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A nonrelativistic quantum mechanical particle moving freely on a curved surface feels the effect of the nontrivial
geometry of the surface through the kinetic part of the Hamiltonian, which is proportional to the Laplace-Beltrami
operator, and a geometric potential, which is a linear combination of the mean and Gaussian curvatures of the
surface. The coefficients of these terms cannot be uniquely determined by general principles of quantum mechanics
but enter the calculation of various physical quantities. We examine their contribution to the geometric scattering of
a scalar particle moving on an asymptotically flat embedded surface. In particular, having in mind the possibility
of an experimental realization of the geometric scattering in a low-density electron gas formed on a bumped
surface, we determine the scattering amplitude for arbitrary choices of the curvature coefficients for a surface
with global or local cylindrical symmetry. We also examine the effect of perturbations that violate this symmetry
and consider surfaces involving bumps that form a lattice.
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I. INTRODUCTION

The study of quantum mechanics of nonrelativisitic par-
ticles moving in a curved Riemannian manifold has been a
focus of attention since the early days of canonical quantum
gravity. In his pioneering works of the 1950s, DeWitt explored
the consequences of the form invariance of the Hamiltonian
under the group of general point transformations of the con-
figuration space [1] and discovered the surprising fact that
the path-integral quantization of a scalar particle moving in
a Riemannian manifold M leads to a quantum Hamiltonian
operator H that besides the expected kinetic term, which is
proportional to the Laplace-Beltrami operator, included a term
of the form h̄2R/12m, where R is the Ricci scalar curvature
of the manifold [2]. See also Refs. [3,4].

The fact that the curvature term is proportional to h̄2 is a
clear indication that it is a by-product of the quantization of the
associated classical system. The latter is defined by a classical
Hamiltonian of the form

Hc = 1

2m
gijpipj , (1)

where gij are the coefficient of the inverse of the metric
tensor g = (gij ) in a local coordinate frame, and Einstein’s
summation convention is employed.

In the canonical quantization program, the coefficient of
the curvature term is related to the choice of ordering of
factors in the quantum analog of (1). Indeed, different factor-
ordering prescriptions that yield a scalar Hamiltonian operator
H correspond to different choices for the coefficient of the
curvature term; in general,

H = − h̄2

2m
�g + λh̄2

m
R, (2)

where�g is the Laplace-Beltrami operator for the metric tensor
g, i.e., the operator acting on the scalar functions ψ : M → C
according to

(�gψ )(x) := g−1/2∂i[g
ijg1/2∂jψ (x)], (3)

g := det(g), and λ is a real coefficient whose choice cannot be
fixed using basic principles of quantum mechanics.

In the path-integral quantization scheme, the coefficient of
the curvature term turns out to depend on the choice of the path
integral measure [5]. For example, in Ref. [6] DeWitt uses a
different choice of the measure that corresponds to λ = 1/8
(rather than λ = 1/12 of [2].) See also Ref. [7]. The choice
λ = 1/8 turns out to be consistent with the result obtained by
taking the bosonic part of a supersymmetric quantum Hamil-
tonian used in the path-integral proofs of the Atiyah-Singer
index theorem [8,9] where supersymmetry removes the factor-
ordering ambiguity. Other choices have also been considered
and promoted in the literature. For example, Refs. [10,11] show
that the requirement of conformal invariance of H corresponds
to taking λ = (n − 1)/8(n − 1), where n is the dimension of
M . For n = 2, this gives λ = 1/8. References [12,13] present
arguments supporting the choice λ = 0. The review article [14]
provides a summary of the related developments up to the year
1980.

The author of Ref. [5] points out that the ambiguity related
to the choice of λ could be settled only using the experimental
data obtained for the particular system in question. This point
of view was adopted independently in Ref. [15] where a first
step in this direction was taken by computing the effect of the
scalar curvature termλh̄2R/mon the scattering cross section of
a particle moving in a cylindrically symmetric asymptotically
flat surface. Here the basic idea is to determine the dependence
of the scattering data on the value of λ and try to pave the
way for fixing this value by comparing the theoretical results
with the outcome of a suitable scattering experiment. This is
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done by writing the Hamiltonian operator (2) as the sum of the
Hamiltonian operator:

H0 := − h̄2

2m
∇2, (4)

for a free particle moving in a plane and an effective scattering
potential:

V := H − H0. (5)

The latter is then treated as a perturbation, and the machinery
of the first-order Born approximation is used to compute the
scattering amplitude and the cross section for V .

The preliminary results reported in Ref. [15] indicate that
the scattering effect due to the geometry of a Gaussian bump is
actually not unrealistically small. However, there is a basic
difficulty with the experimental realization of these results
because any realistic experimental setup that aims at probing
such an scattering effect would involve particles whose motion
is constrained to take place in a surface by certain constraining
forces that act in the three-dimensional Euclidean space E3.
In other words, the configuration space of the particle is
an embedded surface. It is well known that the classical
mechanical system involves only the metric of the surface that
is induced by its embedding in E3. This does not carry any
information about the details of how the surface is embedded
in E3, i.e., it is sensitive only to the intrinsic geometry of the
surface. It is remarkable that the same does not seem to hold
for a quantum particle; a quantum particle would know about
the extrinsic geometry of the surface as well.

The study of the quantum mechanics of a particle con-
strained to move in a manifold embedded in a Euclidean space
has a long history. There are two different approaches for
dealing with this problem: Dirac’s formulation of constrained
Hamiltonian systems [16] and the thin-layer quantization
scheme developed in [17–24].

The application of Dirac’s formulation to a particle con-
strained to move on a surface S embedded in E3 yields second
class constraints whose details depend on the choice of the
equation used to characterize S. As different equations can
describe the same embedded surface, Dirac’s method turns out
to be ambiguous [25]. See also Ref. [26].

The thin-layer method as outlined in Ref. [18] involves three
steps. First, one considers a particle that is free to move in a
thin layer parallel to the embedded surface. Second, one carries
out a careful decoupling of the motion along the tangential
and normal directions to the embedded surface. Third, one
uses a careful limiting process that essentially removes the
information about the motion along the normal direction and
yields a Schrödinger equation in the tangential coordinates
and a corresponding effective Hamiltonian. This amounts to
assuming that the particle is in the ground state of a barrier
potential that keeps it in the vicinity of the surface along the
normal direction [23]. The Hamiltonian obtained by the thin
layer method has the form [18,19,23]

H = − h̄2

2m
�g + h̄2

2m
(K − M2), (6)

where M and K = R/2 are, respectively, the mean and
Gaussian curvatures of the surface S [27]. Unlike the Gaussian
curvature, which is uniquely determined by the metric tensor

of S, the mean curvature is sensitive to the way S is embedded
in E3, i.e., it is a measure of the extrinsic geometry of S.
Similar results have also been obtained within the context of
Dirac’s method for particular choices of the constraint equation
that specify S [28]. The authors of Ref. [29] show that the
choice of the constraining forces which in practice have a finite
strength can lead to the addition of a term proportional to h̄2

to the geometric potential. Therefore, similarly to the Dirac’s
method, the thin-layer quantization scheme that involves real-
istic constraining forces also suffers from ambiguities in the
choice of the Hamiltonian operator.

To the best of our knowledge, the only experimental study of
the predictions of the thin-layer quantization method is the one
reported in Ref. [30], where the authors consider the effect of
the geometric potential on the electronic properties of certain
liquids. The physical implications of the geometric potentials
have also been studied in Refs. [31–35].

The purpose of the present article is to use the approach of
Ref. [15] to explore the phenomenon of geometric scattering
for an asymptotically Euclidean embedded surface S. Specifi-
cally, we consider the geometric scattering of a scalar particle
of mass m whose motion in S is described by the Hamiltonian
operator:

H = − h̄2

2m
�g + h̄2

m
(λ1K + λ2M

2), (7)

where λ1 and λ2 are arbitrary real coefficients.

II. GEOMETRIC SCATTERING AMPLITUDE

We begin our analysis by recalling the Lippmann-
Schwinger equation for a Hamiltonian of the form
H = H0 + V ,

|ψ (±)〉 = |φ〉 + 1

E − H0 ± iε
V |ψ (±)〉, (8)

where we use the notation of Ref. [36]. In particular, H0 is
the free Hamiltonian, and |φ〉 and E are, respectively, the
state vector and the energy of the incident particle that satisfy
H0|φ〉 = E|φ〉. The two-dimensional scattering problem for
the interaction potential V consists of computing the scattering
amplitude f (�k′, �k), which is related to |ψ (+)〉 according to

〈�x|ψ (+)〉 = 1

2π

[
ei�k·�x + eikr

√
r
f (�k′, �k)

]
. (9)

Here �x = (x1 := x, x2 := y) marks the Cartesian coordinates
in R2, and �k and �k′ are, respectively, the wave vector for the
incident and scattered wave functions, k := |�k| = √

2mE/h̄,
r := |�x|, and �k′ = k�x/r .

We can express the scattering amplitude in terms of the
interaction potential via

f (�k′, �k) =
√

2πme−3iπ/4

√
kh̄2

∫
d2 �x ′ e−i�k′ ·�x ′ 〈�x ′|V̂ |ψ (+)〉, (10)

and compute the differential cross section using

dσ (�k′, �k)

d�
= |f (�k′, �k)|2. (11)

To perform the first Born approximation, we replace the |ψ (+)〉
appearing on the right-hand side of (10) by the state vector |�k〉
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for the incident particle. This gives

f (�k′, �k) ≈ f (1)(�k′, �k)

= −i
√

2πme−iπ/4

√
kh̄2

∫
d �x ′2e−i�k′ ·�x ′ 〈�x ′|V̂ |�k〉. (12)

For the geometric scattering problem determined by the
Hamiltonian operator (7), the free Hamiltonian H0 and the
interaction potential V are, respectively, given by (4) and (5).
These relations together with (7) imply

〈�x ′|V̂ |�k〉 = h̄2

4πm

[(
g

ij

0 − gij
)
∂ ′
i ∂

′
j − ∂ ′

i (
√

ggij )√
g

∂ ′
j

+ 2(λ1K + λ2M
2)

]
ei�k·�x ′

, (13)

where g
ij

0 stands for the components of the inverse of the
Euclidean metric tensor (which coincides with the Kronecker
delta symbol δij when x ′i label Cartesian coordinates), ∂ ′

i

means partial derivation with respect to x ′i , the quantities g
ij

0 ,
gij , g, K , and M are evaluated at �x ′, and we have employed
〈�x ′|�k〉 = ei�k·�x ′

/2π .

III. GEOMETRIC SCATTERING FOR A CYLINDRICALLY
SYMMETRIC SURFACE

Suppose that the surface S is the graph of a smooth function
of the radial coordinate r in the polar coordinate system in R2,

i.e., there is a smooth function f : [0,∞) → R such that

z = f (r ), (14)

where (r, θ, z) are cylindrical coordinates onR3. This equation
determines a smooth embedded surface provided that it has
a vanishing derivative at r = 0, that is, ḟ (0) = 0, where an
overdot means derivation with respect to r .

We can identify (r, θ ) with the polar coordinates and express
the metric tensor induced from the Euclidean geometry of E3

on S in these coordinates as

[gij ] =
[

1 + ḟ 2 0
0 r2

]
. (15)

Here the values 1 and 2 of the coordinate labels i and j

correspond to r and θ , respectively. In view of (15), the
Gaussian and mean curvatures of S are, respectively, given
by

K = GĠ

r
, M = 1

2

(
G

r
+ Ġ

)
, (16)

where

G := ḟ√
1 + ḟ 2

. (17)

According to (16) and (17), K and M are regular (nonsingular)
functions of r provided that ḟ (r )/r tend to a finite limit as
r → 0. In what follows we assume that this condition holds.

In view of (13), (15), and (16),

〈x ′|V̂ |k〉 = h̄2

4πm

⎧⎨
⎩−G2

( �k · �x ′

r
′2

)2

+ i

[
1

r ′ G
2 + GĠ

]( �k · �x ′

r ′

)
+ 2λ1

GĠ

r ′ + λ2

2

(
G2

r2
+ 2

GĠ

r
+ Ġ2

)⎫⎬
⎭ei�k.�x ′

.

Substituting this relation in (12), we find

f (1)(�k′, �k) = e−3πi/4

√
8πk

∫
d2 �x ′ei(�k−�k′ )·�x ′

{
−G2

( �k · �x ′

r
′

)2

+ i

[
1

r ′ G
2 + GĠ

](�k · �x ′

r ′

)
+ 2λ1

GĠ

r ′ + λ2

2

(
G2

r2
+ 2

GĠ

r
+ Ġ2

)}
ei�k·�x ′

.

(18)

In order to evaluate the integral in this equation, we work in a Cartesian coordinate system (x ′, y ′) where ��k := �k − �k′ is along
the x ′ axis. Transforming to the corresponding polar coordinates (r ′, θ ′) we can perform the integral over θ ′. This gives

f (1)(�k′, �k) =
√

π

2k
e−3πi/4

∫ ∞

0
dr ′

{[
−r ′G2k2

x + 2λ1GĠ + λ2

2

(
G2

r
+ 2GĠ + rĠ2

)]
J0(r ′|��k|)

+
[
−G2

k2
y − k2

x

|��k| − kx (G2 + r ′GĠ)

]
J1(r ′|��k|)

}
, (19)

where J0 and J1 are the Bessel functions of the first kind. Denoting the angle between �k and �k′ by �, and recalling that �k′ = k�x/|�x|,
we have

|��k| = 2k sin

(
�

2

)
= 2kx, k2

y − k2
x = k2 cos �.

With the help of these relations, we can write (19) in the form

f (1)(�k′, �k) =
√

π

2k
e−3πi/4

∫ ∞

0
dr

{[
−k2r sin2

(
�

2

)
G2 + 2λ1GĠ + λ2

2

(
G2

r
+ 2GĠ + rĠ2

)]
J0

(
2kr sin

�

2

)

+
[
− k G2

2 sin �
2

− kr sin

(
�

2

)
GĠ

]
J1

(
2kr sin

�

2

)}
. (20)

022126-3



NESLIHAN OFLAZ, ALI MOSTAFAZADEH, AND MEHRDAD AHMADY PHYSICAL REVIEW A 98, 022126 (2018)

Next, suppose that

lim
r→∞ rJ1

(
2kr sin

�

2

)
G(r )2 = 0, (21)

which roughly speaking means that as r → ∞, |G(r )| tends
to 0 faster than r−1/4. This is indeed a rather weak condition
that we can easily fulfill for concrete applications. In view of
(21), the fact that

lim
r→0

ḟ (r ) = lim
r→∞ ḟ (r ) = 0,

and various properties of the Bessel functions, we have man-
aged to express (20) in the form

f (1)(�k′, �k)

=
√

π

2k
e−3πi/4

∫ ∞

0
dr

[
λ2

2

(
G2

r
+ rĠ2

)

× J0

(
2kr sin

�

2

)
+ k sin

(
�

2

)
G2

×
(

− 1

2 sin2 �/2
+ 2λ1 + λ2

)
J1

(
2kr sin

�

2

)]
. (22)

For the forward scattering (� = 0), this equation reduces to

f (1)(�k, �k) =
√

π

2k
e−3πi/4

∫ ∞

0
dr

×
[
λ2

2

(
G2

r
+ rĠ2

)
− k2

2
rG2

]
. (23)

In particular, the Gaussian curvature of the surface does
not affect the forward scattering amplitude. In contrast the
scattering amplitude for backscattering (� = π ) depends on

both mean and Gaussian curvatures of the surface:

f (1)(�k′ = −�k, �k)

=
√

π

2k
e−3πi/4

∫ ∞

0
dr

[
λ2

2

(
G2

r
+ rĠ2

)
J0(2kr )

+ k

(
2λ1 + λ2 − 1

2

)
G2J1(2kr )

]
. (24)

As an example, consider a surface S that has the shape of a
Gaussian bump. Specifically, S is given by (14) and

f (r ) = δ e−r2/2σ 2
, (25)

where δ and σ are real parameters. It is easy to see that this
choice for f (x) complies with the condition (21). Therefore,
Eqs. (22)–(24) hold. Let us introduce the dimensionless pa-
rameter

η :=
(

δ

σ

)2

and compute the scattering amplitude (22) as a power series in
η. This gives

f (1)(�k′, �k) =
√

π

2k
e−3πi/4

[
σ 2k2

(
λ1 sin2 �

2
− 1

4

)

+ λ2

4

(
σ 4k4 sin4 �

2
+ 2

)]

× exp

(
−σ 2k2 sin2 �

2

)
η + O(η2), (26)

where O(η�) stands for the terms of order � and higher in
powers of η. For |η| � 1 we can safely ignore O(η2) if k is
of the order of σ−1 or smaller. In particular, for �k′ = ±�k, we
have

f (1)(�k′, �k) = η

4

√
π

2k
e−3πi/4 ×

{
2λ2 − (σk)2 for �k′ = �k,

e−(σk)2{(4λ1 − 1)(σk)2 + λ2[2 + (σk)4]} for �k′ = −�k.
(27)

This equation shows that we should be able to determine the
coefficients λ1 and λ2 by examining the forward and backward
scattering data for incident particles with different values
of k. Figure 1 shows the plots of the differential scattering
cross section |f (1)(�k′, �k)|2 for � = 0, π

6 , π
4 , π and the choice

λ1 = −λ2 = 1
2 that is obtained in the thin-layer quantization

scheme [18]. According to this figure, there is a basic difference
between the forward and nonforward scattering cross sections.
For � �= 0, the differential cross section has a peak that
decreases in hight and shifts to the left as we increase �.

We can also compute the total scattering cross section to
leading order in η. The result is

σ
(1)
tot. =

∫ 2π

0
|f (1)(�k′, �k)|2 dθ = π2

256k
e−σ 2k2

[p0(σ 2k2)

× I0(σ 2k2) + p1(σ 2k2)I1(σ 2k2)]η2 + O(η3), (28)

FIG. 1. Plots of |f (1)|2/σ as a function of σk for � = 0, i.e.,
forward scattering (thick solid blue curve), � = π/6 (thin dashed
green curve), and � = π/4 (thin solid purple curve), and � = π ,
i.e., backward scattering (thick dashed red curve) for a Gaussian bump
(25) with η = 0.1. Here we have taken λ1 = −λ2 = 1

2 , which follows
from the thin-layer quantization scheme.
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FIG. 2. Plots of σ
(1)
tot. /σ as a function of σk for λ1 = −λ2 = 1

2
(thick solid blue curve) which is obtained by the thin-layer quantiza-
tion scheme [18], λ1 = λ2 = 1

2 (thin dashed green curve), λ1 − 1
2 =

λ2 = 0 (thin solid purple curve), and λ2 + 1
2 = λ1 = 0 (thick dashed

red curve) for a Gaussian bump (25) with η = 0.1.

where In(z) stands for the modified Bessel function of the first
kind, and

p0(z) := 64λ2
2 + 64λ2(2λ1 − 1)z

+ (
16 − 64λ1 + 128λ2

1 + 16λ1λ2 + 35λ2
2

)
z2

+ 4λ2(16λ1 + λ2 − 4)z3 + 8λ2
2z

4,

p1(z) := −2
[(

32λ2
1 + 80λ1λ2 + 11λ2

2

)
z

+ 4
(
16λ2

1 + 5λ2
2 + 6λ1λ2 − 8λ1 − λ2

)
z2

+ 4λ2(λ2 + 8λ1 − 2)z3 + 4λ2
2z

4
]
.

Figure 2 shows the plots of the total scattering cross section
(28) as a function of σk for different choices of the parameters
λ1 and λ2.

IV. CONSEQUENCES OF A SMALL VIOLATION OF
CYLINDRICAL SYMMETRY

The results of the preceding section apply to surfaces with
cylindrical symmetry. In this section we examine the effects of
the perturbations of the surface that violate this symmetry. We
quantify these by replacing (14) with

z = f (r ) + ε

∞∑
n=1

[an(r ) cos(nθ ) + bn(r ) sin(nθ )],

(29)

where ε is a real perturbation parameter, an, bn : [0,∞) → R
are smooth functions that decay asymptotically, i.e., |an(r )| +
|bn(r )| → 0 as r → ∞, θ is the angular polar coordinate, and
we demand that for all r ∈ [0,∞)

|ε|
∞∑

n=0

[|an(r )| + |bn(r )|] � |f (r )|.

This allows us to ignore the quadratic and higher order terms
in powers of ε.

Equation (29) defines an embedded surface that we denote
by S̃. In cylindrical coordinates (r, θ ), the components of the
metric g̃ of S̃ take the form

g̃ij = gij + ε gεij ,

where gij are given by (15), and

[gεij ] :=
∞∑

n=1

[
2ḟ (ȧn cos nθ + ḃn sin nθ ) −nḟ (an sin nθ − bn cos nθ )

−nḟ (an sin nθ − bn cos nθ ) 0

]
. (30)

Similarly, we write the corresponding Gaussian and mean curvatures as

K̃ = K + ε Kε, M̃ = M + ε Mε, (31)

where K and M are given by (16), and

Kε :=
∞∑

n=1

cos(nθ )

[
rḟ än − n2f̈ an

r2(1 + ḟ 2)2
+ (1 − 3ḟ 2)f̈ ȧn

r (1 + ḟ 2)3

]
+

∞∑
n=1

sin(nθ )

[
rḟ b̈n − n2f̈ bn

r2(1 + ḟ 2)2
+ (1 − 3ḟ 2)f̈ ḃn

r (1 + ḟ 2)3

]
,

Mε :=
∞∑

n=1

cos(nθ )

[
− n2an

2r2(1 + ḟ 2)1/2
− 3ḟ f̈ ȧn

2(1 + ḟ 2)5/2
+ ȧn + rän

2r (1 + ḟ 2)3/2

]

+
∞∑

n=1

sin(nθ )

[
− n2bn

2r2(1 + ḟ 2)1/2
− 3ḟ f̈ ḃn

2(1 + ḟ 2)5/2
+ ḃn + rb̈n

2r (1 + ḟ 2)3/2

]
.

Recall that we require r−1ḟ (r ) to tend to a finite value as r → 0, so that K and M do not have singularities. Similarly, demanding
K̃ and M̃ to be regular functions restricts the choice of f (r ), an(r ), and bn(r ).

We begin our analysis of the scattering of a scalar particle due to nontrivial geometry of S̃ by expressing the corresponding
scattering amplitude f̃ (1)(�k′, �k) in the form

f̃ (1)(�k′, �k) = f (1)(�k′, �k) + εf (1)
ε (�k′, �k), (32)
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where f (1)(�k′, �k) is given by (20), and f (1)
ε (�k, �k) describes the effects of the violation of cylindrical symmetry. To compute the

latter, we employ (12) and the identities∫ 2π

0
eix cos θ cos(nθ − ϕ) dθ = 2inπJn(x) cos ϕ,

∫ 2π

0
eix cos θ sin(nθ − ϕ) dθ = −2inπJn(x) sin ϕ,

which hold for real variables x and ϕ. The result of this calculation is

f (1)
ε (�k′, �k) =

√
π

8k
e−3πi/4

∞∑
n=−∞
n �=0

∫ ∞

0
dr in

(
k2

{
cos � X [a|n|(r )] + n

|n| sin � X [b|n|(r )]

}
J2+n[2kr sin(�/2)]

+ k

{
sin(�/2) Y[a|n|(r )] − n

|n| cos(�/2) Y[b|n|(r )]

}
J1+n[2kr sin(�/2)]

+ r

[
2λ1K

(a)
|n| + 4λ2MM

(a)
|n| − k2 ḟ ȧ|n|

(1 + ḟ )2

]
Jn[2kr sin(�/2)]

)
, (33)

where X and Y are differential operators that act on smooth test functions φ(r ) according to

X [φ(r )] := nḟ φ

1 + ḟ 2
− rḟ φ̇

(1 + ḟ 2)2
,

Y[φ(r )] := n(n + 1)ḟ φ

r (1 + ḟ 2)
+ nf̈ φ − 2ḟ φ̇ − rḟ φ̈

(1 + ḟ 2)2
− rf̈ (1 − 3ḟ 2)φ̇

(1 + ḟ 2)3
,

and

K (a)
n := rḟ än − n2f̈ an

r2(1 + ḟ 2)2
+ (1 − 3ḟ 2)f̈ ȧn

r (1 + ḟ 2)3
,

M (a)
n := − n2an

2r2(1 + ḟ 2)1/2
− 3ḟ f̈ ȧn

2(1 + ḟ 2)5/2
+ ȧn + rän

2r (1 + ḟ 2)3/2
.

For example, consider the perturbed Gaussian bump given by the following choice for the functions f , an, and bn:

f (r ) = δ e−r2/2σ 2
, a1(r ) = r

α1
f (r ), a2(r ) = r2

α2
2

f (r ), (34)

b1(r ) = r

β1
f (r ), b2(r ) = r2

β2
2

f (r ), an(r ) = bn(r ) = 0, for n � 2, (35)

where α1, α2, β1, and β2 are constant parameters with the dimension of length. Then f (1)(�k′, �k) is given by (26), and we can
evaluate the integral on the right-hand side of (33) to find

f̃ (1)
ε (�k′, �k) =

√
π

2k
e−3πi/4

{
−σ 4k2 sin2 �

2

2α2
2

[
csc2 �

2
− σ 2k2 − 4λ1

(
1 − σ 2k2 sin2 �

2

)
+ λ2σ

4k4 sin4 �

2

]
(36)

+ iσ 2k sin
(

�
2

)
2α1

[
−σ 2k2 + 4λ1σ

2k2 sin2 �

2
+ λ2

(
2 + σ 4k4 sin4 �

2

)]}
exp

(
−σ 2k2 sin2 �

2

)
η + O(η2).

Substituting (26) and (36) in (32), we can express the scattering amplitude for the surface S̃ as

f̃ (1)(�k′, �k) = f (1)(�k′, �k){1 + ε [Z1(�k′, �k) + iZ2(�k′, �k)]}, (37)

where

Z1(�k′, �k) := 2σ 2

α2
2

[
1 − σ 2k2 sin2 �

2
− λ2

[(
1 − σ 2k2 sin2 �

2

)2 + 1
]

(
4λ1 sin2 �

2 − 1
)
σ 2k2 + λ2

(
σ 4k4 sin4 �

2 + 2
)
]
, (38)

Z2(�k′, �k) := 2σ 2k sin �
2

α1
. (39)
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FIG. 3. Plots of Z1 as a function of σk for α2 = σ and � = 0,
i.e., forward scattering (thick solid blue curve), � = π/6 (thin dashed
green curve), and � = π/4 (thin solid purple curve), and � = π , i.e.,
backward scattering (thick dashed red curve) for a perturbed Gaussian
bump (25) determined by (34) and (35).

In particular, to the leading order in η and ε the differential
cross section for the surface S̃ has the form

dσ̃ (1)(�k′, �k)

d�
= |f̃ (1)(�k′, �k)|2

= |f (1)(�k′, �k)|2[1 + 2ε Z1(�k′, �k)]. (40)

According to this equation the effect of the violation of
cylindrical symmetry that is given by (34) and (35) is encoded
in the value of Z1(�k′, �k). Figure 3 shows the graph of this
quantity as a function of σk for λ1 = −λ2 = 1/2, which
follow from thin-layer quantization prescription, α2 = σ , and
� = 0, π/6, π/4, and π . As seen from this figure we can
consistently apply (40) for values of k that are of the order of
σ−1 or smaller. In particular, for σε/α1 � 1 and σε/α2 � 1,
we can ignore this kind of violations of cylindrical symmetry.
Notice also that for large values of k, the violation of cylindrical
symmetry does not affect the forward scattering cross section.
This is not the case for a nonforward scattering cross section.

V. GEOMETRIC SCATTERING FOR A SURFACE WITH
LOCAL CYLINDRICAL SYMMETRY

Consider an embedded surface S with local cylindrical
symmetry that is given by

z =
N∑

j=1

fj (|�x − �cj |), (41)

where N is a positive integer, fj : [0,∞) → R are smooth
functions such that limr→0 ḟj (r )/r exists, and �cj = (aj , bj )
are centers of local cylindrical symmetry.

Suppose that the functions fj decay sufficiently fast away
from 0 so that for each j we can approximate fj (|�r − �cj |)
by a function that vanishes outside a disk Dj centered at
cj with Dj ′ ∩ Dj = ∅ for j ′ �= j . If we use the first Born
approximation to determine the geometric scattering properties
of such a surface, the scattering amplitude for S takes the form

f(1)(�k′, �k) =
N∑

j=1

f
(1)
j (�k′, �k), (42)

where f(1)
j (�k′, �k) stands for the scattering amplitude associated

with the surface Sj given by

z = fj (|�r − �cj |). (43)

We can obtain Sj from a surface S0j with cylindrical symmetry
about the z axis by a simple space translation. It is not difficult
to show that f(1)

j (�k′, �k) is related to the scattering amplitude

f
(1)

0j (�k′, �k) of S0j according to

f
(1)
j (�k′, �k) = ei(�k−�k′ )·cj f

(1)
0j (�k′, �k). (44)

In view of (42) and (44), we can use the results of Sec. III
to compute the scattering amplitude of S . This is particularly
easy when fj [and consequently f

(1)
0j (�k′, �k)] coincide. In this

case,

f(1)(�k′, �k) = C(�k′, �k)f (1)(�k′, �k), (45)

where

C(�k′, �k) :=
N∑

j=1

ei(�k−�k′ )·cj , (46)

and f (1)(�k′, �k) is the common value of f
(1)

0j (�k′, �k).
If �cj form a lattice, j stands for an index pair (m, n) and

�cj = �cmn = m�a + n�b, (47)

where �a and �b are constant vectors. We can use this relation to
perform the sum in (46). Supposing that m and n, respectively,
take values in the intervals [m1,m2] and [n1, n2], substituting
(47) in (46), and using the identity

j2∑
j=j1

zj = zj2+1 − zj1

z − 1
,

we obtain

C(�k′, �k) = (ei(m2+1)ka − eim1ka )(ei(n2+1)kb − ein1ka )

(eika − 1)(eikb − 1)
, (48)

where

ka := (�k − �k′) · �a, kb := (�k − �k′) · �b. (49)

A simple example is a finite lattice of Gaussian bumps, such
as those forming a liquid-helium Wigner lattice:

z = δ

m2∑
m=m1

n2∑
n=n1

e−(�r−�cmn )2/2σ 2
, (50)

FIG. 4. Schematic view of a surface involving the triangular
lattice of Gaussian bumps given by (51) and (52).
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FIG. 5. Plots of |f(1)(�k′, �k)|2/σ as a function of σk for the surface
involving the triangular lattice of Gaussian bumps given by (47), (50),
(51), and (52), a = 10σ , η = 0.01, λ1 = −λ2 = 1/2, and � = 0 (left
panel, thick blue curve), � = π/6 (left panel, thin red curve), � =
π/4 (right panel, thin purple curve), and � = π (right panel, thick
orange curve).

where |cm′n′ − cmn| � σ for (m′, n′) �= (m, n). For this sur-
face, the geometric scattering amplitude has the form (45) with
C(�k′, �k) and f (1)(�k′, �k), respectively, given by (48) and (26).
Notice, however, that in order for the quadratic and higher order
terms in η on the right-hand side of (26) to be negligible, we
should have (m2 − m1)(n2 − n1)η � 1.

To be specific, consider taking

�a = a(1, 0), �b = a

(
1

2
,

√
3

2

)
, (51)

m1 = n1 = −1, m2 = n2 = 1, (52)

where a is the lattice constant. This corresponds to a triangular
lattice consisting of nine Gaussian bumps, as depicted in Fig. 4.
In a coordinate system in which �k is along the x axis, we have
�k′ = k(cos �, sin �). This together with (51) imply

ka = ak(1 − cos �), kb = ak

2
(1 − cos � −

√
3 sin �).

(53)

Substituting (52) and (53) in (48) and using the result together
with (26) and (45) we can derive an analytic expression for
the geometric scattering amplitude of the surface defined by
(50). Figure 5 shows the graph of differential cross section
|f(1)(�k′, �k)|2 as a function of σk for a = 10σ , η = 0.01, λ1 =
−λ2 = 1/2, and different values of �.

VI. SUMMARY AND CONCLUDING REMARKS

A classical free particle that is constrained to move on an
embedded surface feels the effect of the nontrivial geometry
of the surface through its contribution to the kinetic energy

term in the Hamiltonian. For a quantum particle there can be
an additional contribution to the Hamiltonian that arises in the
form of a quantum mechanical geometric potential involving
both the Gaussian and mean curvatures of the surface. The
strength of this curvature interaction is determined by a pair
of coupling constants whose value cannot be determined from
the first principles. For a specific system these constants enter
in the associated physical quantities.

In this article we have considered a nonrelativistic spinless
free particle moving on an asymptotically flat embedded
surface and examined its scattering due to the nontrivial
geometry of this surface. In particular, we have used the
first Born approximation to calculate the geometric scattering
amplitude for a surface with global cylindrical symmetry
and examined the effects of perturbations of the surface that
violate this symmetry. We have also extended our analysis
to surfaces with local cylindrical symmetry. This allows for
an analytic treatment of surfaces formed by a finite lattice
of well-separated bumps. Our results reveal the possibility of
determining the values of the unknown curvature coefficients
using the scattering data.

For a cylindrically symmetric surfaces, only the mean
curvature contributes to the forward scattering amplitude.
This is not the case for the backward scattering amplitude,
which receives contributions from both the mean and Gaussian
curvatures. In view of this observation, one can in principle
determine the values of the unknown curvature constants using
only the forward and backward scattering data. Therefore if it
turns out that both λ1 and λ2 take nonzero values, then an
experimental realization of our setup would provide means for
independent measurements of the physical effects of intrinsic
and extrinsic geometry of the surface.

Once the curvature coefficients are determined we can use
our analytical results to make predictions on the behavior
of the geometric scattering cross section and its dependence
on the shape of the surface. For example, if the forward
and backward scattering data for a Gaussian bump confirm
the choice given by the thin-layer quantization scheme, i.e.,
λ1 = −λ2 = 1/2, we expect the differential cross section for
nonforward scattering to attain a single peak as we vary the
wave number of the incident wave. For a lattice of Gaussian
bumps the differential cross section develops several peaks.
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work of Project No. 117F108 and by the Turkish Academy of
Sciences (TÜBA).

[1] B. S. DeWitt, Phys. Rev. 85, 653 (1952).
[2] B. S. DeWitt, Rev. Mod. Phys. 29, 377 (1957).
[3] K. S. Cheng, J. Math. Phys. 13, 1723 (1972).
[4] G. A. Ringwood, J. Phys. A 9, 1253 (1976).
[5] M. K. Ali, Can. J. Phys. 74, 255 (1992).
[6] B. S. DeWitt, Supermanifolds (Cambridge University Press,

Cambridge, 1992).

[7] A. Foerster, H. O. Girotti, and P. S. Kuhn, Phys. Lett. A 195, 301
(1994).

[8] A. Mostafazadeh, J. Math. Phys. 35, 1095 (1994).
[9] A. Mostafazadeh, J. Math. Phys. 35, 1125 (1994).

[10] R. Penrose, Proc. R. Soc. London A 284, 159 (1965).
[11] M. P. Ryan Jr. and A. V. Turbiner, Phys. Lett. A 333, 30

(2004).

022126-8

https://doi.org/10.1103/PhysRev.85.653
https://doi.org/10.1103/PhysRev.85.653
https://doi.org/10.1103/PhysRev.85.653
https://doi.org/10.1103/PhysRev.85.653
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1063/1.1665897
https://doi.org/10.1063/1.1665897
https://doi.org/10.1063/1.1665897
https://doi.org/10.1063/1.1665897
https://doi.org/10.1088/0305-4470/9/8/012
https://doi.org/10.1088/0305-4470/9/8/012
https://doi.org/10.1088/0305-4470/9/8/012
https://doi.org/10.1088/0305-4470/9/8/012
https://doi.org/10.1139/p96-040
https://doi.org/10.1139/p96-040
https://doi.org/10.1139/p96-040
https://doi.org/10.1139/p96-040
https://doi.org/10.1016/0375-9601(94)90033-7
https://doi.org/10.1016/0375-9601(94)90033-7
https://doi.org/10.1016/0375-9601(94)90033-7
https://doi.org/10.1016/0375-9601(94)90033-7
https://doi.org/10.1063/1.530630
https://doi.org/10.1063/1.530630
https://doi.org/10.1063/1.530630
https://doi.org/10.1063/1.530630
https://doi.org/10.1063/1.530631
https://doi.org/10.1063/1.530631
https://doi.org/10.1063/1.530631
https://doi.org/10.1063/1.530631
https://doi.org/10.1098/rspa.1965.0058
https://doi.org/10.1098/rspa.1965.0058
https://doi.org/10.1098/rspa.1965.0058
https://doi.org/10.1098/rspa.1965.0058
https://doi.org/10.1016/j.physleta.2004.10.021
https://doi.org/10.1016/j.physleta.2004.10.021
https://doi.org/10.1016/j.physleta.2004.10.021
https://doi.org/10.1016/j.physleta.2004.10.021


SCATTERING DUE TO GEOMETRY: CASE OF A … PHYSICAL REVIEW A 98, 022126 (2018)

[12] C. DeWitt-Morette, K. D. Elworthy, B. L. Nelson, and G. S.
Sammelman, Ann. Inst. Henry Poincaré A 32, 327 (1980).

[13] H. Kleinert, Phys. Lett. B 236, 315 (1990).
[14] M. S. Marinov, Phys. Rep. 60, 1 (1980).
[15] A. Mostafazadeh, Phys. Rev. A 54, 1165 (1996).
[16] P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva

University Press, New York, 1964).
[17] H. Jensen and H. Koppe, Ann. Phys. (NY) 63, 586 (1971).
[18] R. C. T. da Costa, Phys. Rev. A 23, 1982 (1981).
[19] J. Tolar, in Group Theoretical Methods in Physics, Proceedings

of the XVI International Colloquium Held at Varna, Bullgaria,
June 15–20, Lect. Notes in Phys. Vol. 313, edited by H.-D.
Doebner, J.-D. Hennig, and T. D. Palev (Springer, Berlin, 1988),
pp. 268–274.

[20] P. Maraner, J. Phys. A 28, 2939 (1995).
[21] N. Ogawa, Prog. Theor. Phys. 87, 513 (1992).
[22] R. Froese and I. Herbst, Commun. Math. Phys. 220, 489

(2001).
[23] P. C. Schuster and R. L. Jaffe, Ann. Phys. 307, 132 (2003).
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