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Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates
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We discuss quantum optimal control of Bose-Einstein condensates trapped in magnetic microtraps. The
objective is to transfer a condensate from the ground state to the first-excited state. This type of control problem
is typically solved using derivative-based methods in a high-dimensional control space such as gradient-ascent
pulse engineering (GRAPE) and Krotov’s method or derivative-free methods in a reduced control space such
as Nelder-Mead with a chopped random basis (CRAB). We discuss how these methods can be combined in
gradient optimization using parametrization (GROUP) including the finite bandwidth of the control electronics.
We compare these methods and find that GROUP converges much faster than Nelder-Mead with CRAB and
achieves better results than GRAPE and Krotov’s method on the control problem presented here.
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I. INTRODUCTION

Technological advances in the experimental toolbox in
physical chemistry and atomic, molecular, and optical physics
currently enable exciting new developments in the manip-
ulation of complex quantum systems. Gradually, the focus
is shifting from verifying the validity of theoretical models
towards controlling and manipulating quantum systems for
specific technological applications [1,2]. Some examples of
this trend are quantum state preparation [3,4], atomic clocks
[5], quantum based sensors [6–8], quantum simulators [9], and
quantum computers [10,11].

These applications require the ability to steer the quantum
dynamics precisely using external control fields. The quality
of a control is measured by a cost function, which can describe,
e.g., distance to some target state [12], similarity with a
unitary gate operator [13], or the amount of experimental
signal [14]. Quantum optimal control (QOC) is a framework
that enables the design of control strategies that achieve the
desired dynamics [15–17]. QOC has been studied in a wide
range of physical systems [12,18–21]. Central in QOC are
local optimization algorithms that maximize or minimize the
cost function. These local algorithms can broadly be divided
along two axes [22]. The first axis is derivative-based versus
derivative-free algorithms and the second is optimization in a
full or reduced basis for admissible controls. It is also possible
to extend the local algorithms with global optimization [22].

Derivative-free algorithms operate by directly evaluating
the cost functional in carefully selected points. A particularly
prevalent example in QOC is the Nelder-Mead algorithm
[21,23–25]. More recently, it has been proposed to use
gradient-free methods in QOC such as Brent’s principal axis
[26]. On the other hand, derivative-based methods use both
the functional and derivative information, which can speed up
the convergence rate. Important examples from QOC are the
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gradient-ascent pulse engineering (GRAPE) [27] and Krotov’s
method [28,29].

In a reduced-basis method, the control space is parametrized
by a set of smooth functions [21]. This is motivated by the
fact that the high-quality solutions often lie in some lower-
dimensional subspace of the full control space [30], so a
proper low-dimensional parametrization of the control space
can a priori steer the optimization in the correct direction. A
prominent example is chopped random basis (CRAB) [21,23].
The introduction of a random chopped basis is based on
the idea that randomness allows one to explore a range of
different bases, which can lead to improved results. A too-low-
dimensional parametrization can introduce artificial traps since
the parametrization is no longer able to adequately describe the
optimal solutions [31]. Within QOC, reduced-basis methods
are typically only used in combination with derivative-free
algorithms such as Nelder-Mead [21,23–25,32].

Ideally, one should combine both of these two approaches
and perform derivative-based optimization in a reduced basis.
In the past years, steps have been taken to implement this in a
number of different ways [33–37]. We will collectively refer to
such methods as gradient optimization using parametrization
(GROUP). In part due to the frequent success of derivative-free
search in a reduced basis, GROUP-type methods have not been
widely adopted in the QOC community. However, in recent
years, there has been a growing awareness that the search
for time-optimal solutions in quantum engineering leads to an
exponentially growing computational complexity [22,38–41],
which will necessitate algorithmic improvements. In this work,
we present the GROUP formalism and show how to combine
GRAPE- and CRAB-type methods. In addition, we clearly
demonstrate the efficiency of the GROUP methodology to the
field of quantum engineering by applying it to a high-profile
challenge in the field and presenting a detailed comparison of
performance with conventional algorithms. In this work, we
also demonstrate how the GROUP formalism can include a
filter function on the controls.

This paper discusses quantum control of Bose-Einstein con-
densates manipulated in a magnetic microtrap. These systems
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FIG. 1. Comparison of gradient-based and gradient-free opti-
mization methods in an artificial landscape. The shaded blue triangles
show the gradient-free method, Nelder-Mead. The solid orange
line and the dotted red line are gradient-based algorithms steepest
descent and BFGS, respectively. The steepest descent exhibits the
characteristic zigzag-type behavior, which BFGS avoids due to the
inverse Hessian approximation. Nelder-Mead, steepest descent, and
BFGS, respectively, use 45, 34, and 15 iterations for convergence.

are particularly challenging to control due to the nonlinearity
in the equations of motion. We will investigate fast excitation
from the ground state to the first-excited state in a single
well. This system has attracted much attention in QOC and
it has been investigated both experimentally and theoretically
[12,24,42,43]. Due to the interest in this system, we see it as
an ideal test bed for quantum control algorithms.

Here we present a direct comparison of derivative-based
search in a reduced basis (GROUP) with the other state-
of-the-art algorithms, i.e., Krotov’s method, Nelder-Mead
using CRAB, and GRAPE. We find that GROUP not only
converges faster, but also achieves better end fidelity. This work
supplements and extends previous efforts in comparing QOC
algorithms [43,44].

Derivative-based methods generally converge faster than
derivative-free [44,45]. Derivative-based methods typically
employ either steepest descent or the quasi-Newton method
of Broyden-Fletcher-Goldfarb-Shanno (BFGS) [45]. BFGS is
typically faster than steepest descent since it avoids steepest
descent’s characteristic inefficient zigzag motion close to the
optimum [44,45]. BFGS achieves this by gradually building
an approximation of the Hessian using the past gradients [45].
In this paper, we only use BFGS-type descent with GRAPE
and GROUP. A graphical illustration of the difference in
convergence behavior between a derivative-free Nelder-Mead
and the two derivative-based methods is given in Fig. 1.

This paper is organized as follows. In Sec. II, we introduce
the control problem of transferring a condensate from the
ground state to the first-excited state. In Sec. III, we present the
GROUP methodology and the other different quantum control
algorithms. In Sec. IV, we present how to include the finite
bandwidth of the control electronics. In Sec. V, we compare the
different algorithms. Finally, we conclude the paper in Sec. VI.

II. THE CONTROL PROBLEM

We will discuss the manipulation of a condensate trapped on
an atom chip [4]. In the experiment described in Refs. [4,42],
a source for stimulated emission of matter waves in twin
beams is created by transferring a condensate into the collective
first-excited state. The typical decay rate of the system is 3 ms,
so it is very important to find optimal controls that can transfer
the condensate into the excited state faster than this decay rate
and still allow time for subsequent experiments [4,24]. This
condensate driving control problem has been investigated us-
ing a number of different QOC algorithms in Refs. [12,24,43].
We give a brief account of the condensate driving control
problem and, for more details on the experimental setup, we
refer to Refs. [4,24,42,46]. In a mean-field treatment, the
dynamics of the condensate are well described by an effective
one-dimensional Gross-Pitaevskii equation (GPE),

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
+ V (x, u)ψ + β|ψ |2ψ

= (Ĥ + β|ψ |2)ψ, (1)

where h̄ = 1, β is the effective nonlinear self-interaction, and
Ĥ is the Hamiltonian. The atom-chip experiment is tightly
confined along two transverse directions and weakly confined
along the axial direction. One of the transverse directions
is so strongly confining that the state is frozen into the
ground state. The dynamics along the axial direction is slow
compared with the other transverse direction, which allows for
a description with an effective one-dimensional GPE with a
nonlinear dependence of β on the atom number [24,47]. For
700 atoms, one finds β = 1830 h̄ Hz μm [24].

The potential is an anisotropic Ioffe-Pritchard trap dressed
by a radio-frequency potential [24,42,46]. In Ref. [24], this
potential is approximated by a polynomial,

V (x, u(t )) = p2[x − u(t )]2+p4[x − u(t )]4+p6[x − u(t )]6,

(2)

where the control u(t ) is the displacement of the trap.
The coefficients are given by p2 = 2πh̄ × 310r−2

0 Hz, p4 =
2πh̄ × 13.6r−4

0 Hz, and p6 = −2πh̄ × 0.0634r−6
0 Hz, with

r0 = 172 nm [24]. For an in-depth discussion of the exper-
imental setup, we refer the reader to Refs. [4,24]. The goal
is to transfer the initial state ψ0 into the target state ψt

after a duration of T. The initial state is the ground state for
u(t = 0) = 0 and the target state is the first-excited state for
u(t = T ) = 0.

In order to find a control that transfers the initial state into
the target state, the problem is expressed as a minimization of
the cost functional J (u,ψ ),

J (u(t ), ψ ) = 1

2
[1 − |〈ψt |ψ (T )〉|2] + γ

2

∫ T

0
u̇(t )2dt. (3)

In the first term, F = |〈ψt |ψ (T )〉|2 is the fidelity and 1 − F is
the infidelity, which quantifies the difference between the final
state and the target state [12,34,43,48]. The second term in
Eq. (3) is the regularization that penalizes strong fluctuations
in the control, which accounts for the fact that very fast
changes cannot be realized experimentally. We found that
γ = 1 × 10−6 gives acceptably smooth solutions.
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Here we investigate the control problem at T = 1.09 ms,
which was reported in Ref. [24] to be the value of the quantum
speed limit (QSL). The QSL is the lowest-duration T where
solutions above F � 0.99 can be found. In recent work, it
has been shown that constrained control problems such as
condensate driving become NP-hard close to the QSL [39–41].
Hence, comparing the performance of the quantum control
algorithms close to the QSL provides a stringent test of their
individual performance. A solution at the QSL is also a solution
at all longer durations since the target state is an eigenstate of
the GPE. Attempting to solve the problem at shorter durations
can give improvements to the estimate of the QSL, but it also
requires systematic global exploration, which is discussed for
the condensate driving problem in Ref. [22].

III. QUANTUM OPTIMAL CONTROL

In QOC, the goal is to minimize the cost functional J (u,ψ )
while satisfying the constraints from the GPE. The constraint
can be handled using a Lagrange multiplier,

L(ψ, u, χ ) = J + Re
∫ T

0
〈χ |iψ̇ − Ĥψ − β|ψ |2ψ〉dt, (4)

where χ is a Lagrange multiplier [17]. Note that the usual
linear Schrödinger equation is a special case for β = 0, so the
methodology we present here can be directly extended to such
systems. At a local minimum, all three variational derivatives
DδχL, DδψL, and DδuL are zero. This gives the following
optimality equations (see Appendix 1 for details):

iψ̇ = Ĥψ + β|ψ |2ψ, (5)

iχ̇ = (Ĥ + 2β|ψ |2)χ + βψ2χ∗, (6)

γ ü = −Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
, (7)

and the associated boundary conditions,

ψ (0) = ψ0, (8)

iχ (T ) = −〈ψt |ψ (T )〉ψt, (9)

u(0) = u0, u(T ) = uT . (10)

Ideally, these equations would be solved analytically, which
would directly give the optimal solutions. Unfortunately, such
analytic solutions are, in general, infeasible so it is necessary
to use iterative numerical algorithms [12,48].

When performing the numerical optimization of the cost
functional, it is necessary to discretize the control in steps �t ,
where �t is set by the required accuracy when numerically
solving the GPE. This means that the control becomes rep-
resented by a vector of length N = �T/�t� + 1. Typically,
in GRAPE and Krotov’s method, the dimension for the space
of admissible control (M) is the same as for the simulation
N = M . However, with a proper change of basis, the optimal
controls could adequately be described by another basis with
much smaller dimension [30,37]. In this sense, setting N =
M often introduces too many degrees of freedom for the
control problem. In the simulations performed here, we have

N � 3500, whereas by a proper choice of basis, we have only
M � 50. These potential large reductions in the dimension of
the control problem are the motivation for reduced or chopped
basis methods. In recent years, CRAB has emerged as an
attractive alternative to the conventional QOC methods since
it parametrizes the control in a reduced basis [21,23–25].

As mentioned, the main purpose of this paper is to introduce
and numerically test GROUP. We first give a brief review of
GRAPE and CRAB since GROUP builds on these methods.
When discussing these methods, one typically works with
the reduced cost functional Ĵ (u) = J (u,ψu). Here, ψu is
the unique solution to the GPE, which is found by solving
Eq. (1) with u(t ) [34]. Our objective is to find a minimum, and
preferably the global minimum, of Ĵ (u).

A. GRAPE

A standard approach to minimizing Ĵ (u) is the GRAPE
algorithm [27,43,48]. The simplest version of this method is
to update the control along the gradient,

u(i+1) = u(i) − α(i)∇Ĵ (u(i) ), i = 0, 1, 2, . . . . (11)

Here the index i refers to the current iteration. This is the
steepest descent method. An appropriate value for α is found
using a step-size algorithm, which finds a satisfactory solution
to the one-dimensional optimization problem,

α(i) = arg min
α

Ĵ [u(i) − α∇Ĵ (u(i) )]. (12)

Note that in Eq. (11), the control is updated for all times 0 �
t � T at once. This makes GRAPE a concurrent method, which
is different from Krotov’s method presented later where the
control is updated sequentially for each time slice.

An important but subtle point is the use of the gradient
∇Ĵ (u(i) ) in Eq. (11). The complication arises from the fact the
the gradient is defined in a function space X. In this space, the
gradient is the unique element such that (∇Ĵ , δu)X = DδuĴ

for all possible variations δu. Hence, the gradient depends on
the choice of the inner product for the function space X. This
has already been discussed in Refs. [34,48]. Specifically, all
variations δu should satisfy the boundary condition in Eq. (10)
giving δu(0) = δu(T ) = 0. A choice that will fulfill this
requirement is the H 1-space with the inner product (u, v)H 1 =∫ T

0 u̇v̇dt. As shown in Appendix 2, this choice gives the result

d2

dt2
[∇Ĵ (u)] = Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
+ γ ü, (13)

where ψ and χ are the solutions of Eqs. (5) and (6). This is a
Poisson equation for the control in time so we can choose the
Dirichlet boundary conditions [∇Ĵ (u)](0) = ∇[Ĵ (u)](T ) =
0. These conditions imply that GRAPE preserves the boundary
condition in Eq. (10) in any iteration. As pointed out in in
Refs. [34,48], if we had made the canonical choice of X = L2,
then the gradient would not vanish at the boundary. In this
case, the boundary condition must be enforced numerically by
simply setting the gradient to be zero at the boundary, which
can greatly decrease the performance of the algorithm.

The update written in Eq. (11) is the steepest descent
algorithm, which is also illustrated in Fig. 1. As shown in this
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figure, the optimization can be improved by using a quasi-
Newton method such as BFGS instead of steepest descent.
Again, special care has to be taken when working in H 1 space,
and we use the matrix-free version of L-BFGS described in
Ref. [34].

B. Chopped basis and CRAB

As discussed above, the control is represented by a vector of
length N = �T/�t� + 1 due to the temporal discretization. In
GRAPE, the dimensionality of the space of admissible controls
(M) is N = M . However, by expanding the control in a proper
basis, it is possible to substantially reduce the dimension of the
control problem,

u(t ) = u0(t ) + S(t )
M∑

n=1

cnfn(t ), (14)

where the fn’s are the basis functions. S(t ) is a shape function
that enforces the boundary condition in Eq. (10), which gives
S(0) = S(T ) = 0. In this chopped basis, we optimize the
coefficients cn instead of full control u(t ), which implies that
the cost function is Ĵ (c) where c = (c1, c2, . . . , cM ). This
method is known as a chopped basis (CB). The functions
fn must be chosen sensibly based on physical insight, which
would typically be sinusoidal functions around characteristic
frequencies. The reduced dimension of Ĵ (c) enables the use
of the gradient-free Nelder-Mead algorithm. Gradient-free
methods have the advantage that there is no need to implement
code that calculates the gradient by solving, e.g., Eq. (13),
which also requires solving the equation for the Lagrange
multiplier given by Eq. (6). This is particularly an advantage
whenever calculation of the gradient is infeasible or too
resource consuming [23].

For the control problem discussed here, we found the
following expansion useful:

u(t ) = u0(t ) + S(t )
M∑

n=1

cn sin

(
ωnt

T

)
, (15)

where ωn = nπ is a set of frequencies. This type of chopped
basis was extended in Ref. [21] by introducing the chopped
random basis or CRAB. In CRAB, the frequencies ωn are
randomly shifted as ωn = (n + rn)π , where −0.5 � rn � 0.5
are initially chosen random numbers. The optimization is
repeated a number of times with different values of rn’s. This is
a central idea in CRAB since it allows the algorithm to explore
different basis functions with slightly similar frequencies
starting from the same u0. An optimization within a CRAB
can principally be done using any method, but it is typically
done using the gradient-free method Nelder-Mead [21,23,24].

C. GROUP

In GROUP, the best features of the two previous methods
are combined. We parametrize the control in some basis as
in Eq. (14). However, instead of using a gradient-free method
to search in the chopped basis, we use the gradient-descent
methods from GRAPE. Here the gradient is with respect to
the expansion coefficients [∇Ĵ (c)]. Given this gradient, an
iterative update analogous to Eq. (11) can be directly applied.

Just as in GRAPE, we need to find an analytic expression for the
gradient similar to Eq. (13). The partial derivative of Ĵ (c) with
respect to cn can be found using the chain rule for variational
derivatives (see Appendix 3 for more details). The result is

∂Ĵ (c)

∂cn

= DS(t )fn(t )Ĵ (u)

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
+ γ ü

)
S(t )fn(t )dt. (16)

Note that these partial derivatives only differ in the fn(t )
function in the integrand. This expression is valid for any
CB and CRAB. The quantity in the bracket only needs to be
computed once, which contains ψ and χ that are found by
the numerically expensive solution of Eqs. (5) and (6). The
cost of calculating all the partial derivatives and hence the full
gradient [∇Ĵ (c)] is dominated by the solution of Eqs. (5) and
(6), which implies that the time needed for calculating the
gradient in GROUP is comparable to GRAPE.

In the comparative numerical studies presented below, we
performed the GROUP optimization using the quasi-Newton
method BFGS. Note that when optimizing Ĵ (c), the optimiza-
tion is done in the usual l2-space and not H 1-space, so all the
standard methods for BFGS can be directly applied.

All numerical GROUP results in this paper were obtained
using the formalism from Eq. (16) extended with a filter
function. In Ref. [33], it was proposed to compute the gradient
in a reduced basis ∂Ĵ (c)/∂cn, but using another method named
gradient optimization of analytic controls (GOAT). We give
a brief account of how this method can be extended to the
condensate driving control problem in Appendix 4. Briefly, the
GOAT algorithm is more numerically expensive than GROUP,
but could potentially offer advantages if ultralow infidelities
are required.

D. Krotov’s method

Krotov’s method is an alternative to the standard Lagrange
multiplier method used in GRAPE and GROUP [49]. In Kro-
tov’s method, the cost functional given by Eq. (3) is rewritten
so the GPE appears explicitly and conditions for a guaranteed
decrease in the cost are directly built in [28,29,43,49]. This
allows Krotov’s method to give an optimal control algorithm
that directly ensures a monotonic decrease in the cost and it is
expected to provide fast convergence. The resulting update for
the control is (see Appendix 5 for more details)

u(i+1)(t ) = u(i)(t ) + αS(t )Re

〈
χ (i)(t )

∣∣∣∣∂Ĥ

∂u

∣∣∣∣
u(i)

∣∣∣∣ψ (i+1)(t )

〉
.

(17)

Here, ψ (i) and χ (i) are the solutions to the GPE (6) and
the Lagrange multiplier (5) from GRAPE. S(t ) is again a
shape function 0 � S(t ) � 1 that turns the control off at t = 0
and t = T , which ensures that the boundary condition for
the control is always satisfied in Eq. (10). α is the step-size
parameter that must be selected for proper convergence. Note
that both the current iteration index i and the next index i + 1
appear in the equation. Specifically, the control at the next
iteration u(i+1) depends on the states in the next iteration ψ (i+1).
This makes Krotov’s method a sequential algorithm where
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the next control u(i+1) is being calculated while the equations
of motion are being solved along that control. This is very
different from the other methods presented here, where the
control is updated concurrently for all values of 0 < t < T .
Note that since the GPE is nonlinear in the states, a monotonic
decrease in the cost can only be guaranteed if Eq. (17) includes
an additional term that is proportional to the difference in the
states between iterations [28,29,43]. However, for the small
values of β discussed here, neglecting this term does not
notably affect the monotonic decrease in the cost [43]. The
derivative is typically with respect to the next iteration (u(i+1)),
but for the small values of α used here it is acceptable to use
the current iteration (u(i) ) [29,43].

IV. FILTER FUNCTION

In order to obtain a close match to the experimental
conditions in the condensate driving control problem, it is
also necessary to include the finite bandwidth of the control
electronics. This effect causes the control u(t ) to become
distorted into v(t ) and the atoms experience the potential from
V (x, v) [24]. The distortion is large enough to cause the fidelity
to drop by a couple of percent, so it must be included in the
modeling. It has previously been discussed how to include
this type of effect into GRAPE [50] and Krotov-type methods
[51,52]. The distorted control is given by a convolution with
the filter h(τ ),

v(t ) = (h ∗ u)(t ) =
∫ t

0
h(τ )u(t − τ )dτ. (18)

The presence of the filter changes the expressions for the
gradients (see Appendices 2 and 3 for more details). The
GRAPE gradient [Eq. (13)] becomes

d2

dt2
[∇Ĵ (u)] = − γ v̇(T )h(T − t )

+
∫ T

t

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂v

∣∣∣∣ψ
〉
+ γ v̈

)
h(t ′ − t )dt ′.

(19)

Similarly, the expression for the GROUP gradient becomes

∂Ĵ (c)

∂cn

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂v

∣∣∣∣ψ
〉
+ γ v̈

)
(h ∗ Sfn)(t )dt

+ γ v̇(T )(h ∗ Sfn)(T ). (20)

It is not straightforward to include such a filter function
in Krotov’s method [51]. For the comparison below, the
simulations for Krotov are performed without the filter [51].
The filter gives rise to another potential complication, which
is that although u(T ) = 0, it can occur that v(T ) 	= 0. This
could slightly perturb the final state since the control cannot
be instantaneously quenched to zero due to the filter. For the
optimal solutions found here, this effect did not notably affect
the fidelity.

V. NUMERICAL RESULTS

In the last section, we gave an introduction to four different
quantum control algorithms. In this section, we will compare

FIG. 2. The infidelity as a function of the number of evaluations
for each algorithm. One function evaluation is a solution of the GPE
or Lagrange multiplier, given by Eq. (6). The different algorithms are
shown at the basis size or steps size where they performed the best
(see legend). The dotted line shows the median and the shaded area
indicates the 25% and 75% quartiles found from 100 different random
initial controls. The quasi-Newton method BFGS was used together
with GRAPE and GROUP.

them numerically when applied on the condensate driving
control problem.

A. Convergence behavior

We applied the following QOC algorithms: GRAPE, Kro-
tov, Nelder-Mead with CRAB, and GROUP with CB and
CRAB, to the condensate driving control problem. We applied
the algorithms to the same 100 initial controls, which were
randomly generated using Eq. (14). The convergence behavior
of the different methods is illustrated in Fig. 2. Here the
median and 25% and 75% quartiles are shown for the different
algorithms, which gives an impression of the expected behavior
for each method on this problem. One function evaluation is a
solution of the GPE or the equation for the Lagrange multiplier
[Eq. (6)].

Throughout the optimization, GROUP achieves the lowest
infidelities. At the end of the optimization, GROUP has the
best infidelity, followed by GRAPE and Krotov. There is no
particular difference between GROUP using CB or CRAB
so we will refer to them both as GROUP. Nelder-Mead
using CRAB has the slowest convergence rate of the four
methods since it does not utilize derivative information. This
is in accordance with the picture presented in Fig. 1, which
shows that derivative-based methods are typically faster than
derivative-free.

The optimization curves in Fig. 2 can be split into two
regimes: one at a high number of function evaluations after
600 and one below. Below 600 evaluations, the three derivative-
based methods have similar rates of convergence, but GROUP
and Krotov perform better than GRAPE. In the high number
of function evaluations regime, GROUP performs better than
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FIG. 3. (a) The best-case controls found using GROUP with CB
(red) and Nelder-Mead with CRAB (blue) after 2500 iterations. The
control is held constant after the vertical dashed line. (b) The density
for the condensate (|ψ (x, t )|2) found when using the solution from
GROUP. After the vertical line, the density is constant since the state
has converged with F = 0.999 to the first-excited state. (c) The same
is shown as in (b) for Nelder-Mead with CRAB, which has residual
oscillations since the final fidelity is F = 0.95.

GRAPE and Krotov. We attribute this to the fact that the basis
gradually steers GROUP towards a more profitable part of
the optimization landscape. This shows the complexity of the
optimization landscape since, although the algorithms start at
the same point and perform local greedy optimization, they
converge towards different points with different infidelities.
This is different from the situation in Fig. 1 where all the algo-
rithms converge to the same point since the two-dimensional
landscape is much simpler than the control problem, which has
dimension M � 3500 or M � 50.

In the high function evaluations regime, Krotov and GRAPE
switch places and GRAPE finds better infidelities than Krotov.
These results show that Krotov achieves fast initial reductions
in the infidelity, but it slows down considerably when approach-
ing the optimum. GRAPE does not exhibit this behavior, which
we attribute to the Hessian approximation from BFGS since
the cost function can be well described by a second-order
expansion close to the optimum [45]. Similar results were
also reported in Ref. [43]. In principle, Krotov’s method can
also be combined with a BFGS-type method [53], but it has
been reported in Refs. [43,53] that this does not significantly
improve the convergence.

This comparison focuses on the expected behavior. Each
of the methods have a few optimization runs that perform
significantly better, which reflects that each algorithm has some
specific seeds where it just happens to search the optimization
landscape in the most favorable manner. GROUP had the
individual optimization runs with the lowest infidelity.

The best controls found for GROUP with CB and Nelder-
Mead with CRAB are shown in Fig. 3 with, respectively, F =
0.999 and F = 0.95. This figure also shows the density for the

FIG. 4. (a) The final infidelity after 2500 function evaluations
for GROUP with CB (red) and Nelder-Mead with CRAB (blue) for
different basis sizes. The dotted line is the median and the shaded
area displays the 25% and 75% quartiles found from the 100 different
random initial controls. (b) The same as (a) for Nelder-Mead and
GROUP with dressed CRAB. The gray plot shows the final infidelity
for Nelder-Mead with dressed CRAB after 25 000 iterations rather
than 2500 iterations.

condensate when propagated along the optimal controls. After
T, the control is held constant at u = 0. The Nelder-Mead with
CRAB solution has a residual oscillation after T due to residual
excited-states’ components in the solution.

B. Reduced-basis size and dressed methods

A limitation of the reduced-basis methods is that the
optimization might get caught in an artificial trap introduced
by limited bandwidth of the parametrization. As an example,
consider the expansion in Eq. (15) at some fixed M. If
the optimal solution requires frequencies above M, then the
optimization can never converge to this solution and it will
get caught in an artificial trap. This effect would favor larger
values of M. On the other hand, increasing M also increases
the dimension of the control problem, which is exactly what
the reduced-basis methods attempt to avoid.

In Fig. 4(a), we compare the trade-off between the risk of
artificial traps and retaining a low dimension for Nelder-Mead
with CRAB and GROUP with CB. As expected, a too small
basis M � 10 gives poor results for both algorithms since the
optimal controls cannot be adequately described with these
small basis sizes. Nelder-Mead with CRAB clearly has an
optimal basis size around M = 20 and it becomes worse with
a larger dimension. This is due to the fact that the Nelder-Mead
algorithm cannot effectively search within a large dimension.
Surprisingly, the performance in GROUP is very robust with
respect to the basis size, and it even seems to prefer large
basis sizes. We attribute this result to the fact that the large
frequencies have small weights in the gradient, meaning that
they contribute little to the search. This type of behavior is
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FIG. 5. The absolute value of the partial derivative with respect
to basis coefficients |∂Ĵ (c)/∂cn| found using Eq. (16). The dotted
line shows the median of the 100 gradients taken at the start of the
optimization. The shaded area indicates the 25% and 75% quartiles.

illustrated in Fig. 5, which shows the median initial gradient for
the 100 initial points. Above n = 50, the partial derivatives are
much smaller than for n = 5, and hence it is the low frequencies
that dominate the search.

A solution to the artificial trap problem was proposed in
Ref. [31] where a so-called dressed CRAB (dCRAB) was
introduced. In dCRAB, the optimization is restarted with new
basis functions from the last optimum (u(j−1)),

u(j ) = u(j−1) + S(t )
M∑

n=1

c(j )
n f (j )

n

(
t, r (j )

n

)
. (21)

These iterations are known as superiterations [31]. The new ba-
sis functions f

(j )
n (t, r (j )

n ) are found by reselecting the random
frequency shifts (rn) in CRAB, giving new basis functions in
each superiteration. The initial coefficients are c

(j )
n = 0 for all

n so the optimization starts from the previous control. The new
basis functions give the algorithm the possibility to escape the
artificial traps [31]. Clearly, this formalism cannot be used in a
normal chopped basis (CB). We apply the same methodology
to GROUP by simply following the same procedure for the
superiterations and calculate the gradients using Eq. (20).

In Fig. 4(b), we compare the effect of dressing for different
basis sizes. GROUP in combination with dCRAB (dGROUP)
only does slightly better than GROUP with CB, which indicates
that the solutions were already highly optimal after 2500
evaluations. We observe the same behavior for Nelder-Mead
with dCRAB after 2500 evaluations. However, if Nelder-Mead
with dCRAB is allowed to perform 25 000 evaluations, then
it finds much better results especially for basis sizes around
M = 20. This shows that for low basis sizes, Nelder-Mead with
dCRAB can escape the artificial traps and greatly improve the
infidelity with enough function evaluations. The Nelder-Mead
with dCRAB using 25 000 evaluations finds similar infidelities
to GROUP with dCRAB using 2500 evaluations, which shows
that if Nelder-Mead runs for longer times, it can find results

FIG. 6. The robustness of the optimal solutions from each algo-
rithm to rescaling of the self-interaction in Eq. (1): β̃ = αββ, where
αβ is the scaling.

similar to gradient descent. At large basis sizes, dCRAB does
not notably improve the infidelity, which we interpret as the
optimization being blocked by Nelder-Mead’s inability to
efficiently search in high-dimensional landscapes rather than
artificial traps.

C. Robustness analysis

The solutions presented in this paper can only be directly
applied in an experiment if they are stable against unavoid-
able experimental fluctuations in the system parameters. As
reported in Ref. [24], the primary experimental fluctuations
occur in the self-interaction (β) in Eq. (1) due to variations
in the atom number. This gives variations in β below 14%.
For this reason, we have investigated the stability of the
solutions against scaling of the self-interaction. In Fig. 6,
the infidelity is calculated with the best solution from each
algorithm using β̃ = αββ, where αβ is the scaling factor. The
solutions are generally stable with respect to fluctuations in
the self-interaction since atom interactions have little influence
over the relative short duration investigated here. The GROUP
solution clearly exhibits superior behavior over the entire range
of parameter variation. The GROUP solution remains above
F = 0.99 in the range 0.5 � αβ � 1.5, which is above the
experimental fluctuations reported in Ref. [24].

We have also investigated the robustness of the solutions
against perturbations in the potential. In Fig. 7, the infidelity
is calculated for each algorithm’s best solution with rescaled
potential coefficients (p̃i = αppi) in Eq. (2). The solutions are
much more sensitive to perturbations in the potential compared
with the self-interaction.

We note that it would most likely be possible to find much
more stable solutions by including the stability directly in
the optimization. This could, for example, be achieved by
optimizing over an ensemble of different scaled interactions
and potentials and defining the average cost over the ensemble.
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FIG. 7. The robustness of the optimal solutions from each al-
gorithm to rescaling of the potential coefficients in Eq. (2): p̃i =
αppi, i = 2, 4, 6, where αp is the scaling.

D. Convergence behavior at different parameter values

The results presented in this section have so far only dis-
cussed a single choice of the system parameter values, meaning
that the underlying optimization problem has been the same.
The performance of an optimization algorithm may depend
on the choice of problem, so in this section we investigate
the performance of each algorithm for different problems by
rescaling the system parameters. In Fig. 2, we compared the
convergence behavior for a number of different seeds, but fixed
system parameters. In Figs. 8 and 9, we hold the seed fixed and
vary the system parameters examined in the previous section.
The seeds are those that gave the best result for each algorithm
in the previous analysis. As in Fig. 2, we have performed the
analysis for different basis sizes and step sizes and we present
the best case behavior in Figs. 8 and 9.

In Fig. 8, we compare the convergence behavior of each al-
gorithm when optimizing with 35 different values of β̃ = αββ

ranging from αβ = 0.1 to αβ = 10 as in the previous section.
Although GRAPE and GROUP have similar medians for their
final infidelities, GROUP has a better overall convergence
behavior. Both GROUP and GRAPE have faster rates of con-
vergence than Nelder-Mead with CRAB and Krotov’s method.
In Fig. 2, Krotov’s method has a better final infidelity than
Nelder-Mead with CRAB. However, in Fig. 8, Nelder-Mead
with CRAB catches up with Krotov after a high number of
function evaluations. In general, Krotov’s method is struggling
for the high values of β, which we attribute to the lack of
including the term proportional to the difference in Eq. (17). We
believe that correctly including this term could substantially
improve the convergence rate of Krotov’s method. Note that
here we present the results with the best basis for Nelder-Mead
after optimizing over a range of basis sizes. The performance
is significantly worse for nearby basis sizes 15 and 30.

In Fig. 9, we perform a similar analysis for each algorithm
just optimizing 35 different values of the potential with
rescaled coefficients p̃i = αppi , with i = 2, 4, 6 ranging from

FIG. 8. Comparison of the convergence behavior for different
values of the self-interaction for each algorithm. The optimizations
are performed for 35 different scaled values of the self-interaction
β̃ = αββ, where αβ is the scaling. The dotted line shows the median
and the shaded area indicates the 25% and 75% quartiles. The
quasi-Newton method BFGS was used together with GRAPE and
GROUP.

αp = 0.91 to αp = 1.09 as in the previous section. Again, we
observe that GROUP followed by GRAPE finds the solutions
with the lowest infidelities. Krotov’s method has fast initial
reductions in the infidelity below 600 function evaluations, but
it slows down above 1000 function evaluations. In this case,
we also observe that Nelder-Mead with CRAB catches up with

FIG. 9. Comparison of the convergence behavior for different
values of the potential coefficients. The optimizations are performed
for 35 different scaled values of the potential coefficients p̃ = αppi

with i = 2, 4, 6, where αp is the scaling. The dotted line shows the
median and the shaded area indicates the 25% and 75% quartiles. The
quasi-Newton method BFGS was used together with GRAPE and
GROUP.
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Krotov’s method after a high number of function evaluations.
Similarly to before, we observe in our other optimizations
that Nelder-Mead has significantly worse performance for the
nearby basis sizes 15 and 30.

We have also performed a similar analysis for rescaled
values of the regularization factor (γ ) in Eq. (3), which showed
that the regularization factor only has a minor impact on the
results for all algorithms.

VI. CONCLUSION AND OUTLOOK

We have presented in detail how to perform gradient-based
optimal control in a reduced basis in GROUP, which combines
the advantages from the CRAB and GRAPE methods. We have
presented a benchmark with other quantum optimal control
methods close to the quantum speed limit in the conden-
sate driving control problem. Here, GROUP-type methods
are competitive with other quantum control algorithms. We
have also presented how to extend GROUP-type methods
with experimentally motivated filter functions. It would be
very interesting to compare these methods on other control
problems in order to better understand the advantages and
disadvantages of each method. The formalism for GROUP-
type methods presented here can also be applied to systems
with a linear Schrödinger equation such as control of many-
body systems [23,24]. We believe our method and analysis
is a relevant addition to the repository of quantum control
algorithms.
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APPENDIX: VARIATIONS AND GRADIENTS

1. Equations of optimality

Here we give a brief derivation of the optimality equations
presented in the main text [Eqs. (5)–(10)]. The presentation
here is based on Refs. [12,34,43,48]. In order to find equations
for an optimum that also satisfies the GPE, we need to calculate
the variations with respect to the Lagrangian

L(ψ, u, χ ) = J (u,ψ ) + Re
∫ T

0
〈χ |Z(u,ψ )〉dt, (A1)

where Z(u,ψ ) is the constraint given by

Z(u,ψ ) = iψ̇ − Ĥψ − β|ψ |2ψ. (A2)

Clearly this constraint is zero for any ψ (t ) that also satis-
fies the GPE equation. The optimality system is found by
requiring that all first-order variations vanish. This gives us the
equations

DδχL = DδψL = DδuL = 0, (A3)

for all admissible variations. We now calculate these three
variations one by one. The variation with respect to χ

gives

DδχL = DδχRe
∫ T

0
〈χ |iψ̇ − Ĥψ − β|ψ |2ψ〉dt

= Re
∫ T

0
〈δχ |iψ̇ − Ĥψ − β|ψ |2ψ〉dt. (A4)

This variation must be zero for all variations δχ (t ), which
gives Eq. (5). Next consider the variation with respect to ψ . A
variation of the constraint gives

DδψRe
∫ T

0
〈χ |Z〉dt

= Dδψ

(
Re〈χ |iψ〉

∣∣∣∣
T

0

−Re
∫ T

0
〈χ̇ |iψ〉dt

)

− Re
∫ T

0
〈χ |Ĥ δψ + βψ2δψ∗ + 2β|ψ |2δψ〉dt

= Re〈iχ (0)|δψ (0)〉 − Re〈iχ (T )|δψ (T )〉

+ Re
∫ T

0
〈iχ̇ − Ĥχ − 2β|ψ |2χ − βψ2χ∗|δψ〉dt.

(A5)

First consider 0 < t < T . Since all variations must vanish, we
find the optimality condition in Eq. (6). For t = T , the cost
functional J (u,ψ ) also contributes with the term

DδψJ = − 1
2Dδψ 〈ψt |ψ (T )〉〈ψ (T )|ψt 〉

= −Re[〈ψ (T )|ψt 〉〈ψt |δψ (T )〉]. (A6)

Combining this with Eq. (A5) gives

0 = − Re{[〈iχ (T )| + 〈ψ (T )|ψt 〉〈ψt |]|δψ (T )〉}
+ Re〈iχ (0)|δψ (0)〉. (A7)

The first term in this equation gives us the boundary condition
for the Lagrange multiplier in Eq. (9). There is also the initial
condition that ψ (0) = ψ0 [Eq. (8)], which gives δψ (0) = 0,
implying that the second term in the equation above is zero.
Finally, consider the variation with respect to the control u.
First, consider the variation with respect to the cost functional,

DδuJ = γ [u̇(T )δu(T ) − u̇(0)δu(0)] − γ

∫ T

0
üδudt. (A8)

The terms at the boundary vanish since the control must be
fixed at the boundary [Eq. (10)]. With this expression, we find
the variation of the Lagrangian to be

DδuL = −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
+ γ ü

)
δudt. (A9)

Since this must vanish for all variations, we find the last
optimality condition in Eq. (10).

2. Calculation of GRAPE gradients

In the main text, we introduce the gradients for GRAPE.
Here we give a brief derivation of these equations. Our con-
siderations follow Refs. [34,48]. In numerical simulations, we
solve the GPE for a given u, so it is more natural to consider the
reduced cost functional Ĵ (u,ψ ) = J (u,ψu), where ψu is the
solution to the GPE for a given u. Note that Ĵ (u) = L(ψu, u, χ )
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since Z(u,ψu) = 0. This is correct for any χ , hence χ is a free
variable that we can choose conveniently. In order to find the
gradient for GRAPE, we need the variation of the reduced cost
functional,

DδuĴ (u) = DδuL(ψ, u, χ ) + Dδψu
L(ψ, u, χ ), (A10)

where we have used the total derivative. The derivative Dδψu
L

is the induced variation in ψu from the variation of u. This
extra term appears since ψ depends implicitly on u through
the GPE equation. This was not the case when discussing
the Lagrangian [Eq. (A1)] since ψ was taken to be a free
variable and the GPE is a constraint. Notice that performing this
variation is formally the same as the Dδψ , just with the induced
variation instead. Hence, we would get the same equations as
above for DδψL, just with δψ replaced with δψu. Specifically,
we find Eq. (A5) again for the induced variation. Recall that χ

is now a free variable that we can select. If we pick χ to satisfy
Eq. (6), then the induced variation Dδψu

will vanish, leading to
the conclusion that

DδuĴ (u) = DδuL(ψ, u, χ )

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
+ γ ü

)
δudt, (A11)

where we have used the result from Eq. (A9). Recall from
the discussion in the main text that the GRAPE gradient is
defined as the unique element such that (∇Ĵ , δu)X = DδuĴ .
The gradient depends on the choice of the inner product. The
typical choice of the L2 inner product gives

(∇Ĵ , δu)L2 =
∫ T

0
∇Ĵ δudt

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
+ γ ü

)
δudt. (A12)

From this equation, we can immediately recognize that

∇Ĵ = −Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
− γ ü for L2. (A13)

Note that there is no reason for this expression to vanish at
the boundaries (t = 0 and t = T ). As discussed in the main
text, failing to satisfy the boundary conditions for the control
[Eq. (10)] can cause instabilities in the algorithm. It turns out
that a more suitable choice is the H 1 inner product. Here the
gradient is

(∇Ĵ , δu)H 1 = δu
d

dt
∇Ĵ

∣∣∣∣
T

0

−
∫ T

0
δu

d2

dt2
∇Ĵ dt (A14)

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
+ γ ü

)
δudt. (A15)

The first term in Eq. (A14) vanishes since δu(0) = δu(T ) = 0.
From this expression, we can directly read off the H 1 gradient,

d2

dt2
[∇Ĵ (u)] = γ ü + Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉

for H 1, (A16)

which is the result given in Eq. (13). This is a Poisson equation,
so the Dirichlet boundary condition that the gradients vanish at
the boundaries can be chosen. This is the motivation for using
the H 1 gradient over the L2 gradient.

As discussed in the main text, it is necessary in condensate
driving to take the finite bandwidth of the electronics into
account. This effect distorts the control u(t ) into v(t ), which
enters into the GPE equation. This can be modeled using a
filter function h(t ),

v(t ) = (h ∗ u)(t ) =
∫ t

0
h(τ )u(t − τ )dτ, (A17)

where v(t ) is the distorted control. Again, we can calculate the
variation. This can be done with the chain rule for variations,

DδuĴ (v) = DDδuvĴ (v)

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂v

∣∣∣∣ψ
〉
+ γ v̈

)
(h ∗ δu)(t )dt

+γ v̇(T )(h ∗ δu)(T ). (A18)

The first term is directly found from Eq. (A9) where the
expression inside the bracket is evaluated along the distorted
control v(t ). Note that when calculating the variation of the
regularization with respect to u, two boundary terms were zero
due to the boundary conditions for δu. However, the first of
these terms is not zero when the filter is included. This gives
the second term in the equation above. This equation can be
rewritten as

DδuĴ (v) =
∫ T

0
δu(t )

[
γ v̇(T )h(T −t )−

∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂v

∣∣∣∣ψ
〉

+ γ v̈

)
h(t ′ − t )�(t ′ − t )dt ′

]
dt, (A19)

where �(t ′ − t ) is the Heaviside-step function. From this
expression, we can identify the gradients for both L2 and H 1.
A similar expression for the filter gradient was reported in
Ref. [50]. With the same arguments as in Eq. (A14), the H 1

gradient is given as

d2

dt2
[∇Ĵ (u)] = − γ v̇(T )h(T − t )

+
∫ T

t

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂v

∣∣∣∣ψ
〉
+ γ v̈

)
h(t ′ − t )dt ′.

(A20)

This is the expression given in the main text.

3. Calculation of GROUP gradients

Here we give a brief deviation of the GROUP gradient
expression presented in the main text. As discussed in the
main text, in GROUP, the control is expressed as the linear
combination

u(t ) = u0(t ) + S(t )
M∑

n=1

cnfn(t ), (A21)

where the fn(t ) are smooth functions. Here the optimization
is over the expansion coefficients cn’s. The partial derivative
with respect to one of these coefficients can be found using the
chain rule for variational derivatives,

∂Ĵ (c)

∂cn

= DS(t )fn(t )Ĵ (u)

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉
+ γ ü

)
S(t )fn(t )dt, (A22)
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where we have simply reused the result from Eq. (A9) and
replaced δu(t ) with S(t )fn(t ). There is no contribution from
the boundary terms in the regularization since S(0) = S(T ) =
0. The chain rule also allows us to take the filter function into
account since we can replace δu(t ) with S(t )fn(t ) in Eq. (A18),

∂Ĵ (v)

∂cn

= −
∫ T

0

(
Re

〈
χ

∣∣∣∣∂Ĥ

∂v

∣∣∣∣ψ
〉
+ γ v̈

)
(h ∗ Sfn)(t )dt

+ γ v̇(T )(h ∗ Sfn)(T ). (A23)

The expression inside the bracket is evaluated along the
distorted control v(t ).

4. GOAT

In Refs. [33,54], it was proposed to calculate the gradient
in a reduced basis ∂Ĵ (c)/∂cn using another method named
gradient optimization of analytic controls (GOAT), which we
briefly discuss here. Ignoring the regularization in Eq. (3), the
derivative of the cost is

∂Ĵ

∂cn

= −Re

〈
ψt

∣∣∣∣∂ψ

∂ci

(T )

〉
. (A24)

In Ref. [33], the derivative of the state is directly computed
from the equations of motion, which gives

i∂t

(
ψ

∂cn
ψ

)
=

(
H + β|ψ |2 0

∂cn
H + βψ∂cn

ψ∗ H + 2β|ψ |2
)(

ψ

∂cn
ψ

)
.

(A25)

This is the straightforward extension of the method from
Ref. [33] to the nonlinear dynamics of the GPE, and for β = 0
we obtain the original result. In order to compute the derivative
in a basis with size M = 60, it would then be necessary to
compute ∂c1ψ, ∂c2ψ, . . . , ∂c60ψ using the relation above. As
we discussed in the main text, M = 60 is numerically found to
be the optimal basis size. This can be done by constructing one
huge matrix of size [(M + 1)d] × (2d ), where d is the number
of grid points used when discretizing the GPE. An alternative
is to calculate 60 independent solutions of Eq. (A25), which
could be done in parallel. Compared with the expression in
Eq. (16) that only requires integrating two equations of motion,
calculating the gradient using GOAT is much more demanding.
Nevertheless, the GOAT approach potentially offers a higher
numerical accuracy in the gradients since the accuracy of
Eq. (16) is limited by the error from discretizing the time
evolution. This is an advantage when optimizing for very low
errors (1 − F � 10−9) as needed for some error-correction
protocols in quantum computing [33]. Very low infidelities
below 10−4 are not required in the condensate driving control
problem, so calculating the derivative using the more expensive
GOAT method would most likely not be an advantage. A fair
comparison between these two methods for calculating the
gradient would require studying a wider class of problems
and discussing other alternatives for calculating high-accuracy
gradients, which is beyond the scope of this paper.

5. Krotov’s method

As discussed in the main text, Krotov’s method is an
alternative to the Lagrange multiplier approach for deriving

optimal control algorithms [29,49]. Here we briefly present
Krotov’s method as described in Refs. [28,29,53]. We do
not include the regularization term in Krotov so the cost
functional becomes JT = [1 − |〈ψt |ψ (T )〉|2]/2. In Krotov’s
method, the cost functional is rewritten so the GPE appears
explicitly. This is done by adding the vanishing quantity 0 =
φ(T ) − φ(0) − ∫ T

0
dφ

dt
dt . Here,φ is some arbitrary field, which

we can select freely. In order to present the derivation more
clearly, we write the variational derivatives differently here
and adopt the standard notation that ψ̇ = f (ψ, u) = −iĤNLψ ,
where ĤNL is the GPE Hamiltonian from Eq. (1). This allows
the cost functional to be rewritten as

L = G(ψ (T )) − φ(0) −
∫ T

0
R(ψ, u)dt, (A26)

where

G(ψ (T )) = JT + φ(T ), (A27)

R(ψ, u) = ∂φ

∂t
+ δφ

δψ
f + f ∗ δφ

δψ∗ . (A28)

From the arguments above and the definition of R, it is seen that
L = J , as discussed in Ref. [28]. So minimizing J is equivalent
to minimizing L. In Krotov’s method, it is directly required
that the cost decreases at each iteration J (i+1) � J (i), which is
equivalent to 0 � L(i) − L(i+1) = �1 + �2 + �3, where

�1 = G(ψ (i)(T )) − G(ψ (i+1)(T )), (A29)

�2 =
∫ T

0
R(ψ (i+1), u(i+1)) − R(ψ (i+1), u(i) )dt, (A30)

�3 =
∫ T

0
R(ψ (i+1), u(i) ) − R(ψ (i), u(i) )dt. (A31)

A sufficient condition for a decrease in the cost is that the
�’s are positive. Central in Krotov’s method is the unintuitive
notion that L is maximized with respect to the states at the
current iteration. This implies that any change in the states
caused by selecting a new value of the control for the next
iteration would decrease the value of L [28,29]. If L is maximal
with respect to the states, then the first-order derivatives with
respect to ψ∗ must vanish. These derivatives are

δR

δψ∗ =
(

∂

∂t
+f

δ

δψ
+f ∗ δ

δψ∗

)
δφ

δψ∗ + δφ

δψ

δf

δψ∗ + δf ∗

δψ∗
δφ

δψ∗

= d

dt

δφ

δψ∗ + δφ

δψ

δf

δψ∗ + δf ∗

δψ∗
δφ

δψ∗ , (A32)

and

δG(ψ (T ))
δψ∗ = δJT

δψ∗ + δφ(T )

δψ∗ . (A33)

From the discussion above, we require that δR/δψ∗|ψ (i),u(i) = 0
and δG/δψ∗|ψ (i),u(i) = 0. This condition gives for R that

d

dt

δφ

δψ∗

∣∣∣∣
ψ (i),u(i)

=
(

iψ
δĤNL

δψ∗
δφ

δψ
− iψ∗ δĤNL

δψ∗
δφ

δψ∗

− iĤNL
δφ

δψ∗

)∣∣∣∣
ψ (i),u(i)

. (A34)
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The requirement that L is maximal with respect to ψ also puts
requirements on the second-order derivatives of R and G. A
good ansatz for φ is a second-order expansion in the states

φ = 1
2 (〈ξ |ψ〉 + 〈ψ |ξ 〉) + 1

4 〈�ψ |σ (t )|�ψ〉, (A35)

where ξ are some expansion coefficients, σ (t ) is an arbitrary
time-dependent function, and�ψ = ψ − ψ (i) is the difference
from the next iteration to the current. If this expression is
inserted into Eqs. (A33) and (A34), one obtains

iξ̇ (i) = [Ĥ (u(i) ) + 2β|ψ (i)|2]ξ (i) − (ψ (i) )2βξ (i)∗, (A36)

ξ (i)(T ) = −|ψt 〉〈ψt |ψ (i)(T )〉. (A37)

Incidentally, these equations are the same as those for χ given
in Eqs. (6) and (9) with an extra phase factor, so we have
ξ = iχ . We now discuss the additional conditions that ensure
that each � is positive.

The boundary condition for ξ [Eq. (A37)] can be combined
with the definition of G [Eq. (A27)], which gives

G(ψ (T )) = 1
2 [1 − 〈ψ (T )|P̂ |ψ (T )〉 + 〈ψ (i)(T )|P̂ |ψ (T )〉
+ 〈ψ (T )|P̂ |ψ (i)(T )〉], (A38)

where P̂ = |ψt 〉〈ψt | is the projection operator for the target
state. From this expression, �1 can be directly rewritten as
2�1 = 〈�ψ |P̂ |�ψ〉, which is always non-negative due to the
positivity of P̂ .

Generally, it is more difficult to ensure that �3 is pos-
itive. Additional conditions on the second-order derivatives
with respect to the states on R are also required, e.g.,
δ2R/δψδψ∗|ψ (i) > 0. This can be ensured with a proper choice
of the σ (t ) function. A number of different strategies for
choosing σ (t ) have been discussed in the literature [28,29,43].
For the moderate values of β discussed here, a good strategy is
simply to select σ (t ) = 0 and forfeit the strict guarantee that
�3 is positive [43]. Note that if β = 0, then R is independent
of ψ and �3 = 0. If �3 = 0, we can just pick σ (t ) = 0 and the
algorithm is guaranteed to decrease the cost at every iteration.

Finally, we discuss how to ensure �2 is positive by a proper
update for the control. Ideally, we seek a control such that the
derivative vanishes (∂R/∂u|u(i+1),ψ (i+1) = 0). This derivative is

∂R

∂u

∣∣∣∣
u(i+1),ψ (i+1)

=Im

[〈
ξ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉

+ σ (t )

4

〈
�ψ

∣∣∣∣∂Ĥ

∂u

∣∣∣∣ψ
〉]∣∣∣∣

u(i+1),ψ (i+1)

. (A39)

It is difficult to ensure that this is zero [29]. Instead of choosing

FIG. 10. The final infidelity after 2500 evaluations for Krotov as
a function of the step size (α) used in Eq. (17). The dotted line and
shaded area show the median, 25%, and 75% quartiles for the 100
initial controls.

the optimal control, we take a small step in the direction of the
gradient,

u(i+1) = u(i) + αS(t )
∂R

∂u

∣∣∣∣
ψ (i+1),u(i)

, (A40)

where α > 0 and S(t ) is the shape function that vanishes for
t = 0 and t = T so the boundary conditions on the control
can be satisfied [Eq. (10)]. If R(ψ (i+1), u(i+1)) in �2 is Taylor
expanded around the last control, we find

�2 ≈
∫ T

0

∂R

∂u

∣∣∣∣
ψ (i+1),u(i)

(u(i+1) − u(i) )dt

=
∫ T

0
αS(t )

(
∂R

∂u

∣∣∣∣
ψ (i+1),u(i)

)2

dt � 0. (A41)

These arguments show that if the control is chosen as in
Eq. (A40), then all three �’s are positive and the cost will
decrease. If Eq. (A40) is rewritten with χ , then Eq. (17) given
in the main text is found.

A proper value of the step size α must also be selected in
order to ensure a fast convergence. The performance of the
Krotov algorithm in condensate driving is shown for different
step sizes in Fig. 10. If the step size is too small, the algorithm
converges slowly due to the small steps in the update. On the
other hand, if the steps are too large, then there is no longer a
guarantee that �3 is positive and the update might not decrease
the cost. The optimal step size is around 0.1.
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