 1, whereas the transverse momentum is much smaller
than the longitudinal one. In particular, we assume that the
initial time is set equal to zero and that vz(0) = 0, in such a
way that vz(t ) = 0 for all t > 0. Since the transverse motion
is only along the y direction, it is convenient to introduce the
parameter

ξ = γ0vy,max, (10)

where γ0 is the initial electron Lorentz gamma factor. The
parameter ξ then becomes of the order of unity when the trans-
verse motion becomes relativistic. We will restrict ourselves to
the (broad) case where vy,max � 1 and, therefore, ξ � γ0. The
two conditions vx � 1 and ξ � γ0 will be employed below to
solve the equations of motion. The nonvanishing components
of the Lorentz force equation read

dpx

dt
= βbeκyvy, (11)

dpy

dt
= −eκy − eβbκyvx = −(1 + βbvx )eκy. (12)

Now we use the identity

d p
dt

= dγ

dt
mv + γm

dv

dt
, (13)

where m is the electron mass. By using the equation for the
variation of the energy

m
dγ

dt
= q E · v = −eκyvy, (14)
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we obtain

γm
dvx

dt
= (vx + βb)eκyvy, (15)

and

γm
dvy

dt
= −eκy

(
1 + βbvx − v2

y

)
. (16)

Now we write

vx (t ) = 1 + δvx (t ), (17)

and

γ (t ) = γ0 + δγ (t ), (18)

where γ0 is the initial value of the Lorentz gamma factor for
the electron. So we obtain the classical equations of motion in
the field of Eqs. (7) and (8) as

dδvx

dt
= 1

γ0

1

1 + δγ

γ0

(βb + 1 + δvx )
eκ

m
yvy, (19)

dvy

dt
= − 1

γ0

1

1 + δγ

γ0

(
1 + βb + βbδvx − v2

y

)eκ

m
y. (20)

Now we wish to find solutions under the conditions v2
y (t ) �

1, |δvx (t )| � 1, |δγ (t )| � γ0, 1/γ 2
0 � 1, and 1/γ 2

b � 1. In
this case, the equations simplify significantly and we will
verify that the obtained solutions verify these conditions. The
approximate equations of motion then become

dδvx

dt
= (1 + βb)

eκ

γ0m
yvy, (21)

dvy

dt
= −(1 + βb)

eκ

γ0m
y. (22)

Here, one can replace βb by unity but we prefer to keep the
symbol βb such that we can obtain the case of a harmonic
oscillator via the replacement βb = 0 because, as seen in
Eqs. (7) and (8), only the magnetic field is proportional to βb.
Now the equation for y can be solved with appropriate initial
conditions to obtain

vy (t ) = ξ

γ0
cos(ω0t ), (23)

y(t ) = ymaxsin(ω0t ), (24)

where

ω0 =
√

(1 + βb)eκ

γ0m
. (25)

And from the definition of Eq. (10), we obtain that the
amplitude can be expressed in terms of the previously defined
quantities as

ymax = ξ

γ0ω0
. (26)

Now we can solve the equation for the motion along the x

direction,

dδvx

dt
= ω2

0yvy = ω0

2

(
ξ

γ0

)2

sin(2ω0t ), (27)

and, upon integration, we obtain

δvx (t ) = −1

4

(
ξ

γ0

)2

cos(2ω0t ) + C1, (28)

where C1 is a constant of integration. Now, the constant
difference between δvx (t ) and vx (t ) can be absorbed in the
constant of integration C1 in Eq. (28) such that

vx (t ) = −1

4

(
ξ

γ0

)2

cos(2ω0t ) + C2. (29)

In order to determine the constant C2, we can use v2
x (0) +

v2
y (0) = v2

0 = 1 − 1/γ 2
0 . Thus, v2

x (0) = 1 − (1 + ξ 2)/γ 2
0 and

vx (0) � 1 − (1 + ξ 2)/2γ 2
0 , and we can determine the constant

of integration C2 and obtain

vx (t ) = 1 − 1

2γ 2
0

− ξ 2

4γ 2
0

− ξ 2

4γ 2
0

cos(2ω0t ), (30)

which, upon integration, yields

x(t ) =
(

1 − 1

2γ 2
0

− ξ 2

4γ 2
0

)
t − ξ 2

4γ 2
0

sin(2ω0t )

2ω0
, (31)

where we have imposed the condition that x(0) = 0. Now, it
is clear that the conditions for the approximate solutions are
fulfilled as long as ξ � γ0. However we must use Eq. (14)
to check when the condition |δγ (t )| � γ0 is fulfilled. Using
Eq. (14), we obtain

dγ

dt
= − ω0

1 + βb

ξ 2

2γ0
sin(2ω0t ). (32)

And so we can integrate to obtain

γ (t ) = γ0 + 1

1 + βb

ξ 2

4γ0
[cos(2ω0t ) − 1], (33)

and therefore

δγ (t )

γ0
= 1

1 + βb

ξ 2

4γ 2
0

[cos(2ω0t ) − 1]. (34)

In this way, the condition |δγ (t )| � γ0 is equivalent to the
condition ξ � γ0. Therefore, as long as this condition is
fulfilled, the neglected terms are smaller than a factor of at
least ξ/γ0 compared to the dominant ones.

IV. SOLUTION OF DIRAC EQUATION

Classically the fields of Eqs. (7) and (8) give a force as in
Hooke’s law and therefore harmonic oscillations as seen in
Sec. III. Harmonic-oscillator wave functions should therefore
be involved in the solution of the Dirac equation. We can
conveniently choose our electric potential as time independent
and so we must find a potential that satisfies E(r ) = −∇ϕ(r ).
Due to the simple structure of the electric field in Eq. (7), we
can choose the potential such that it depends only on the y
coordinate, i.e., we have

ϕ(y) = −κy2

2
. (35)
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A vector potential which gives us the magnetic field of Eq. (8)
is

A(y) = βbκ

2
(y2, 0, 0). (36)

The Dirac equation in an external field reads

[ /̂p + e /A(r ) − m]ψ (r, t ) = 0, (37)

where ψ (r, t ) is the electron bispinor wave function. This can
also be rewritten as

i
∂ψ (r, t )

∂t
= Ĥψ (r, t ), (38)

with

Ĥ = α · �̂ − eϕ(r ) + γ 0m, (39)

where αi = γ 0γ i , i = 1, 2, 3, and �i = p̂i + eAi (r ) (for
electron). We consider a problem where the potentials have
no time dependence and then take the usual approach [64,65]
of finding the stationary states, and write

ψ (r, t ) = e−iεt

(
φ(r )
χ (r )

)
, (40)

where ε will be the energy. This leads to

[ε + eϕ(
r ) − m]φ(r ) = σ · [−i∇ + eA(r )]χ (r ), (41)

[ε + eϕ(
r ) + m]χ (r ) = σ · [−i∇ + eA(r )]φ(r ), (42)

where we have used that αi = ( 0 σ i

σ i 0 ), where σ i denote the
three Pauli matrices. Now, from Eq. (42), we find

χ (r ) = 1

ε + eϕ(y) + m
σ · �̂φ(r ), (43)

and inserting this in Eq. (41), we obtain a differential equation
for φ(r ),

[ε + eϕ(y) − m]φ(r )

= σ · [−i∇ + eA(y)]
1

ε + eϕ(y) + m
σ · �̂φ(r ). (44)

To find the solution for φ(r ), we need to rewrite this such that
we can isolate the Laplacian of φ(r ). The product rule for the
gradient gives us a term where it acts on [ε + eϕ(y) + m]−1

and one where it acts on σ · �̂φ(r ), which gives us

[ε + eϕ(y) − m]φ(r )

= iσ y · eϕ′(y)

[ε + eϕ(y) + m]2
σ · �̂φ(r )

+ 1

ε + eϕ(y) + m
[σ · �̂]2φ(r ). (45)

Multiplying by [ε + eϕ(y) + m] on both sides, we obtain

{[ε + eϕ(y)]2 − m2}φ(r )

= iσ y · 1

ε + eϕ(y) + m
eϕ′(y)σ · �̂φ(r ) + [σ · �̂]2φ(r )

= −i
1

ε + eϕ(y) + m
[σ y · eEy (y)]σ · �̂φ(r )

+ [σ · �̂]2φ(r )

= −i

ε + eϕ(y) + m
{eEy (y)�̂y + iσ · [eE(y) × �̂]}φ(r )

+ [σ · �̂]2φ(r ). (46)

Now we need to consider the term [σ · �̂]
2

by letting it act on
a test function f ,

{σ · [ p̂ + eA(y)]}{σ · [ p̂f + eA(y)f ]}
= p̂2f + σ · {∇ × [eA(y)]}f

+ 2eAx (y)p̂xf + e2A2(y)f. (47)

Then, finally, we obtain

[ p̂2 + eσ · B(y) + 2eAx (y)p̂x

− 2εeϕ(y) + e2A2(y) − e2ϕ2(y)

− i
1

ε + eϕ(y) + m
{eEy�̂y + iσ · [eE(y) × �̂]}

− (ε2 − m2)]φ(r ) = 0. (48)

This is the exact differential equation for φ(r ). If one divides
this equation with 2ε, it is seen that we obtain an equation of the
form [ p̂2/2ε − eϕ(y) + eAx (y)p̂x/ε + · · · ]φ(r ) = 0, which
looks like the usual Schrödinger equation for the nonrelativistic
harmonic oscillator with potential energy V (y) = −eϕ(y),
except with the “relativistic mass” ε and an additional term
of the same size from the magnetic field. Therefore, we will
posit that in Eq. (48), the dominant terms driving the dynamics
are the terms 2eAx (y)p̂x − 2εeϕ(y), and we compare the sizes
of the additional terms to these. We will try with a separable
solution which yields free motion in the x direction such that
this becomes 2eAx (y)px (no longer an operator).

A. e2ϕ2( y) term

If e2ϕ2(y) should be much smaller than −2εeϕ(y), we
should have that 2ε � −eϕ(y). The most stringent con-
dition is then to use −eϕmax = −eϕ(ymax) = eκy2

max/2 =
eκξ 2/2γ 2

0 ω2
0. Our condition then becomes 1 � ξ 2

γ 2
0

1
4(1+βb ) , a

condition which will be fulfilled as we require exactly that
ξ � γ0. The same argument goes for the e2A2(y) term.

B. eσ · B( y) term

Here we should have −2εeϕ(y) � eBz(y) corresponding
to

2ε
eκy2

2
� eκy, (49)

which reduces to

y � 1

ε
. (50)

We are looking for the solutions of the quantum problem
analogous to the classical solutions, and therefore we still have
ε � γ0m; therefore, 1/ε is roughly the Compton wavelength
divided by a factor of γ0. The problem could, in fact, be
solved while including this term, and the effect would be
that the spin-up and spin-down wave functions are shifted by
the distance 1/ε compared to each other. This is, however,
completely negligible. As we will see later, the transition to the
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new regime happens when the typical length of the problem
becomes of the order of the Compton wavelength, and this
condition differs by a factor of 1/γ0 compared to this.

C. eEy�̂ y

ε+eϕ( y)+m term

We obtain the most stringent condition by inserting the
maximum value of the classical momentum and so

eEy�̂y

ε + eϕ(y) + m
� eκypy,max

ε
� eκymξ

ε
. (51)

We should then have
eκymξ

ε
� −2εeϕ(y) = εeκy2, (52)

which reduces to

y � ξ

γ0

1

ε
, (53)

and since we require that γ0 � ξ if Eq. (50) is fulfilled, then
so is Eq. (53).

D. σ ·(eE×�̂)
ε+eϕ( y)+m term

We have σ · (E × �̂) = σ xEy (y)pz − σ zEy (y)[px +
eAx (y)]. The previous terms have either had the matrix
structure of the identity or σ z, while here we also have a term
proportional to σ x , i.e., a mixing between the spin states. The
σ z term is of the same size as the one from Sec. IV B and
therefore is negligible. The mixing term will be even smaller,
as pz will be zero initially and of the order of m in the final
state, so a factor of γ0 smaller than the already negligible
small correction.

Now that we have argued for the smallness of the additional
terms, we are left with the equation

[−∇2 + eκβy2(−i∂x ) + εeκy2 − (ε2 − m2)]φ(r ) = 0.

(54)
To solve this equation, we try the ansatz φ(r ) =
I (y)eipxx+ipzzs, where s is any two-component vector and so
we obtain the following differential equation:[

d2

dη2
− η2 + a

]
I (η) = 0, (55)

where we have defined

a = L2
(
ε2 − p2

x − p2
z − m2

)
, (56)

and
1

L
= 4

√
eκ (βbpx + ε), (57)

and the dimensionless variable is defined by η = y/L.
This has normalizable solutions when a = 2n + 1 with n

integer (see, e.g., [66,67]), which we denote In(η). And so the
solutions to Eq. (54) are given by

φn(r ) = ei(pxx+pzz)In(η(y))s. (58)

Because the solutions are quantized with quantum number
n, we identify ε2 → ε2

n and must have that the constants are
related by

ε2
n = 1

L2
(2n + 1) + p2

x + p2
z + m2, (59)

and the solutions to Eq. (55) can be written explicitly as

In(η) = Nne
−η2/2Hn(η), (60)

where Nn is a normalization constant to be found and
Hn(η) are the Hermite polynomials normalized such that∫ ∞
−∞ Hm(x)Hn(x)e−x2

dx = √
π2nn!δnm, where δnm is the

Kronecker delta function. In this problem, we deal with a
bound motion in the y direction and, therefore, we would
expect the wave functions to be somewhat bounded within
a certain region. Indeed, it is the case that the functions In(η)
will rapidly decay to zero when η >

√
2n and very sharply for

n � 1. Therefore, we can relate the classical amplitude of the
motion by ymax = L

√
2n. In Eq. (59), we see that (2n + 1)/L2

seemingly takes on the role as the squared momentum in the y

direction. Replacing 2n with ymax, according to this relation,
one obtains approximately that 2n/L2 → ξ 2m2 such that we
have |py | � ξm, which is the expected size from the study of
the classical dynamics. Our regime of validity, ξ/γ0 � 1, can
then also be translated to a condition on n that 2n/L2 � ε2.
We would like to normalize In(η) such that∫

|In(η)|2dy = 1, (61)

which gives us

Nn = 1√
2nL

√
πn!

. (62)

So we have our solutions to the Dirac equation as

ψ (r, t ) = 1√
2LxLz

(
In(η)s

σ ·[−i∇+eA(y)]
ε+eϕ(y)+m

In(η)s

)
ei(pxx+pzz−εnt ),

(63)

where LxLz is a normalization area in the xz plane (one particle
per area). When calculating the transition rate, we will need to
sum over two linearly independent spin states which we choose
by setting s = (1, 0) corresponding to what we will call spin
up (↑) and s = (0, 1) to spin down (↓). In this way, we can
write

ψ↑(r, t ) = 1√
2LxLz

ei(pxx+pzz−εnt )U↑(y), (64)

ψ↓(r, t ) = 1√
2LxLz

ei(pxx+pzz−εnt )U↓(y), (65)

where

U↑(y) =

⎛
⎜⎜⎜⎝

In(η)
0

pzIn(η)
εn+eϕ(y)+m

pxIn(η)+In(η)η2C+ 1
L

dIn (η)
dη

εn+eϕ(y)+m

⎞
⎟⎟⎟⎠, (66)

U↓(y) =

⎛
⎜⎜⎜⎝

0
In(η)

pxIn(η)+In(η)η2C− 1
L

dIn (η)
dη

εn+eϕ(y)+m−pzIn(η)
εn+eϕ(y)+m

⎞
⎟⎟⎟⎠. (67)
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Here we obtained a more explicit form than in Eq. (63) by
inserting the Pauli matrices, i.e.,

σ ·
[
−ie2

d

dy
+ eA(y)

]
In(η)

= y2In(η)
eκβb

2
σ x − iσ y

dIn(η)

dy

=
(

0 In(η)η2C − 1
L

dIn

dη

In(η)η2C + 1
L

dIn

dη
0

)
, (68)

where e2 is a unit vector in the y direction and we defined
C = eκβbL

2

2 .
Finally, since the potential [−eϕ(y)] in the denominator is

much smaller than the energy εn (this is the same condition as
in Sec. IV A), we can make the following approximation, valid
when γ0 � ξ :

pxIn(η) + Inη
2C + 1

L

dIn(η)
dη

εn + eϕ(y) + m

=
pxIn(η) + In(η)η2C + 1

L

dIn(η)
dη

(εn + m)
[
1 + eϕ(y)

εn+m

]
�

pxIn(η) + In(η)η2C + 1
L

dIn(η)
dη

(εn + m)

[
1 − eϕ(y)

εn + m

]
. (69)

In this product, we do not need to keep all terms, as some are
completely negligible. We only want to keep what corresponds
to the leading order in ξ/γ0. Considering first the term propor-
tional to In(η), we must consider [pxIn(η) + In(η)η2C][1 −
eϕ(y)
εn+m

]. First we must realize that the first term in the first
brackets, being proportional to px , is much larger than the
other term in these brackets. This can be seen by considering
that

η2C � y2
max

L2

eκβbL
2

2
=

(
ξ

γ0

)2
βb

2

γ0m

(1 + βb)
, (70)

and therefore the second term in the numerator is of the order
of ξ 2/γ 2

0 compared to the first. Therefore, we have

[pxIn(η) + In(η)η2C]

[
1 − eϕ(y)

εn + m

]

� pxIn(η) + In(η)η2C − eϕ(y)

εn + m
pxIn(η)

= pxIn(η) + In(η)η2D, (71)

where D = eκ ( px
εn+m

+βb )L2

2 . From the first to second line, we
could neglect the product of the two small quantities as they
would be higher than the leading order in ξ/γ0. Similarly, we
can approximate D � eκ (1+βb )L2

2 , as the error in doing this leads
only to a term of higher than leading order in ξ/γ0. For the term
proportional to dIn/dη, we can simply approximate

1

L

dIn(η)

dη

[
1 − eϕ(y)

εn + m

]
� 1

L

dIn(η)

dη
. (72)

This is due to the fact that 1/LdIn(η)/dη came from the
momentum operator in the y direction applied to In(η) and
therefore this is already proportional to ξ/γ0, and including

the product with the other small quantity would lead to terms
of the order of ξ 3/γ 3

0 and is therefore smaller than the leading
order. We have confirmed with our numerical examples of
calculation, shown later, that keeping the terms neglected here
makes no difference. As such, we finally obtain

U↑(y) =

⎛
⎜⎜⎜⎝

In(η)
0

pzIn(η)
εn+m

pxIn(η)+In(η)η2D+ 1
L

dIn (η)
dη

εn+m

⎞
⎟⎟⎟⎠, (73)

U↓(y) =

⎛
⎜⎜⎜⎝

0
In(η)

pxIn(η)+In(η)η2D− 1
L

dIn (η)
dη

εn+m
−pzIn(η)

εn+m

⎞
⎟⎟⎟⎠. (74)

It was earlier stated that the normalization was for one particle
per area, however unproven. To show that this is correct
within our approximation, we calculate

∫
ψ†(r, t )ψ (r, t )dV .

We have ∫
ψ

†
↑(r, t )ψ↑(r, t )dV

= 1

2

∫
dy

{|In(η)|2

+
[

pxIn(η) + In(η)η2C + 1
L

dIn(η)
dη

εn + eϕ(y) + m

]2
⎫⎬
⎭, (75)

where the integration over dxdz has canceled out with the area
LxLz in the front factor of Eq. (64). We show here the case of
spin up, but the result is the same for spin down.

By using the properties that the derivative of the In(η)
function, as they are harmonic-oscillator wave functions, is
related to the stepped up and down wave functions, we find
that a factor of

1√
1 + p2

x−(En+m)2+( 3
2 n2+ 3

2 n+ 3
4 )D2+

(
1

L2 +pxD
)
(n+ 1

2 )
2(εn+m)2

(76)

is to be multiplied onto the wave function to ensure exact
normalization. To estimate the size of this correction, we also
need to know the typical size of n. As mentioned earlier, the
solutions In(η) rapidly drop off, for large n, when η2 > 2n.
We have that e[Ax (y) − ϕ(y)] ∼ Dη2 and, therefore, nD ∼
−eϕ(ymax). Thus we have terms that are of the order of
−eϕ(ymax)/εn or this factor squared, which is therefore of
the same size as the correction found in Sec. IV A. The
term n/L2 can be seen to be of the same order by replacing
n ∼ −eϕ(ymax)/D and using the definition of L. Therefore,
as long as γ0 � ξ , the normalization of Eqs. (64) and (65) is
correct within our accuracy.

V. RADIATION EMISSION

Now that we have obtained the wave functions, we can
calculate the probability of radiation emission by using the
transition matrix element from an initial state ψi (x) to a
final state ψf (x) while emitting a photon with momentum
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four-vector kμ = (ω, k) and polarization ε, which is given by

Sf i =
∫

d4xψ̄f (x)ie

√
4π

2ωV
/ε∗eikxψi (x). (77)

Then the differential rate of emission dW is usually given by

dW = |Sf i |2 1

T

V d3pf

(2π )3

V d3k

(2π )3
, (78)

where V is the normalization volume and T is the interaction
time, factors which eventually cancel out. In our case, the
density of the final states of the electron instead becomes
V d3pf

(2π )3 → dpxdpzLxLz

(2π )2

∑
nf

, where LxLz is a normalization area.
This change is due simply to the fact that one quantum number
is discrete instead of continuous. Inserting our wave functions
from Eq. (65), we obtain

Sf i = ie

√
4π

2ωV

1

2LxLz

∫
d4xŪf (y)/ε∗Ui (y)

× e−ikyyei(px,i−px,f −kx )xei(pz,i−pz,f −kz )z

× ei(εf +ω−εi )t , (79)

and carrying out the trivial integrations, we obtain

Sf i = ie

√
4π

2ωV

1

2LxLz

(2π )3
∫

Ūf (y)/ε∗Ui (y)e−ikyydy

× δ(px,i − px,f − kx )δ(pz,i − pz,f − kz)

× δ(εf + ω − εi ). (80)

Since we need this quantity squared, we must consider
the meaning of the δ function squared. Here we
take the usual approach to obtain factors of the
normalization volume and time, i.e., [δ(px,i − px,f − kx )δ
(pz,i − pz,f − kz)δ(εf + ω − εi )]2 = LxLzT

(2π )3 δ(px,i − px,f −
kx )δ(pz,i − pz,f − kz)δ(εf + ω − εi ), and so we obtain

|Sf i |2 = 4πe2

2ωV

1

(2LxLz)2
(2π )6

×
∣∣∣∣
∫

Ūf (y)/ε∗Ui (y)e−ikyydy

∣∣∣∣
2

× LxLzT

(2π )3
δ(px,i − px,f − kx )δ(pz,i − pz,f − kz)

× δ(εf + ω − εi ). (81)

Now integrating over final electron momentum, we obtain

∫
dpxdpzLxLz

(2π )2

∑
nf

|Sf i |2

=
∑
nf

e2

4ωV
(2π )2

∣∣∣∣
∫

Ūf (y)/ε∗Ui (y)e−ikyydy

∣∣∣∣
2

× T δ(εf + ω − εi ). (82)

Now we must only account for the photon density of states
from Eq. (78) and we obtain the differential rate as

dW =
∑
nf

e2

8πω

∣∣∣∣
∫

Ūf (y)/ε∗Ui (y)e−ikyydy

∣∣∣∣
2

× δ(εf + ω − εi )ω
2dωd�. (83)

Now we wish to integrate over dcosθ in d� = d�dcosθ to
get rid of the last δ function. To do this, we use the energy
relation of Eq. (59) to write the final energy and use that
the momentum δ functions have fixed px,f = px,i − kx and
pz,f = pz,i − kz. Now writing the photon momentum vector
k in spherical coordinates,

k = ω(cosθ, sinθcos�, sinθsin�), (84)

we have

pz,f = − kz = −ωsinθsin�, (85)

px,f =px,i − ωcosθ. (86)

In this case, Eq. (59) for the final energy εf becomes

ε2
f = (2n + 1)

√
eκ[px,i + εi − ω(1 + cosθ )]

+ (px,i − ωcosθ )2 + ω2sin2θsin2� + m2. (87)

Now we wish to carry out the integration over dcosθ so we
must transform the δ function so

δ(εf (cosθ ) + ω − εi ) = δ(cosθ − cosθ0)∣∣∣ dεf

dcosθ (cosθ )
∣∣∣ , (88)

where cosθ0 is the solution to the equation

εf (cosθ ) + ω − εi = 0, (89)

which we will find later. We obtain, from Eq. (87),

dεf

dcosθ
= 1

εf

[
−(2n + 1)

eκω

4
√

eκ[px,i + εi − ω(1 + cosθ )]

−ωpx,i + ω2cosθcos2�
]
.

(90)

And so we have integrated over all the δ functions and can
write the differential rate as

dW =
∑
nf

e2

8πω′

∣∣∣∣
∫

Ūf (y)/ε∗Ui (y)e−ikyydy

∣∣∣∣
2

× 1

| dεf

dcosθ (θ0)|
ω2dωd�. (91)

To find the solution of Eq. (89) we will recall that we consider
ultrarelativistic particles such that θ is small, meaning we can
perform the series expansions of cosθ � 1 − θ2

2 and sinθ � θ .
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Inserting this in Eq. (87), we obtain

θ0 = [(εi − ω)2 − (2n + 1)
√

eκ (px,i + εi − 2ω)

−(px,i − ω)2 − m2]1/2/[(px,i − ω)ω + ω2sin2�

+ ω/4

px,i + εi − 2ω
(2n + 1)

√
eκ (px,i + εi − 2ω)]1/2.

(92)

Now we have all the quantities necessary to evaluate the rate
from Eq. (91).

VI. BAIER METHOD

From [47,68], it can be seen that the differential power
emitted in the semiclassical operator method is given by

d2P

dωd�
= 1

T

e2

4π2
ω′2

(
ε2 + ε′2

2ε2

∣∣∣∣
∫ ∞

−∞
(n − v)eiω′(t−n·r )dt

∣∣∣∣
2

+ω2m2

2ε4

∣∣∣∣
∫ ∞

−∞
eiω′(t−n·r )dt

∣∣∣∣
2
)

,

(93)

where ε′ = ε − ω, ω′ = ωε/(ε − ω), n = (cosθ,

sinθcos�, sinθsin�) is the direction of emission. Therefore,
Eq. (93) allows for the determination of the differential power
emitted, including quantum effects, for a given classical
trajectory described by r (t ) and v(t ), which are the classical
position and velocity vectors, respectively. It is beneficial to
first look at the integral from the second term and insert the
motion found in Sec. III,∫ ∞

−∞
eiω′(t−n·r )dt

=
∫ ∞

−∞
e
iω′

{
t−cosθ

[(
1− 1

2γ 2
0

− ξ2

4γ 2
0

)
t− 1

4

(
ξ

γ0

)2
sin(2ω0 t )

2ω0

]}

×e
−iω′sinθcos� ξ

γ0ω0
sin(ω0t )

dt. (94)

If we change the variable to τ = ω0t and expand cosθ and sinθ

as earlier, this can be rewritten as

∫ ∞

−∞
eiω′(t−n·r )dt = 1

ω0

∫
e
iω′

(
τ

2γ 2
0 ω0

[1+ 1
2 ξ 2+γ 2

0 θ2]
)

×e
iω′

[
1

8ω0

(
ξ

γ0

)2
sin(2τ )−θcos� ξ

γ0ω0
sin(τ )

]
dτ. (95)

Now we know that

e
iω′

[
1

8ω0

(
ξ

γ0

)2
sin(2τ )−θcos� ξ

γ0ω0
sin(τ )

]
(96)

is a 2π periodic function so we can write it as a Fourier series,

e
iω′

[
1

8ω0

(
ξ

γ0

)2
sin(2τ )−θcos� ξ

γ0ω0
sin(τ )

]
=

∞∑
n=−∞

A0(n, α1, α2)e−inτ ,

(97)

where we have defined

Am(n, α1, α2) = 1

2π

∫ π

−π

cosm(τ )ei[α1sin(τ )−α2sin(2τ )−nτ ]dτ,

(98)

as in [2,27], with

α1 = θcos�
ω′ξ
γ0ω0

, (99)

and

α2 = ω′

8ω0

(
ξ

γ0

)2

. (100)

When inserting this in Eq. (95), we obtain

∫ ∞

−∞
eiω′(t−n·r )dt = 2π

ω0

∞∑
n=−∞

A0(n, α1, α2)

δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]
. (101)

Now calculating
∫ ∞
−∞ (n − v)eiω′(t−n·r )dt is straightforward.

For the y component, we have∫ ∞

−∞
(n − v)ye

iω′(t−n·r )dt = 1

ω0

∫ ∞

−∞

[
θcos� − ξ

γ0
cos(τ )

]

×e
iω′

(
τ

2γ 2
0 ω0

[1+ 1
2 ξ 2+γ 2

0 θ2]
)

×e
iω′

[
1

8ω0

(
ξ

γ0

)2
sin(2τ )−θcos� ξ

γ0ω0
sin(τ )

]
dτ. (102)

The first term is simply a constant (no τ dependence) times the
integral we have already calculated, and the cosine factor in the
second term means we simply need to replace A0(n, α1, α2)
with A1(n, α1, α2), and so∫ ∞

−∞
(n − v)ye

iω′(t−n·r )dt

= 2π

ω0

∞∑
n=−∞

[
θcos�A0(n, α1, α2) − ξ

γ0
A1(n, α1, α2)

]

× δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]
. (103)

The z component is simply a constant times the result from
Eq. (101) since vz = 0, so we have

∫ ∞

−∞
(n − v)ze

iω′(t−n·r )dt = 2π

ω0

∞∑
n=−∞

θsin�A0(n, α1, α2)

×δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]
. (104)

In Eq. (93), we see that we need these quantities squared and so
we must consider the meaning of the δ function δ[ ω′

2γ 2
0 ω0

(1 +
1
2ξ 2 + γ 2

0 θ2) − n] squared. This came from an integral over
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the phase τ and so the usual approach is that{
δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]}2

= δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]
�τ

2π
, (105)

where �τ is the phase length which is ω0T , where T is the
interaction time, and which we can divide with on both sides
of Eq. (93) to obtain the energy emitted per unit time. We
therefore obtain∣∣∣∣

∫
(n − v)eiω′(t−n·r )dt

∣∣∣∣
2

= (2π )2

ω2
0

T ω0

2π
δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]

×
∞∑

n=−∞

[
θcos�A0(n, α1, α2) − ξ

γ0
A1(n, α1, α2)

]2

+ [θsin�A0(n, α1, α2)]2. (106)

So far we have not considered the contribution from∫
(n − v)xe

iω′(t−n·r )dt and this is because it is suppressed
compared to the two other terms. As stated by Baier and
Katkov, relativistic particles emit radiation predominantly in
a cone of angle of the order of 1/γ0 around their velocity
vector, therefore ny and nz are of the order of ξ/γ0 and
1/γ0, respectively, and therefore we havenx − vx � 1 − (n2

y +
n2

z )/2 − (1 − 1/2γ 2
0 − ξ 2/4γ 2

0 ) where, due to cancellation of
the large contributions, we are left with terms only of the
order of 1/γ 2

0 or ξ 2/γ 2
0 times the exponential, whereas the

y and z terms are of the order of 1/γ0 or ξ/γ0 times the same
exponential. For this reason, this term can be neglected. Now
we wish to carry out the integration over dθ so, similarly to
the reasoning in the context of Eq. (88), we find

δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]
= ω0

ω′θ
δ(θ − θ0,B), (107)

where

θ0,B = 1

γ0

√
2γ 2

0 ω0n

ω′ −
(

1 + ξ 2

2

)

= 1

γ0

√(
1 + ξ 2

2

)(
ω′

th

ω′ − 1

)
, (108)

where ω′
th = 2γ 2

0 ω0n/(1 + ξ 2

2 ). We note that while there are
obviously two solutions for θ which would make the content
of the δ function in Eq. (107) zero, namely, also −θ0,B, the
negative solution is not allowed by our choice of coordinate
system where 0 � θ � π . Here we see that we should have
n � 1 to have any solutions. From this equation, it is clear that
for a given quantum number n, the largest allowed value of ω′
is ω′

th and this is the location of the sharp edges in the spectra
seen in Figs. 2–6. It is also seen that most energy is emitted for
large ω′ within each harmonic peak, and therefore typically
ω′

th
ω′ − 1 is of the order of 1 and therefore θ0,B is typically of
the order of ξ/γ0, and therefore our approximation that θ � 1
holds true. Since there are no angular-dependent prefactors in
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FIG. 2. The case of n = 4 and ξ = 0.1. QM: the fully quantum
calculation; Baier analytical: the semiclassical method of Baier and
Katkov.

Eq. (93), we can carry out the integrals over the angles directly
by considering∫

d�θdθ

∣∣∣∣
∫

(n − v)eiω′(t−n·r )dt

∣∣∣∣
2

=
∫

d�
2πT

ω′

∞∑
n=−∞

×
[
θ0,Bcos�A0(n, α1, α2) − ξ

γ0
A1(n, α1, α2)

]2

+ [θ0,Bsin�A0(n, α1, α2)]2, (109)

and for the second term of Eq. (93), we obtain∣∣∣∣
∫

eiω′(t−n·r )dt

∣∣∣∣
2

= 2π

ω2
0

T ω0

∞∑
n=−∞

A2
0(n, α1, α2)

×δ

[
ω′

2γ 2
0 ω0

(
1 + 1

2
ξ 2 + γ 2

0 θ2

)
− n

]
. (110)

Integrating this term over all angles as well, we obtain∫
d�θdθ

∣∣∣∣
∫

eiω′(t−n·r )dt

∣∣∣∣
2

=
∫

d�
2πT

ω′

∞∑
n=−∞

A2
0(n, α1, α2). (111)

So, in total, we obtain the emitted power dP (energy per unit
time) differential in the emitted photon energy as

dP

dω
= e2

2π
ω′

∫
d�

∞∑
n=1

×
(

ε′2 + ε2

2ε2

[{
θ0,Bcos�A0(n, α1, α2) − ξ

γ0
A1(n, α1, α2)

}2

+{θ0,Bsin�A0(n, α1, α2)}2

]
+ ω2m2

2ε4
A2

0(n, α1, α2)

)
. (112)

In this form, it is clear which terms correspond to which
from Eq. (93); however, it is not immediately obvi-
ous that it is identical to that found in [27]. To ob-
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FIG. 3. The case of n = 8, ξ = 5, χ = 7.81. QM: the fully
quantum calculation; Baier numerical: the semiclassical method of
Baier and Katkov for 15 periods of oscillation; Baier analytical:
the analytical results obtained from the semiclassical method cor-
responding to the limit of many oscillations; CCF: the constant
crossed field approximation. This figure shows the “doubly quantum”
regime where the semiclassical method no longer provides accurate
results.

tain this, we must carry out the square in the term

{θ0,Bcos�A0(n, α1, α2) − ξ

γ0
A1(n, α1, α2)}2

. This will give us

a term −2θ0,Bcos�A0(n, α1, α2) ξ

γ0
A1(n, α1, α2), which we

will rewrite by employing the relation found in [2] stating that

α1A1(n, α1, α2) = (n − 2α2)A0(n, α1, α2)

+ 4α2A2(n, α1, α2), (113)

and from this we can express cos�A1(n, α1, α2) in terms of
A0 and A2, which after some rewriting will lead us to the same
result as in [27],

dP

dω
= e2

2π

ω

γ 2
0

∫
d�

∞∑
n=1

×
{
−A2

0 + ξ 2

[
1 + u2

2(1 + u)

](
A2

1 − A0A2
)}

, (114)

where u = ω
ε−ω

.

VII. RESULTS AND DISCUSSION

Now we have calculated the radiation emission using two
different approaches to the same problem. One is fully quantum
mechanical and the other is a semiclassical approach. A third
method, which is well known in the literature [69–72], is to
approximate the emission as happening in a constant crossed
field and use the formula for radiation emission in this case.
This is generally considered applicable when ξ � 1 and so
we will also make this comparison when this condition is
fulfilled.

When dealing with radiation emission, the quantum param-
eter is defined by

χ = e
√

−(Fμνpν )2

m3
, (115)
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FIG. 4. The case of n = 120, ξ = 1. QM: the fully quantum
calculation; Baier numerical: the semiclassical method of Baier and
Katkov for 15 periods of oscillation; Baier analytical: the analytical
results obtained from the semiclassical method corresponding to the
limit of many oscillations. Here we see how for quite large values of
the quantum number, the semiclassical method is good.

and tells us how important quantum effects such as recoil and
spin are. When χ � 1, these effects are small. However the
effect of low quantum number is not covered by this parameter
and is a separate condition. We will consider the peak field
value in terms of the parameters of our problem, which is then
given by

χmax = κymax
2γ0

Ec

. (116)

From the discussion below Eq. (60), we have that ymax can also
be accurately written as ymax = L

√
2n when n is large, so

χmax = κ
√

2nL
2γ0

Ec

. (117)

Setting px � ε and βb � 1, we have

1

L
� 4

√
2eκpx, (118)

1

2pxL4
= eκ, (119)

and so we have

χmax =
√

2n

(
λC

L

)3

, (120)

where λC = 1/m is the Compton wavelength. In the special
case of the harmonic oscillator, the momentum-space wave
function is the same as the space wave function save only
for a different variable, such that instead of In(y/L), we
have In(qyL), and therefore since the function In(η) decreases
rapidly for η2 > 2n, we can also write q2

y,max = 2n/L2. And
so we express the other parameter usually considered when
dealing with radiation emission ξ in terms of the parameters
of our solutions to obtain

ξ = qy,max

m
= λC

L

√
2n. (121)
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FIG. 5. The case of n = 40, ξ = 1. QM: the fully quantum
calculation; Baier numerical: the semiclassical method of Baier and
Katkov for 15 periods of oscillation; Baier analytical: the analytical
results obtained from the semiclassical method corresponding to the
limit of many oscillations. Here we see how for smaller values of
the quantum number, one begins to see small deviations between the
semiclassical method and the correct result.

And, combining this with Eq. (120), we obtain the useful
relation

χmax = ξ 3

2n
. (122)

For weak fields, meaning a small field gradient κ , L will
become large and so we will denote L � λC as the weak-field
gradient regime, and vice versa. Below we will discuss features
of the radiation spectrum shown in the figures in the different
regimes. In the figures, QM corresponds to the exact calcula-
tion of Eq. (91) and Baier analytical corresponds to Eq. (114).
Baier numerical corresponds to using the formula of Eq. (93)
by numerically solving the equations of motion corresponding
to a time of 15 oscillations in the field numerically, and then
performing the integration over angles and time numerically,
as done in [47]. CCF corresponds to the radiation emitted when
applying the constant crossed field approximation.

A. Weak-field gradient regime, L � λC

In this regime when the quantum number n is small, both
χmax and ξ will be small as seen from Eqs. (120) and (121).
A small value of χmax means the only quantum effects for n

small are those due to the quantization of the motion. Since
ξ will be small, the radiation is in the dipole regime, meaning
different harmonics are clear and most radiation comes from
the first harmonic. In Fig. 2, we have shown a plot of the
radiation spectrum in this regime using the exact calculation
and the semiclassical approximation. Coincidentally, the two
calculations yield the same result for the first harmonic, and
differences are only seen for higher harmonics. So differences
are only seen in the parts of the spectrum where the radiation
yield is small. Another difference is that the exact calculation
only allows a finite number of harmonics corresponding to
transitions from the initial state with quantum number ni

to one with lower quantum number, and the last harmonic
thus corresponds to transition to the ground state and, for
photon energies above the threshold corresponding to this
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FIG. 6. The case of n = 40, ξ = 30. QM: the fully quantum
calculation; Baier numerical: the semiclassical method of Baier and
Katkov for 15 periods of oscillation; CCF: the constant crossed field
approximation. Here we see how, also in the regime where the CCF
approximation may be applied, the deviation from the correct results
is small when n = 40.

harmonic, no radiation can be emitted. With the semiclassical
method, this is not the case and the sum over harmonics is
infinite.

B. Strong-field gradient regime, L � λC

If one wants to see big differences in the whole of the spec-
trum, as seen in Fig. 3, one must be in the strong-field regime
and have small value of n. In this regime, one will always have
large χ such that recoil and spin is important, and for small n,
one has the additional quantum effect of the quantized motion,
i.e., one needs the wave function instead of the trajectory.

In Fig. 3, we have shown an example of this which could
be dubbed the “doubly quantum regime,” where it is seen that
the correct calculation deviates significantly from the constant
crossed field approximation (CCF), but also from the result
of the semiclassical operator method which is more general,
and evidently fails in the regime of low quantum numbers. This
transition from the usual regime to the doubly quantum regime
happens when the n quantum number is small and L = 1

m
,

which can be related to a certain beam density as we will see
in Sec. VII D.

In Figs. 4 and 5, the radiation spectrum for ξ = 1, but for
a different value of the quantum number n of the radiating
particles. Here it is seen that as n is large, as in the n =
120 case, the agreement between the exact calculation and
the semiclassical approach is good, while when it becomes
smaller, in the case of n = 40, the agreement becomes worse.
In Fig. 6, we show the radiation spectrum in the regime
where the constant crossed field approximation is applicable
and see that while there are small differences between the
semiclassical method and the exact calculation in the position
of the harmonics (see, e.g., the position of the third and fourth
harmonic peaks), the overall size of the spectrum coincides
quite well, while the CCF approximation seems to slightly
overestimate the radiation emitted at low frequencies. So to
see major differences, one needs an even smaller value of n,
as is the case seen in Fig. 3.
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C. Effects for planar channeling of positrons

Channeling is the phenomenon of high-energy particles
being transversely trapped between planes or between strings
in a crystal [27,73,74]. In the particular case of positrons
trapped between crystal planes, the potential governing their
motion is quite close to that of the parabolic potential, which
we have treated in this paper. Therefore, it is natural to ask if
the results we find would apply to the case of channeling. In
this case, the largest allowed value of y is dp/2, where dp is the
distance between two planes. Here we can write the potential
energy as U (y) = 4U0y

2/d2
p, where U0 is the potential-energy

depth. The parameters U0 and dp can be looked up in, e.g., [27].
Based on this way of writing the potential energy, we have that
κ = 8U0/ed

2
p and, inserting this in Eq. (57) and then using

ymax = L
√

2nmax, one obtains nmax = (dp/2)(
√

U0m/2)
√

γ0.
The factor (dp/2)(

√
U0m/2) is of the order of 1 and therefore

we have roughly nmax � √
γ0. Therefore, we see that in order

to have a small quantum number, we also need quite low
particle energy, i.e., nmax = 10 corresponds to an energy of
roughly 50 MeV. The weak-field gradient regime L � λC then
corresponds to ε � εc, where εc = m4d2

p/8U0. For the most
optimistic case, we can insert the values for tungsten and obtain
εc = 21.2 TeV, and therefore the condition of low quantum
number also means we will be in the weak-field gradient
regime. In this regime, the spectrum would be similar to the one
seen in Fig. 2. For channeling, one has the critical angle given
by θc = √

2U0/ε and therefore we have ξ = √
2U0/m

√
γ0 �

nmax
√

2U0/m, and therefore we see that if we want a small
quantum number, we will also be in the dipole regime. For this
reason, in [27], there is a section on calculating the (dominant)
radiation from the first harmonic in this regime of low quantum
numbers which does not use their developed semiclassical
method; however, the higher harmonics, where one would start
to see a deviation, are not treated.

D. Effects for beamstrahlung

To gain an understanding of when these effects could arise
in beamstrahlung, we wish to approximate the parameters we
have introduced in terms of the usually given beam parameters;
see Table I. From Eq. (9), we have that κ relates to the peak

density as

κ = 4πρ0, (123)

where ρ0 = ρ(
0). So, using Eq. (119), we have

1

L4
= 8πeρ0ε. (124)

Now we can define the critical density ρc as that corresponding
to L = 1/m so m4 = 8πeρcε, or

ρc = m4

8πeε
. (125)

So, to be in the doubly quantum regime, one should reach
this density and have a small quantum number, i.e., where
the transverse beam size becomes comparable to the Compton
wavelength. This also gives us another way of expressing the
length parameter of the problem L in terms of the critical
density since

1

L4
= m4 ρ0

ρc

, (126)

and so we also have (
λC

L

)4

= ρ0

ρc

. (127)

Now we can use Eq. (120) to obtain an estimate of the
quantum number corresponding to the particles with the
largest amplitude, which will contribute most to the radiation
spectrum. This gives us

√
2nmax = χmax/

(
ρ0

ρc

)3/4

. (128)

Now we wish to obtain an expression giving us the quantum
number corresponding to the largest amplitude of oscillation
when crossing a bunch in terms of the usual beam parameters
such that we can see how this scales and in what regime these
effects would become important. We have

ρ0

ρc

= Ne

(2π )3/2�x�y�z

8πeε

m4

= 8πNe2γ0

(2π )3/2�x�y�zm3
. (129)

TABLE I. Beam parameters.

Machine CLIC CLIC ILC ILC HER 2017 CLIC mod.

ε 190 GeV 1500 GeV 100 GeV 250 GeV 4 GeV 1500 GeV
N 5.2 × 109 3.7 × 109 2.0 × 1010 2.0 × 1010 6.5 × 1010 3.7 × 109

�x 149 nm 40 nm 904 nm 474 nm 10.7 μm 4 μm
�y 2.9 nm 1 nm 7.8 nm 5.9 nm 62 nm 10 pm
�z 70 μm 44 μm 300 μm 300 μm 5 mm 44 μm
χmax 0.32 10.7 0.025 0.12 1.65 × 10−5 0.11
ρmax 7.13 × 106 eV3 8.72 × 107 eV3 3.92 × 105 eV3 9.89 × 105 eV3 8.16 × 102 eV3 8.72 × 107 eV3

ρc 1.67 × 1011 eV3 2.12 × 1010 eV3 3.18 × 1011 eV3 1.27 × 1011 eV3 7.9 × 1012 eV3 2.12 × 1010 eV3

λC/L 0.081 0.25 0.033 0.0528 0.0032 0.25√
2nmax 608 657 674 808 512 6.6

ξmax 49 166 22.5 43 1.63 1.67
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Now we use Eq. (116) and insert κ from Eq. (9) and, to
obtain an estimate for the typical beam particle, we set
ymax = �y ,

χmax = 4γ0Ne2

√
2πm2�x�z

.

So, introducing oi = �im, we have

χmax/

(
ρ0

ρc

)3/4

= 4γ0Ne2

√
2πoxoz

(
(2π )3/2oxoyoz

8πNe2γ0

)3/4

= 4

√
4√
2π

(oxoyoz)3/4

oxoz

(Nγ0e
2)1/4,

(130)

and so

nmax = 1
4
√

2π

(oxoyoz)3/2

(oxoz)2
(Nγ0e

2)1/2. (131)

To obtain an expression for ξ , we can use the expression for
the amplitude given by Eq. (26) and set it equal to �y so
that

ξmax = �yγ0

√
2eκ

ε
= 2

(2π )1/4

√
Ne2γ0oy

oxoz

. (132)

From the facts that ymax = L
√

2n and the transition to the
doubly quantum regime happens when L � 1/m and n small,
we can get an estimate of how small the beam size has to
be. So, we have �y,crit � 10λC

√
20 = 17 pm. Currently, the

accelerator SuperKEKB has beams with a size of 62 nm, while
future machines such as Compact Linear Collider (CLIC)
has proposed 1 nm beams. In Table I, we have shown the
beam parameters of a current electron-positron accelerator,
superKEKB, along with some that are still on the drawing
board, namely, the CLIC and International Linear Collider
(ILC). From the large value of

√
2nmax, it is clear that the

effects we have seen in this paper will not be important, i.e.,
the semiclassical method will provide the correct result. If
the beams are reshaped, making them even smaller in the y

direction and larger in the x direction, nmax will go down, as
can be seen from Eq. (131). For the High-Energy Ring (HER)
(SuperKEKB), if we reduce �y by a factor of 100 and increase
�x by the same amount, the luminosity is unchanged but we
then have nmax = 13. However, because of the low energy and
so, not being close to the critical density ρc, we would only be
in the weak-field gradient regime where χmax � 1. To be in the
doubly quantum regime, we have considered CLIC with 3 TeV
center-of-mass energy and reshaped the beams in the same way.
This is the “CLIC mod.” case from Table I. Here it is seen that
χmax = 0.11, so the usual quantum effects would start to come
into play and, at the same time, we have a small quantum
number of nmax = 22. We point out that simply reshaping the
beams with a focusing magnet is not sufficient to reach the
regime where all particles would radiate in this regime. For
this we would also require that the distribution of angles of
the particles in the y direction remains smaller than the typical
oscillation angle ξ/γ0. These two conditions together, where
the beam should be small and the angles should also be under a
certain limit, can be summarized by a requirement on the beam

emittance, namely,

γ0εy � 2nλC, (133)

where εy is the emittance in the y direction and, therefore,
the left-hand side is the normalized emittance. This reshaping
of the beams would be beneficial since χ is reduced while
keeping the luminosity the same, thus reducing the emitted
energy to beamstrahlung. This is the original purpose of having
the bunches shaped like sheets. We see here that if this strategy
is taken to the extreme, one will enter this regime of radiation
emission, where the quantization of the transverse motion
becomes important.

VIII. CONCLUSION

From first principles, we have found approximate wave
functions for a relativistic spin- 1

2 particle in a harmonic-
oscillator-like potential, valid when ξ/γ0 � 1 and γ0 � 1,
and calculated the radiation emission spectrum which showed
interesting features, allowing us to find a regime of radiation
emission where another quantum effect besides the usual ones
comes into play, namely, the quantization of the motion. This
effect is absent in the well-studied examples of nonlinear
Compton scattering in a plane wave where the semiclassical
method of Baier and Katkov yields the correct result. On the
contrary, in the field configuration studied here, there is, in fact,
a difference between the two methods and the semiclassical
operator method fails for low quantum numbers. This means
that the results obtained here could not have been obtained in
the simpler way of using the semiclassical method. Therefore,
these findings are interesting in their own right. We found that
for low quantum numbers, there will always be a difference be-
tween the two calculations; however, in the weak-field gradient
regime, the differences will only be for the higher harmonics
where the spectral yield is already low. Only in the strong-field
gradient regime, where quantum effects such as spin and recoil
also come into play, can one have large deviations between
the two calculations. We applied our calculation as a model
to two radiation emission phenomena, i.e., planar channeling
of positrons and the case of beamstrahlung, to see when one
would enter the regime of low transverse quantum number.
For channeling, we found that we would be in the weak-field
gradient regime. For beamstrahlung, we found that current
machines and the ones currently on the drawing board are far
from being in the regime of low quantum numbers; however, if
the strategy of making bunches shaped like sheets, which is the
strategy to avoid energy loss due to beamstrahlung, is taken to
the extreme, one enters this regime of radiation emission where
the quantization of the motion of the radiating particle becomes
important.
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