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Convolutionless and convolution master equations are the two mostly used physical descriptions of open
quantum systems dynamics. We subject these equations to time deformations: local dilations and contractions of
time scale. We prove that the convolutionless equation remains legitimate under any time deformation (results in a
completely positive dynamical map) if and only if the original dynamics is completely positive divisible. Similarly,
for a specific class of convolution master equations we show that uniform time dilations preserve positivity of
the deformed map if the original map is positive divisible. These results allow witnessing different types of
non-Markovian behavior: the absence of complete positivity for a deformed convolutionless master equation
clearly indicates that the original dynamics is at least weakly non-Markovian; the absence of positivity for a class
of time-dilated convolution master equations is a witness of essentially non-Markovian original dynamics.
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I. INTRODUCTION

A physical quantum system is never isolated in practice,
which leads to a concept of an open quantum system. The
state of such a system is described by a density operator � on
some Hilbert space H (positive semidefinite operator with unit
trace). Time evolution of the open system is governed by the
total Hamiltonian H of “system + environment” and the initial
state of the environment �E . If the system and environment are
initially factorized, i.e., their state is � ⊗ �E , then the system
dynamics is defined by the standard reduction

�(t ) = TrE{e−iH t� ⊗ �EeiHt }. (1)

Formula (1) defines a dynamical map �(t )[X] =
TrE{e−iH tX ⊗ �EeiHt }, which has an important property of
being completely positive (CP) and trace preserving. Complete
positivity means that �(t ) ⊗ Idk maps any (possibly entan-
gled) density operator of the system + k-dimensional ancilla
into a legitimate density operator.

Physical environments usually have enormously many de-
grees of freedom, which makes the dynamics �(t ) intractable
via formula (1) unless suitable approximations are made [1–5].
Microscopic derivations of system evolution with the help of
projection operator techniques result in either a convolutionless
master equation [2]

d�(t )

dt
= L(t )[�(t )] (2)

with a time-local generator L(t ) : B(H) �→ B(H) or a convo-
lution master equation [2,6–8]

d�(t )

dt
=

∫ t

0
K(t, t ′)[�(t ′)]dt ′ (3)

with a memory kernel K(t, t ′) : B(H) �→ B(H).
Only some sufficient conditions on the time-local generator

L(t ) and memory kernel K(t, t ′) are known, which guarantee

complete positivity and trace preservation of the corresponding
dynamical map �(t ) [9–20].

Suppose that master equations (2) and (3) define a le-
gitimate quantum dynamics, i.e., a completely positive and
trace-preserving dynamical map �(t ). From the quantum
information science perspective, the evolution process �(t )
can have peculiar divisibility properties. If the dynamical
map �(t ) can be represented in the form of concatenation
�(t2) = V (t2, t1)�(t1) with CP intermediate map V (t2, t1) for
all t2 > t1 � 0, then the process �(t ) is called CP divisible.
Analogously, if V (t2, t1) is positive (P) for all t2 > t1 � 0, then
the process �(t ) is called P divisible. P indivisible processes
are also referred to as essentially non-Markovian, whereas
CP indivisible but P divisible processes are sometimes called
weakly non-Markovian [21]. CP divisibility and P divisibil-
ity are only two approaches to define Markovian quantum
processes [22,23]; many other approaches include decreasing
distinguishability of system states [24,25], monotonicity of
quantum mutual information [26], decreasing capacity of
quantum channels [27], independence of evolution with respect
to events preceding the causal break when the system’s state is
actively reset [28], and others. The reviews of the current status
in the discussion of quantum non-Markovianity are given in the
papers [5,29–31].

The goal of this paper is to relate divisibility properties
of �(t ) and the behavior of master equations under time
deformations. By time deformation of a master equation we
understand the transformation

�(t ) → �̃(τ ), dt → dτ, (4)

where

τ (t ) =
∫ t

0
α(t ′)dt ′,

dτ

dt
= α(t ), (5)

and α(t ) is non-negative real function quantifying the local
time stretching.
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FIG. 1. (a) Time deformation of convolutionless master equation
given by time-dependent generator L(t ). (b) Time deformation of
CP divisible dynamics. Intermediate channels remain valid channels
under dilations and contractions of time scale.

The naive interpretation of (4) would be the replacement of
�(t ) by �(τ (t )) but this is not the case if the generator L(t )
or memory kernel K(t, t ′) is time dependent. In fact, a time
deformation (4) may result in a nonlegitimate master equation.
Surprisingly, nonlegitimacy of a deformed master equation is
closely related with the divisibility property of the undeformed
dynamics. In this paper, we reveal this relation.

The paper is organized as follows.
In Sec. II, we show that the time deformation of the

convolutionless master equation (2) results in a legitimate
dynamical map if and only if the original dynamics is CP
divisible. In Sec. III, we relate legitimacy of time deformation
of convolution master equation (3) with P divisibility of the
original dynamics. In Sec. IV, brief conclusions are given.

II. DEFORMATION OF CONVOLUTIONLESS
MASTER EQUATIONS

Master equation (2) formally defines a dynamical
map �(t ) = T← exp (

∫ t

0 L(t ′)dt ′), where T← is the Dyson
time-ordering operator. The intermediate map V (t2, t1)
in concatenation �(t2) = V (t2, t1)�(t1) reads V (t2, t1) =
T← exp (

∫ t2
t1

L(t ′)dt ′).
Time deformation of Eq. (2) results in a modified (inequiv-

alent) master equation

d�̃(τ (t ))
dτ (t )

= L(t )[̃�(τ (t ))], (6)

where the density operator �̃(τ (t )) describes evolution in the
deformed time and the original generator L(t ) is applied at
time moments τ (t ); see Fig. 1(a).

In terms of the original time t Eq. (6) reads

d�(t )

dt
= dτ

dt

d�

dτ
= α(t )L(t )[�(t )]. (7)

We will refer to Eq. (7) as a time deformation of the original
time-convolutionless master equation (2).

If L is time independent, i.e., �(t ) = eLt is a semigroup,
then (7) results in a deformed map �̃(t ) = �(τ (t )). However,
if L(t ) is time dependent, then �̃(t ) �= �(τ (t )). Moreover,
�̃(t ) can become not CP even if the original map �(t ) is
legitimate (CP and trace preserving), which can be illustrated
by the following example.

Example 1: Consider a qubit map �(t ) : B(H2) �→ B(H2)
given by the generator [32]

L(t )[�] = 1

2

3∑
i=1

γi (t )(σi�σi − �), (8)

where σ1, σ2, σ3 is the conventional set of Pauli operators,
γ1(t ) = γ2(t ) = 1, and γ3(t ) = − tanh(t ). The map �t is CP
and trace preserving for all t � 0, so it is a legitimate dynamical
map that can be realized physically, e.g., in the deterministic
collision model [33].

It was shown in Ref. [34] that the time-deformed master
equation

d�(t )

dt
= αL(t )[�(t )] (9)

(obtained via constant time stretching τ = αt) results in a CP
map �̃(t ) if and only if α � 1. Thus, if the original master
equation is subjected to a uniform time dilation (0 < α < 1),
then the map �̃α (t ) is not CP and does not correspond to
any physical evolution (of initially factorized system and
environment).

Note that �̃(t ) �= �(αt ) because the decoherence rates
γk (t ) are time dependent. �

Nonlegitimacy of the deformed map �̃(t ) in the example
above can be attributed to the fact that the master equation (8)
describes so-called eternal non-Markovian evolution, i.e., CP
indivisible dynamical map �(t ), where V (t2, t1) is not CP
for all t2 > t1 [32,35,36]. On the other hand, if the original
dynamical map were CP divisible, then all the decoherence
rates would be positive. Time stretching would not affect
positiveness of decoherence rates and �̃(t ) would still be a
valid dynamical map. This leads us to the following main result.

Theorem 1: Master equation (2) with nonsingular genera-
tor L(t ) describes CP divisible dynamics if and only if the
deformed map remains CP under any time deformation (7).

Proof. Necessity. Suppose the process �(t ) is CP divis-
ible and L(t ) is not singular; then the generator L(t ) has
the time-dependent Gorini-Kossakowski-Sudarshan-Lindblad
form [37,38]

L(t )[�] = −i[H (t ), �]

+
∑

k

γk (t )

(
Ak (t )�A

†
k (t ) − 1

2
{A†

k (t )Ak (t ), �}
)

,

(10)

where all the ratesγk (t ) � 0. Multiplication of the Hamiltonian
H (t ) by α(t ) preserves its Hermiticity, and α(t )γk (t ) � 0, so
α(t )L(t ) is still a valid generator of the dynamical map (see,
e.g., [9]).

Sufficiency. Let α(t ) =
{

0 if 0 � t < t1,

1 if t � t1; then

the deformed map �̃(t ) = T← exp(
∫ t

0 α(t ′)L(t ′)dt ′) ={
Id, if 0 � t < t1,

V (t, t1) if t � t1.
Therefore, if the deformed map

�̃(t ) remains CP under any deformation, then V (t, t1) is
CP too for all t > t1, i.e., the original map �(t ) is CP
divisible. �

Therefore, CP divisible dynamics preserves the property
of being CP divisible (and consequently CP) under any time
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FIG. 2. Time deformation of convolution master equation gov-
erned by memory kernel K(t, t ′).

deformation; see Fig. 1(b). More importantly, if the original
dynamical map is not CP divisible, then this fact can be
revealed by a suitable time deformation under which the
deformed map becomes nonlegitimate.

Remark 1: Nonsingularity of generator L(t ) is needed to
guarantee invertibility of �(t ). If �(t ) is not invertible, then
CP divisibility of �(t ) does not require positivity of rates
γk (t ); see Refs. [39,40]. However, the generator is not uniquely
defined by the dynamical map �(t ) in this case. In particular,
if the process is CP divisible, then there exists a corresponding
(possibly singular) time-local generator with non-negative
rates. Theorem 1 holds true for such generators too.

III. DEFORMATION OF CONVOLUTION
MASTER EQUATIONS

In this section, we consider time deformations of the
convolution master equation (3) and make implications on P
divisibility of the dynamical map �(t ).

Continuing the same line of reasoning as before, let us
assume that the same kernel K(t, t ′) is applied at deformed
time moments τ (t ) and τ (t ′); see Fig. 2. As a result, we obtain
a time deformation of Eq. (3) of the form

d�̃(τ (t ))
dτ (t )

=
∫ τ (t )

0
K(t, t ′)[̃�(τ (t ′))]dτ (t ′), (11)

which in terms of the original time t reads

d�(t )

dt
=

∫ t

0
α(t )α(t ′)K(t, t ′)[�(t ′)]dt ′. (12)

If K(t, t ′) = δ(t − t ′)L(t ′), then (12) reduces to d�(t )
dt

=
α2(t )L(t )[�(t )], i.e., to the time deformation of the convo-
lutionless master equation considered before.

We assume that the open system dynamics does not depend
on the particular choice of time moment t = 0, when the system
starts interacting with environment. Due to this time invariance
K(t, t ′) = K (t − t ′) [6,7]. In local time deformations (5), the
modified kernel α(t )α(t ′)K (t − t ′) exhibits time invariance
only if α(t ) is time independent. For this reason, we consider
only uniform time deformations τ (t ) = αt , α = const.

Denoting (A ∗ B )(t ) = ∫ t

0 A(t − t ′)B(t ′)dt ′, master equa-
tion (3) takes the form d

dt
�(t ) = (K ∗ �)(t ). Using the

Laplace transform �s = ∫ ∞
0 �(t )e−st dt , the latter equation

reduces to

�s = (s Id − Ks )−1. (13)

The uniformly deformed map �̃(t ) governed by Eq. (12)
with α(t ) = α satisfies

�̃s = (s Id − α2Ks )−1. (14)

A straightforward algebra yields the following Laplace trans-
form of the derivative d

dt
�̃(t ):

(
d�̃

dt

)
s

= α2
(

d�
dt

)
s

Id − (α2 − 1)
(

d�
dt

)
s

= α2

(
d�

dt

)
s

∞∑
n=0

(α2 − 1)n
[(

d�

dt

)
s

]n

, (15)

where the second line represents a valid expansion if the norm
‖(α2 − 1)( d�

dt
)
s
‖1→1 < 1. In the time domain one finds

d�̃

dt
= α2 d�

dt
+ α2(α2 − 1)

d�

dt
∗ d�

dt
+ · · ·

+α2(α2 − 1)n
d�

dt
∗ · · · ∗ d�

dt︸ ︷︷ ︸
n+1 times

+ · · · . (16)

Let us restrict ourselves to the commutative case, i.e., maps
�(t ) satisfying �(t1)�(t2) = �(t2)�(t1) for all t1, t2 � 0.
Commutative maps have time-independent eigenoperators, so
the spectrum of d�

dt
is merely the derivative of the spectrum of

�(t ). Denote eigenvalues of �(t ) by λk (t ); then for P divisible
�(t ) one has d|λk (t )|

dt
� 0 [41]. If �(t ) is Hermitian, i.e., �(t )

coincides with its dual map �†(t ) in the Heisenberg picture,
then λk (t ) are real. Therefore, for commutative Hermitian P
divisible maps �(t ) we have dλk (t )

dt
� 0. On the other hand, if

dλk (t )
dt

� 0, then (16) implies dλ̃k (t )
dt

� 0 provided 0 < α < 1.
This way one arrives at the following result.

Proposition 1: Suppose the commutative Hermitian dy-
namical map �(t ) is governed by a memory kernel K (t ). If
the uniform time dilation K (t ) → α2K (t ) with 0 < α < 1 and
(1 − α2)‖( d�

dt
)
s
‖1→1 < 1 results in a map �̃(t ) such that d�̃

dt

has at least one positive eigenvalue at some time t , then the
original map �(t ) is not P divisible.

The class of commutative Hermitian dynamical maps
comprises conventional Pauli qubit maps �(t )[�] =
1
2 (tr[�]I + ∑3

k=1 λk (t )tr[σk�]σk ) as well as generalized
Pauli channels [42,43]. For Pauli qubit maps one can find a
simpler implication of Proposition 1.

Proposition 2: Suppose the Pauli map �(t ) is gov-
erned by a memory kernel K (t ). If the uniform time di-
lation K (t ) → α2K (t ) with 0 < α < 1 and (1 − α2)(1 −
s
∫ ∞

0 λk (t )e−st dt ) < 1 results in a map �̃(t ), which is not
positive, then the original map �(t ) is not P divisible.

Proof. Condition (1 − α2)[1 − s
∫ ∞

0 λk (t )e−st dt] < 1
guarantees the validity of expansion (16). Let �̃(t ) be
nonpositive. Since the Pauli map �̃(t ) is positive if and only
if −1 � λ̃k (t ) � 1, then either λ̃k (t ) > 1 or λ̃k (t ) < −1 for
some time t . Note that at the initial moment λk (0) = 1.

Suppose λ̃k (t ) > 1; then there exists a time moment t0 ∈
(0, t ) such that dλ̃k (t )

dt
(t0) > 0. By Proposition 1, �(t ) is not P

divisible.
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FIG. 3. Blue (solid) curve: eigenvalue λ1(t ) of the original dy-
namical map governed by convolution master equation (18) with
� = 1. Red (dashed) curve: eigenvalue λ̃1(t ) of the time deformed
map, Eq. (19), with � = 1 and the deformation coefficient α = 1

2 .

Suppose λ̃k (t ) < −1; let us show that λk (t ) �� 0. Using
expansion

�̃(t ) = �(t ) + (α2 − 1)

(
d�

dt
∗ �

)
(t ) + · · ·

+(α2 − 1)n
(

d�

dt
∗ · · · ∗ d�

dt︸ ︷︷ ︸
n times

∗�

)
(t ) + · · · ,(17)

one finds that if λk (t ) � 0 and dλk

dt
� 0, then a time deformation

with 0 < α < 1 guarantees λ̃k (t ) � 0. As we consider the case
λ̃k (t ) < −1, this contradiction proves that λk (t ) �� 0. As a
result, the original Pauli map �(t ) is not P divisible. �

The physical meaning of Proposition 2 is that positivity is a
topological property of Pauli P divisible process �(t ), which
is preserved under uniform time dilations.

Example 2: Consider a pure dephasing qubit map
�(t )[�] = 1

2 (tr[�]I + ∑3
k=1 λk (t )tr[σk�]σk ) with λ1(t ) =

λ2(t ) = 1 − 2�t e−�t and λ3(t ) = 1. This is a valid dynamical
map if � > 0. Such a map is a solution of the convolution
master equation

d�(t )

dt
=

∫ t

0
[�δ(t − t ′) − �2 sin �(t − t ′)]

× [σz�(t ′)σz − �(t ′)]dt ′. (18)

Condition (1 − α2)(1 − s
∫ ∞

0 λk (t )e−st dt ) < 1 is fulfilled
automatically if 0 < α < 1. The uniform time dilation of
the memory kernel K (t − t ′) → α2K (t − t ′) results in the
deformed Pauli map �̃(t ) with

λ̃1(t ) = λ̃2(t ) = 1 − 2α2e−α2�t sin(
√

1 − α4 �t )√
1 − α4

(19)

and λ̃3(t ) = 1. When the trigonometric function sin(·) takes
negative values, λ̃1(t ) = λ̃2(t ) > 1, see Fig. 3 , so the deformed
map �̃(t ) is not positive. By Proposition 2, it clearly indicates
that the original map �(t ) is not P divisible.

Note that for the equivalent original convolutionless equa-
tion, the uniform time deformation τ = αt results in λ̃′

i (t ) =
[λi (t )]α , i = 1, 2, 3. In this case, the deformed map �̃′(t )
remains CP and does not reveal P indivisibility of �(t ). �

Example 3: Let us consider a qubit evolution where the
rescaling of the memory kernel is compatible with P divisibility
of the dynamical map. Following [16], let �(t ) be a Pauli qubit
dynamical map governed by the memory kernel

K (t )[�] = 1

2

3∑
k=1

	k (t )σktr[σk�], (20)

where the time-dependent eigenvalues 	k (t ) are defined (in the
Laplace transform domain) via

(	k )s = −sfs

ak − fs

. (21)

In the above definition the positive numbers {a1, a2, a3}
satisfy triangle inequality a−1

i + a−1
j � a−1

k for all permuta-
tions of {i, j, k}, f (t ) is a real function satisfying f (t ) �
0, and f0 = ∫ ∞

0 f (t )dt � 4(a−1
1 + a−1

2 + a−1
3 )

−1
. The cor-

responding eigenvalues of �(t ) are given by λk (t ) = 1 −
a−1

k

∫ t

0 f (t ′)dt ′.
The dynamical map �(t ) is known to be P divisible if

additionally f (t ) satisfies the requirement [16]

f0 =
∫ ∞

0
f (t )dt � amin, (22)

where amin = min{a1, a2, a3}. Suppose condition (22) is ful-
filled; then fs � amin for all s � 0. The deformed eigenvalue

(̃λk )s = 1

s
(
1 + α2fs

ak−fs

) = 1

s

(
1 − fs

ak

) ∞∑
n=0

(1 − α2)n
(

fs

ak

)n

(23)

in time domain is a convolution of two non-negative functions:
the original eigenvalue λk (t ) ∈ (0, 1] and the inverse Laplace
transform of

∑∞
n=0(1 − α2)n( fs

ak
)
n
. Hence λ̃k (t ) � 0. If 0 <

α < 1, then the latter function is less than or equal to the inverse

Laplace transform of
∑∞

n=0 ( fs

ak
)
n = (1 − fs

ak
)
−1

. Therefore,

λ̃k (t ) is less than or equal to the inverse Laplace transform

of function (λk )s (1 − fs

ak
)
−1 = 1

s
, i.e., λ̃k (t ) � 1. Thus the

deformed map is positive for 0 < α < 1 because the original
map is P divisible; see Eq. (22).

Interestingly, the map �̃(t ) being positive and trace preserv-
ing is in general not completely positive and hence the kernel
deformation K (t ) → α2K (t ) does not lead to the legitimate
dynamical map. In fact, consider the behavior of λ̃k (t ) when
t → ∞. By the final value theorem

lim
t→∞ λ̃k (t ) = lim

s→0
s (̃λk )s = 1

1 + α2 f0

ak−f0

. (24)

Suppose a1 � a2 � a3. The deformed map is CP if and only
if the condition λ̃i + λ̃j � 1 + λ̃k is fulfilled for permutations
of indices {i, j, k}. In the limit t → ∞ this condition reduces
to inequality

f0

(
1

a2 − f0
+ 1

a3 − f0
− 1

a1 − f0

)
+ 2α2f 2

0

(a2 − f0)(a3 − f0)

+ α4f 3
0

(a1 − f0)(a2 − f0)(a3 − f0)
� 0. (25)
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FIG. 4. Plot of 
(t ) = λ̃1(t ) + λ̃2(t ) − λ̃3(t ) − 1 as a function of
dimensionless time t and rescaling parameter α. One has 
(t ) > 0
for all t > 0 and 0 < α < 1, so the Fujiwara-Algoet condition of
complete positivity is violated.

The obtained inequality is fulfilled for all 0 < α < 1 if
and only if (a2 − f0)−1 + (a3 − f0)−1 � (a1 − f0)−1, which
is surprisingly equivalent to CP divisibility of the original map
�(t ); cf. Ref. [16]. Thus the dynamical map governed by the
memory kernel (20) is CP divisible only if the deformed map
is CP for all 0 < α < 1. �

Example 4: Consider CP indivisible Pauli dynamical map
�(t ) as in Example 1 but now in terms of the convolu-
tion equation d�

dt
= K ∗ �. The explicit form of the kernel

K (t ) is given in Ref. [35]. The uniform time deformation
K (t ) → α2K (t ) leads to the deformed eigenvalues λ̃1(t ) =
λ̃2(t ) = (1 + α2)−1[1 + α2e−(1+α2 )t ] and λ̃3(t ) = e−2α2t . The
deformed map �̃(t ) is never CP for t > 0 and 0 < α <

1 since the corresponding set of eigenvalues violates the
Fujiwara-Algoet conditions for complete positivity [44] (cf.
Fig. 4). �

Considered examples allow us to make a conjecture that a
general Pauli dynamical map �(t ), defined by a convolution
master equation, is CP divisible if and only if the deformed map

�̃(t ) is CP for all 0 < α < 1. It is tempting to pose a similar
conjecture for general dynamical maps governed by memory
kernel master equations, namely, the map is CP divisible iff the
corresponding rescaled kernel α2K (t ) is physically legitimate
for 0 < α < 1. This, however, requires further analysis.

IV. CONCLUSIONS

We have analyzed different forms of non-Markovianity in
terms of the time deformations of governing master equations.
If some deformation of the time-local equation results in a map,
which is not CP, then the original map is not CP divisible (it is
at least weakly non-Markovian). Analogously, if a deformation
of the proper time-convolution equation results is a map, which
is not P, then the original map is not P divisible (it is essentially
non-Markovian).

As the analysis of convolution master equations is particu-
larly complicated, we have managed to obtain only a necessary
condition for P divisible Hermitian commutative dynamical
maps (Proposition 1). We have illustrated implications of this
condition for Pauli dynamical qubit maps (Proposition 2 and
Example 2). We have also considered Examples 3 and 4 of Pauli
dynamical maps defined via a convolution master equation,
for which CP divisibility is equivalent to CP property of the
deformed map for all uniform time dilations.

In addition to witnessing non-Markovianity, the achieved
results clarify legitimate forms of dissipators and memory
kernels, which naturally emerge due to relativistic and gravi-
tational time dilation [45], as well as acceleration of quantum
systems [46].
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Admissible memory kernels for random unitary qubit evolution,
Phys. Rev. A 91, 042105 (2015).
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