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Classical analog of the Unruh effect
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In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation.
The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the
effect arises from the correlation of noise, regardless of whether this noise is quantum or classical. We demonstrate
this idea with a simple experiment on water waves where we see the first indications of a Planck spectrum in the
correlation energy.
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I. INTRODUCTION

Imagine an observer moving through the quantum vacuum
of empty space. In free space, the quantum vacuum is Lorentz
invariant, so a uniformly moving observer would not see any
effect due to motion, but an accelerated observer would. This
is known as the Unruh effect [1] (or Fulling-Davies-Unruh
effect in full [1–3]). An observer with constant acceleration a

is predicted [1] to perceive empty space as thermal radiation
with Unruh temperature,

kBT = h̄a

2πc
, (1)

where c is the speed of light in vacuum, h̄ Planck’s constant
divided by 2π , and kB Boltzmann’s constant.

The Unruh effect and the closely related Bekenstein-
Hawking radiation of black holes [4,5] has been one of the
most important results of theoretical physics of the second
half of the 20th century, hinting of a hidden connection between
three vastly different areas of physics indicated by the constants
appearing in Eq. (1): general relativity (acceleration a versus
c), quantum mechanics (h̄), and thermodynamics (kB). It has
been the benchmark for theories attempting to unify these areas
ever since.

Yet there has been no experimental evidence for the Unruh
effect. The reason becomes evident if one puts numbers
into Unruh’s formula: With h̄ ≈ 10−34Js and c ≈ 3 × 108 m/s
one needs an acceleration of about 1023 m/s2 to reach room
temperature. Three avenues [6] have been suggested for getting
closer to an observation of Unruh radiation: (i) strong-field
acceleration such as in laser plasmas, wake fields, or strongly
accelerated electrons, (ii) cavity QED, and (iii) particle accel-
erators; none have been successful so far.

Here we propose and experimentally demonstrate a clas-
sical analog of the Unruh effect, where h̄ is replaced by the
strength of classical noise and c by the speed of the waves
involved in the effect. In our case (Fig. 1) these are water waves
with c of about 0.2m/s. In this way, the Unruh temperature
of Eq. (1) is boosted such that the Unruh effect becomes
observable. Furthermore, we have solved some fundamental
challenges all Unruh measurements face: how to perform

measurements of the Unruh spectrum in confined, finite space
and in finite time.

Analogs [7] of the Unruh effect have been proposed before:
the use of impurities in Bose-Einstein condensates as accel-
erated particle detectors [8] or of graphene [9] folded into a
Beltrami trumpet [10] that corresponds to an accelerate space.
It was also suggested [11] to employ a quantum simulator
made of cold atoms in an optical lattice to generate a synthetic
Unruh effect in arbitrary dimensions [12]. So far, none of these
ideas, exciting as they are, were experimentally demonstrated.
Connections between the Unruh effect and classical physics
have also been pointed out before [13–16], but not the simple
connection we found.

One advantage of our scheme is its simplicity. Figure 1
illustrates the principal idea; the actual experiment is modified
and described in Sec. III. Imagine a container filled with
water subjected to white noise. The resulting ripples on the
water surface are scanned with a movable laser beam, while
a camera is taking a video of the height of the illuminated
spot [17,18]. The moving spot plays the role of the moving
detector; the water ripples represent the vacuum noise. The
spot should move along the space–time trajectory (Fig. 2) of
an observer with constant relativistic acceleration where c is
replaced by the speed of the water waves. The varying height
of the water ripples are recorded along the trajectory for each
run, and the experiment is repeated many times to get reliable
statistics.

Note that the combination of laser spot and video camera
acts like an amplitude detector, whereas Unruh [1] considered
a particle detector. However, an amplitude detector can, in
principle, replace a particle detector: The particle-number
distribution is tomographically obtainable from amplitude
measurements [19,20]. Note also that in classical physics the
interaction between the detector and the detected physical
object can be made arbitrarily small, in contrast to quantum
physics [19]. It is therefore sufficient to record the ripples
on the surface, but not to interact with them. So instead of
scanning the waves with a laser beam one could simply take a
video of the entire surface and then postselect the data along
the space-time trajectory (Fig. 2). This is what we have done
in our experiment.
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FIG. 1. Principal idea. A container is filled with water subject to
noise creating ripples on the water surface. (Top) A movable mirror
guides a laser beam over the water surface illuminating a sharp spot
recorded by a video camera. (Bottom) Video of the water surface and
space-time diagram of the illuminated spot following the trajectory
of the accelerated observer (Fig. 2).

Note that the space-time trajectory (Fig. 2) must be pro-
cessed with respect to the proper time [21] of the accelerated
observer. Due to relativistic time dilatation [21] this time ticks
exponentially slow when the observer moves with a speed close
to c. In order to perform the spectral analysis for the Planck
spectrum with Unruh temperature, sufficient proper time is
required, during which the observer traverses exponentially
large distances in an exponentially large laboratory time. These
challenges are universal to all observations of the Unruh effect,
but have not been met so far. We have confined the waves in
a container and recorded the trajectory between two nodes
of standing waves that acts as two mirrors. Taking mirror
images of the space-time trajectory saves exponentially large
laboratory space. For reducing the measurement time to the
absolute minimum we have developed a form of Fourier anal-
ysis (Appendix B) where we directly read off the correlations
in the Unruh effect that give the Planck spectrum.

These correlations are modified in an interesting way by the
mirrors. In free space, an accelerated observer gets quantum-
entangled with a partner if such a partner moves on the exact
mirror image of the observer’s trajectory [22,23]. Whenever

FIG. 2. Space-time diagram. The accelerated observer follows a
hyperbola (curve) in space time. The observer comes in from ∞ with
asymptotically −c, gets slower due to the acceleration in positive
direction until coming to rest for a fleeting moment at z = ξ , and
changing direction. Then the observer gains speed, asymptotically
approaching +c at ∞. The dotted lines indicate the causal cones
straddled by the accelerated observer. The trajectory obeys Rindler’s
formula, Eq. (2), for constant ξ .

the first observer records the click of a particle detector, so
does the partner (assuming perfect detection efficiency). If the
two paired observers use amplitude detectors, they record the
two-mode squeezing [23] of Gaussian noise (Appendix A). In
our case (Fig. 1) the boundary of the container acts like a mirror
reflecting a hypothetical partner back onto the trajectory of the
observer, which turns out to create single-mode squeezing of
noise [23], an effect we have clearly observed experimentally.

Here, the noise for the real part of the Fourier components
of the observed amplitudes is reduced, while the noise for the
imaginary part is enhanced. The total excess noise follows a
Planck spectrum with Unruh temperature [Eq. (1)]. It has been
noticed before [24] that a mirror does not affect the thermal
spectrum of the quantum Unruh effect, which was perceived as
a paradox, because the mirror prevents the accelerated observer
from getting entangled with unobserved parts of the quantum
field. Where else would the excess entropy come from? In this
paper we have found and demonstrated a mechanism for the
accumulation of noise: single-mode squeezing.

Our findings suggest that at the heart of the Unruh effect
lies the correlation of wave noise, regardless whether these
waves are quantum or classical. Figure 1 (bottom) illustrates
this idea. The figure shows the space-time diagram of water
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waves subject to noise. Although the wave amplitudes are
random in space, they are organized in space time: One clearly
sees the causal cones of wave propagation, in addition to the
reflections at the boundaries. This organization of wave noise
in space and time generates the correlations in the Unruh effect
that appear to a single observer as excess thermal energy with
Unruh temperature [Eq. (1)].

II. THEORY

A. Uniform acceleration

Let us begin with a miniature review on accelerated ob-
servers for introducing the notation and for keeping the paper
as self-contained as possible. Figure 2 shows the space-time
diagram of the accelerated observer with position z at time t ;
the observer follows a hyperbola parametrized in terms of the
Rindler coordinates [23,25] ξ and η as

z = ξ cosh η, ct = ξ sinh η, (2)

with constant ξ , and c being the speed of the waves. In the
following we prove that the Rindler trajectory of Eq. (2) indeed
describes constant acceleration [26]. Consider the effect of a
Lorentz transformation to a frame moving with velocity u.
Lorentz transformations are the hyperbolic rotations [21] ct =
ct ′ cosh χ + z′ sinh χ , z = z′ cosh χ + ct ′ sinh χ with

tanh χ = u

c
. (3)

Note that we replace c by the speed of the waves as before.
We see from Eq. (2) that the Lorentz transformation leaves
ξ invariant, but shifts the parameter η along the Rindler
trajectory:

η = η′ + χ. (4)

The entire Rindler trajectory can be drawn from some initial η′
by a continuous succession of Lorentz boosts at uniform rate,
i.e., by uniform acceleration. This proves with minimal tech-
nical effort that the Rindler trajectory is indeed the trajectory
of constant acceleration.

It remains to find the physical meaning of the parameters
ξ and η, and to calculate the value of the acceleration. We see
from Eq. (2) and Fig. 2 that ξ describes the stopping distance of
the trajectory—the point when the observer reaches a moment
of rest. For finding the meaning of η, we express the Minkowski
metric ds2 = c2dt2 − dz2 in Rindler coordinates (2) and get
ds2 = ξ 2dη2 − dξ 2. The metric s divided by c gives the proper
time τ . Since on the Rindler trajectory ξ is constant, dξ = 0,
and so we obtain

τ = ξ

c
η. (5)

The parameter η is thus proportional to the proper time τ as
perceived by the accelerated observer. The acceleration is given
by the derivative of the boost velocity from one frame to the
next with respect to the time in the co–moving frame, i.e., with
respect to proper time:

a = du

dτ

∣∣∣∣
u=0

= c
dχ

dτ
= c

dη

dτ
= c2

ξ
, (6)

FIG. 3. Mirrors. Two reflecting boundaries or nodes, acting as
mirrors, confine the waves between 0 and L. In this case, instead
of tracing the full Rindler trajectory (Fig. 2) it is sufficient to scan
its mirror images with the appropriate signs indicated. The pulsation
along the space-time trajectory indicates the changing measure of time
experienced by the accelerated observer. As time flows exponentially
slowly for velocities approaching c, an exponentially large laboratory
would be required to trace a sufficiently long trajectory, were it not
for the mirrors.

using Eqs. (3)–(5). The acceleration is inversely proportional
to the stopping distance ξ , as one might expect. We have thus
proved that the Rindler trajectory describes uniform accelera-
tion and derived the relationship of the Rindler parameters to
the value of the acceleration.

B. Modes and noise

In our experiment, c is replaced by the speed of the water
waves. We made another simplification that makes the experi-
ment feasible (but is not essential to the classical analog of the
Unruh effect—see Appendix A). The water channel cannot
be infinitely extended, but shall have reflecting boundaries
or nodes that act as mirrors for water waves (Fig. 3). The
mirror on the left is placed at the origin (z = 0) of the Rindler
frame—at the origin of the causal cone the accelerated observer
straddles; the mirror at the right (z = L) is less important in
principle, but very important in practice: As the two mirrors
reflect the waves, one does not need to trace the entire Rindler
trajectory, but only its reflections in the mirrors (Fig. 3).
Since z grows exponentially with η, the pair of mirrors saves
exponentially large laboratory space.
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The amplitude A of the water surface can be understood as
a superposition of modes Ak with coefficients αk (assuming
linear wave propagation):

A =
∫ ∞

0
(αkAk + α∗

kA
∗
k ) dk. (7)

The mode coefficients αk encode the physical state of the wave,
including their noise. The coefficients are complex numbers
written in terms of the quadratures q and p [23] as

α = 1√
2

(q + ip). (8)

We assume Gaussian noise of uniform strength I for the
quadratures such that the averages 〈q〉, 〈p〉, and 〈qp〉 vanish,
and

〈q1q2〉 = 〈p1p2〉 = I

2
δ(k1 − k2). (9)

For defining the strength of the noise we need to normalize the
modes according to a certain time-invariant scale. For this we
use the scalar product,

(A1, A2) = i

c

∫ (
A∗

1
∂A2

∂t
− A2

∂A∗
1

∂t

)
dz, (10)

that is invariant in time for modes satisfying the wave equation.
The left mirror enforces the boundary condition Ak = 0 at z =
0 and thus selects from the plane waves with wave numbers k

the superposition,

Ak = A sin(kz) exp(−ikct ). (11)

These modes are normalized to δ(k1 − k2) according to the
scalar product of Eq. (10) for

A = 1√
πk

. (12)

The right mirror at z = L imposes

k = m
π

L
. (13)

With this set of wave numbers the amplitude A would, mathe-
matically, be a periodic function in space, A(z + 2L) = A(z),
and, as A(−z) = −A(z), we have A(z + L) = −A(L − z).
This means that instead of scanning the entire trajectory of the
accelerated observer, we only need to scan its reflections with
the appropriate signs (Fig. 3).

C. Measured quantity

In the following we ignore the auxiliary right mirror (assum-
ing a sufficiently dense set of modes). Suppose that a statistical
ensemble of many videos of the waves are taken. In the original
Unruh effect [1], a Planck spectrum with the temperature of
Eq. (1) is predicted for the accelerated observer. In order to get
information about the spectrum, we need to Fourier transform
the recorded wave amplitudes along the Rindler trajectories
of Eq. (2) and for the proper time as seen by the accelerated
observer, Eq. (5), i.e. with respect to η:

Ã =
∫ +∞

−∞
A eiνη dη . (14)

This is the experimental quantity of interest we need to analyze
and compare with the Unruh effect [1–3].

As the amplitude A is the superposition of modes Ak

according to Eq. (7), we focus on one arbitrary mode, Eq. (11),
and express it in the Rindler coordinates of Eq. (2):

Ak = A
2i

[exp(ikξe−η ) − exp(−ikξeη )]. (15)

Consider either of the two plane waves that constitute Ak

[Fig. 4(a)] [26]. We obtain for the Fourier transform,

Ã± =
∫ +∞

−∞
exp(±ikξe∓η + iνη)dη (16)

= ∓(∓ikξ )±iν

∫ ±i∞

0
e−xx∓iν−1dx

= −(kξ )±iνeπν/2 �(∓iν), (17)

where we substituted x = ∓ikξ e∓η in the first step and
deformed the integration contour to the real axis in the second
step, using there also the definition of the gamma function [27]
and (∓i)±iν = eπν/2. Now, turn to the Fourier integral of the
complex conjugate plane wave:

Ã∗± =
∫ +∞

−∞
exp(∓ikξe∓η + iνη)dη. (18)

Substituting x = ±ikξ e∓η and using (±i)±iν = e−πν/2 in this
case, one obtains the remarkable relation [28],

Ã∗± = e−πνÃ±. (19)

The factor e−πν is exponential in ν and independent of the
mode index, which turns out to be the mathematical key to the
thermality and universality of the Unruh effect.

Having obtained the results of Eqs. (17) and (19) for running
plane waves [26], we turn to the standing waves of Eq. (15)—
our modes [Fig. 4(b)]. We get for their Fourier transforms,

Ãk = −A eπν/2Im[(kξ )iν�(−iν)]

= −eπν/2 sin(ν ln kξ − φ)√
kν sinh νπ

. (20)

In the last step we have used Eq. (12) forA and the relationship
|�(iν)|2 = π/(ν sinh πν) for the magnitude of the gamma
function [27]; φ abbreviates the phase arg �(iν) [29]. For the
Fourier transforms of the complex conjugate modes we have
as before:

Ã∗
k = e−πνÃk. (21)

We substitute Eqs. (20) and (21) into the mode expansion,
Eq. (7), of the Fourier integral, Eq. (14), and arrive at the
expression,

Ã =
∫ ∞

0

sin(φ − ν ln kξ )√
kν sinh νπ

(αke
πν/2 + α∗

k e
−πν/2) dk. (22)

D. Squeezing and Planck spectrum

Let us analyze the quantity of interest Ã. It is wise to
combine the αk in Eq. (22) in the total amplitude,

α =
∫ ∞

0

sin(φ − ν ln kξ )√
πk

αk dk. (23)
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FIG. 4. Plane waves. (a) The accelerated observer (Fig. 2) traces
a single running plane wave; on the side panel the real part (solid) and
imaginary part (dotted) of the signal are plotted as functions of η. One
sees exponentially rapid oscillations for η 
 −1 and an exponential
freeze for η � 1. (b) The observer traces a standing wave. The real
part (solid) is an even function in η, the imaginary part (dotted) is odd
in η, both oscillate exponentially for |η| � 1.

Given that the individual mode amplitudes αk represent Gaus-
sian noise, the total amplitude α is Gaussian as well. Given
the only nonvanishing second moments of Eq. (9) for the
individual quadratures, the quadratures of the total amplitude
must fluctuate with the same strength [30]:

〈q(ν1)q(ν2)〉 = 〈p(ν1)p(ν2)〉 = I

2
δ(ν1 − ν2). (24)

Gaussian noise is completely characterized by the first and sec-
ond moments, so the total mode amplitude α represents exactly
the same noise as each of the individual mode amplitudes.

The amplitude α describes the total noise incident in one
Fourier component of the detected signal, the total incident
noise, but this is not the noise detected by the moving observer.
To determine the detected noise we represent the exponential
factor e−πν as

e−πν = tanh ζ. (25)

We express the Fourier transformed amplitude along the
Rindler trajectory, Eq. (22), in terms of the total noise am-
plitude, Eq. (23), and its quadratures, Eq. (8), and arrive at the
compact expressions,

Ã =
√

2

ν
(α cosh ζ + α∗ sinh ζ )

= 1√
ν

(q eζ + ip e−ζ ). (26)

We see that the detected noise is squeezed—the noise in
the p quadrature is reduced at the expense of the noise in
the q quadrature [23]. The squeezing parameter �(ReÃ)/
�(ImÃ) = e2ζ we easily obtain solving Eq. (25) for e2ζ :

�(ReÃ)

�(ImÃ)
= coth

πν

2
. (27)

Note that although the detected noise is reduced in ImÃ, the
total noise has grown:

〈Ã(ν1)Ã∗(ν2)〉 = I

2ν
(e2ζ + e−2ζ )δ(ν1 − ν2)

= 2

ν
I

(
1

2
+ sinh2 ζ

)
δ(ν1 − ν2). (28)

Here the 1/2 represents the incident noise—the equivalent
of the vacuum noise, while the sinh2 ζ term accounts for
the additional fluctuations perceived in total by the moving
observer. We denote sinh2 ζ by n and obtain from Eq. (25),

n = 1

e2πν − 1
. (29)

The Fourier component ν to the dimensionless Rindler param-
eter η is proportional to the frequency ω with respect to the
proper time τ of the moving observer. We get from Eqs. (5)
and (6),

ν = ξ

c
ω = c

a
ω. (30)

Reading 2πν in Eq. (29) as h̄ω/kBT we see that the energy of
the extra noise n follows a Planck distribution; using Eq. (30)
we realize that its temperature T matches exactly the Unruh
temperature of Eq. (1).

Our water-wave analog exactly reproduces the Unruh effect
for the total fluctuations; the squeezing is due to the mirror.
Without the mirror the signal along the Rindler trajectory
would be correlated to the signal along the mirror image of
the trajectory. The mirror projects these correlations into the
Fourier quadratures of a single trajectory; two-mode squeezing
[23] of noise turns into single-mode squeezing [23]. Our analog
shows the essence of the correlations in the Unruh effect [22]
with an interesting twist.
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III. EXPERIMENT

A. Simplifications

We performed an experiment to test whether these ideas are
robust under real laboratory conditions. For this, we simplified
our scheme (Fig. 1) even further. Instead of taking the video of
the height of the water surface at a moving spot representing the
accelerated observer on a Rindler trajectory (Fig. 2), we took a
video of the entire surface evolving in time. We then analyzed
a posteriori the measured surface along Rindler trajectories,
described by Eq. (2), varying ξ and hence, according to Eq. (6),
the acceleration a.

We also did not apply white noise to the water, but rather
created a standing wave through Faraday instability [31] by
oscillating vertically the container. Such Faraday waves behave
like laser light—they have stable average amplitudes due to the
balance of gain and loss, but carry some amplitude noise. We
randomized the phase by randomizing the initial time of the
trajectories in the data analysis, for having a complete analog to
laser light. With this, we studied the stimulated Unruh effect
similar to the experiments [17] on the stimulated Hawking
effect in water. The stimulated effect shares the characteristic
features of the Unruh effect—the quadrature squeezing ac-
cording to the Planck spectrum with the correct temperature
[Eq. (1)]. This type of experiment has the advantage of avoiding
dispersion—the wavelength dependance of c, because only
one wavelength is used. Without dispersion, c is always well
defined and can therefore be used without restriction as the
basis for the Rindler trajectories of Eq. (2).

B. Experimental details

The details of the experiment are as follows. A standing
wave field was created by exciting the Faraday instability
[31] on the surface of a bath of plain tap water. The bath
was vertically oscillated at a frequency of 19 Hz with an
amplitude just above the instability threshold, giving rise to
waves with a frequency of 9.5 Hz and a wavelength of 24 mm.
The rectangular shape of the water cavity (250 mm × 55 mm)
ensured that an approximately one-dimensional standing wave
formed along the length of the container. The profile of the
water surface was measured by tracking the optical distortions
of a striped floor pattern (seen through the liquid) using a digital
video camera (at 500 frames per second) and basic image
processing. The resulting displacement field is proportional to
the local slope of the water surface, which was numerically in-
tegrated to yield the height field [32]. The integration constant
for each frame was determined from the conservation of mass.
Data was taken for 1400 s. Figure 5 shows the standing-wave
pattern for the first 100 cycles. The figure also shows the
gradual decline of the average amplitude due to slow variations
of the Faraday instability threshold; we corrected for this
systematic decline in our data analysis.

C. Experimental results

Figure 6 shows the results of the data analysis obtained
with the method described in Appendix B: half-odd Fourier
transformation. We selected from the 1400 s of data 131
disjoined runs with 100 cycles each, choosing a random initial
phase for each run, and correcting for the systematic decline in

FIG. 5. Waves produced through Faraday instability. (Top) Mea-
sured wave amplitudes A in arbitrary units along z in units of
wavelength for the first 100 cycles of wave propagation. The wave
pattern continues to the left and right of the figure, but with de-
creasing amplitude. We selected two nodes of the standing waves
as our mirrors (dashed lines). One sees that the waves are not
perfectly harmonic—Fourier analysis (not shown here) reveals that
anharmonicities contribute to about 10% of the amplitude. (Bottom)
Decline of the average amplitude Ā over the runs of the experiment.
Each run comprises 100 cycles with randomized initial phase in which
the accelerated observer traverses a Rindler trajectory (Fig. 2). The
quantity Ā we obtain for each run as the root-mean square of the entire
wave amplitude between the mirrors with respect to space and time.
We corrected for this decline in our data analysis.

average amplitude (bottom of Fig. 5). Each run represents an
individual element of a statistical ensemble with random phase
(and with some amplitude noise). We took a Rindler trajectory
(Fig. 2) with fixed parameter ξ according to Eq. (2) and η

running from −2π to +2π . When necessary, we mirrored the
space-time trajectory (Fig. 3). Having chosen the trajectory,
we calculated, for each run, the Fourier coefficients,

Ã =
∫ +2π

−2π

A eiνη dη, (31)

for the first three half-odd Fourier numbers ν according
to Eq. (B9): ν ∈ {1/4, 3/4, 5/4}. Figure 6 displays the real
and imaginary part of the half-odd Fourier coefficients and
compares them with theory—the squeezed noise of a wave with
fixed amplitude and random phase, with squeezing parameter
given by Eq. (27). One sees that the experiment agrees rea-
sonably well with theory for the first two Fourier coefficients,
despite the imperfections of the experiment, in particular the
anharmonic contributions to the waves (Fig. 5).

We quantified the squeezing energy and its spectrum as
follows. We fitted centered ellipses to the data points of Fig. 6
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FIG. 6. Experimental results. The dots show the real and imagi-
nary half-odd Fourier coefficients in the units of A (Fig. 5) for each run
of the experimental data: black, ν = 1/4; gray, ν = 3/4; light gray,
ν = 5/4; Q = ReÃ, P = ImÃ. The Fourier coefficients are taken
according to Eq. (31) along the space-time trajectory of an accelerated
observer (Fig. 2). The ellipses represent the theory, assuming the
squeezing of noise with fixed amplitude (matched with the data) and
random phase; the squeezing parameter is given by Eq. (27).

by fitting a linear function Q2 = �Q2 − (�Q/�P )2P 2 to the
points, with Q = ReÃ and P = ImÃ. The linear coefficient of
the fit directly gives �Q/�P = eζ , from which one obtains
n = sinh2 ζ . Note that in this way we extract the excess noise
n from the squeezing and not directly from the amplitude
fluctuations. We need to do this, because in our case—the case
of the stimulated Unruh effect—the amplitude is dominated
by the coherent amplitude of the waves we are probing. Our
results are shown in Fig. 7 and compared with the Planck curve
of Eq. (29).

From the statistical errors of the coefficients of the linear fit
we determined the statistical errors of (�Q/�P )2. We get 0.15
for ν = 1/4 and 0.03 for ν = 3/4. These errors are too small to
explain the difference between the experimental values, 5.83
and 1.34, and the theoretical ones, 7.16 and 1.46, which shows

FIG. 7. Planck curve. (Dots) Squeezing energy and excess noise
n calculated from the data (Fig. 6) for ν = 1/4 and ν = 3/4. To
obtain the two dots shown here, centered ellipses are fitted to the
two corresponding data sets of Fig. 6. From the ellipses the squeezing
energy is calculated. (Curve) Theoretical prediction of a Planck curve
according to Eq. (29). The experimental points lie remarkably close
to the theoretical curve, despite clear deviations of the waves from
harmonicity (Fig. 5), which illustrates the robustness of the Unruh
effect against experimental imperfections.

that there are systematic errors in the data, most probably due
to anharmonicities (Fig. 5). Nevertheless, the agreement with
theory in the squeezing ellipses (Fig. 6) and in the Planck curve
(Fig. 7) is still remarkable.

We varied ξ and did not see much principal variation in
the results, except that the agreement with theory gets better
the larger ξ is—the smaller the acceleration a is—according to
Eq. (6). The reason is probably the following: For smaller a the
space-time trajectory spends more proper time away from the
node at z = 0 where contributions from anharmonicity and
other noise matter most. Figure 6 shows our results for the
maximal ξ we can accommodate for −2π � η � +2π within
100 cycles of wave oscillations.

The third Fourier coefficient reveals the limits of the
present experiment; there the subtle squeezing described by
�(ReÃ)/�(ImÃ) = coth(πν/2) ≈ 1.04 for ν = 5/4 can no
longer be resolved. Nevertheless, the squeezing energies for
the first two coefficients establish the first two points anywhere
near the Planck curve of the Unruh effect ever recorded (Fig. 7).

IV. COMMENTS

We have developed a theory that has revealed the classical
root of the Unruh effect as the correlation of noise in space and
time. We have demonstrated aspects of this theory in a simple
laboratory experiment where we observed the squeezing of
noise (Fig. 6). The excess noise of the squeezing lies near
the ideal Planck curve of the Unruh effect for the first two
measurable Fourier coefficients (Fig. 7). The experiment so
far proves that the effect is robust, even in the presence of
experimental imperfections (Fig. 5).

Improving the experiment significantly probably requires
a different physical system that avoids anharmonicities and
dispersion, such as waves on mechanical strings. With such
a system one could probe the spontaneous Unruh effect as
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described in our theory, and not only the stimulated effect. In
such an experiment, one could see the Planck spectrum of the
Unruh effect directly in the excess noise, and not infer it from
the squeezing, as we have done in the present paper.

We note that the Unruh effect emerges in the correlations
of wave noise; these correlations do exist regardless of the
observer. The noise might be quantum or classical; it gets
correlated due to wave propagation [Fig. 1(a)]. The observer
is able to access those correlations on accelerated trajectories
(Fig. 2) where different accelerations correspond to different
effective temperatures according to Unruh’s formula [Eq. (1)].
It is therefore sufficient to record the entire noise field and
then to analyze the data, following the space-time trajectories
of accelerated observers, as we did in our experiment.

Apart from the first experimental demonstration of a stim-
ulated Unruh effect, our classical analog may also stimulate
further discussions on some of the more speculative facets of
the effect. One may view the Unruh effect as a manifestation
of the quantum vacuum as a physical substance: The quantum
vacuum appears as the modern ether. It is Lorentz invariant—
in agreement with relativity—but not invariant under accel-
erations. One may view this as a manifestation of inertia,
distinguishing between uniform, inertial motion, and accel-
erated, noninertial motion. In resisting acceleration, the Unruh
effect may explain deviations from acceleration that mimic
the behavior of hypothetical dark matter [33]. Our classical
analog may show how to generalize this idea to trajectories of
nonuniform accelerations. Here a straightforward extension of
the quantum result is difficult, but our classical concepts still
hold.

The classical analog of the Unruh effect may also serve
in Jacobson’s thermodynamic derivation [34] of Einstein’s
equations of gravity [21]. Like Bekenstein’s black-hole ther-
modynamics [4] that assigns an entropy to the area of the event
horizon of the black hole with the Hawking temperature [5] as
thermodynamic temperature, Jacobson assigned an entropy to
any causal horizon with the Unruh temperature as thermody-
namic temperature, and derived [34] from these assumptions
Einstein’s field equations [21]. There both the entropy and the
temperature carry h̄’s that cancel each other. Our findings imply
that the entire argument can be made classical.

Note that Jacobson’s thermodynamic derivation [34] es-
tablishes an alternative to the usual derivation of Einstein’s
equations from the principle of least action [21]. In our opinion
[35] the action principle gives the strongest argument in favor
of the existence of a quantum theory of gravity, because action
principles normally arise due to the quantum interference of
paths or field configurations. Jacobson’s derivation, combined
with the classical Unruh effect, opens another, equally credible
route to Einstein’s classical theory of gravity [21] avoiding the
action principle altogether. On quantum gravity, it thus puts a
question mark.
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APPENDIX A: FREE WAVES

In this Appendix we consider the ideal case of free waves
of Gaussian noise not constrained by boundaries (mirrors).
We will establish the complete analogy to the Unruh effect
and shall see the similarities and differences between the ideal
case and the realistic case discussed in the main body of this
paper.

We assume, as usual, that the wave field A is given by a
superposition of modes,

A =
∫ ∞

0

∑
s=±

(αskAsk + α∗
skA

∗
sk ) dk, (A1)

but now these modes are free plane waves where “+” refers to
right-moving and “−” to left-moving waves:

A±k = A exp(±ikz − kct ) (A2)

= A exp(±ikξ e∓η ), (A3)

in Rindler coordinates, Eq. (2). Requiring the modes to be
normalized to δ(k1 − k2) with respect to the scalar product of
Eq. (10) we obtain from Eq. (A2),

A = 1√
4πk

. (A4)

For the mode coefficients αsk we assume Gaussian noise of
strength I such that

〈αs1k1α
∗
s2k2

〉 = I

2
δs1s2 δ(k1 − k2). (A5)

It is easy to see that this Gaussian wave noise is Lorentz
invariant (with the speed of the waves c playing the role of the
speed of light). From the Lorentz transformation Eq. (4) and
Eqs. (A3) and (A4) it follows that if we put

k′ = k e∓χ , α′
±k = e∓χ/2α±k, (A6)

we get exactly the same expressions for the modes and mode
coefficients in terms of the k′ as before for the k, including〈

α′
s1k

′
1
α′∗

s2k
′
2

〉 = I

2
e−sχ δs1s2 δ(e−sχ (k′

1 − k′
2))

= I

2
δs1s2 δ(k′

1 − k′
2). (A7)

This proves the Lorentz invariance of the Gaussian wave
noise. Note that Eq. (A6) describes the Doppler effect for
the frequency ck, and the corresponding change in the noise
amplitudes such that the total noise is invariant. Note also that
the mirror used in the main body of the paper breaks the Lorentz
invariance, because in a moving frame the mirror moves, which
causes differences for both quantum and classical noise.

Consider now the noise as seen by accelerated observers.
Imagine two observers on conjugate Rindler trajectories
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FIG. 8. Space-time diagram of conjugate accelerated observers.
The observer on the right (R) is on a Rindler trajectory with constant
positive ξ as in Fig. 2 and described by Eq. (2). The observer on the
left (L) moves on the conjugate trajectory with −ξ instead of ξ . In
this case the η parameter must run backward for the proper time to be
running forward; see Eq. (5). The two conjugate observers turn out to
be correlated by the wave noise; see Eq. (A9).

(Fig. 8)—on the right side (R) one on the same trajectory as
in Fig. 2 and on the left side (L) another one on the exact
mirror image of the right observer’s trajectory, ξ → −ξ . Note
that for the left observer proper time runs forward when η runs
backward, as we see from Eq. (5) for negative ξ . The quantities
of interest are

ÃR =
∫ +∞

−∞
A(R) e+iνη dη = αR√

ν
,

ÃL =
∫ +∞

−∞
A(L) e−iνη dη = αL√

ν
, (A8)

where R and L indicate the two trajectories taken. Along the
same lines as in Sec. II C we obtain

αR = αr cosh ζ + α∗
l sinh ζ,

αL = αl cosh ζ + α∗
r sinh ζ, (A9)

where ζ is defined by Eq. (25) and

αr = α+r + α−r√
2

, αl = α+l + α−l√
2

, (A10)

with the noise coefficients,

α±r = −e∓iφ

∫ ∞

0

(kξ )±iν

√
2πk

α±k dk ,

α±l = −e±iφ

∫ ∞

0

(kξ )∓iν

√
2πk

α±k dk. (A11)

We get for Gaussian noise in the amplitudes α±k with correla-
tors given by Eq. (A5):

〈α±r (ν1) α∗
±r (ν2)〉 = I

4π

∫ ∞

0
(kξ )±i(ν1−ν2 ) dk

k

= I

2
δ(ν1 − ν2), (A12)

and the same for 〈α±l (ν1) α∗
±l (ν2)〉, while the correlators with

different s or with mixed r and l vanish. This shows that the
α±r and α±l are subject to the same Gaussian noise as the
original mode coefficients α±k with ν playing the role of k. The
Hadamard transform of Eq. (A10) does not change this either.
Hence the heart of the Unruh effect in the Gaussian wave noise
is the two-mode squeezing transformation [23] described by
Eq. (A9).

This is exactly the same transformation as in the quantum
Unruh effect [1,23] and hence it has the same consequences.
The two modes measured by the two accelerated observers
are correlated as in the Einstein-Podolsky-Rosen paradox
[23,36]—the q quadratures are directly correlated while the p

quadratures are anticorrelated. When projected onto one of the
two observer modes the wave noise appears in a thermal state
[23] with Planck spectrum and Unruh temperature [Eq. (1)].
The classical Unruh effect for free waves and the quantum
Unruh effect are in perfect analogy.

APPENDIX B: HALF-ODD FOURIER
TRANSFORMATION

The main difficulty of the data analysis for our—and
probably all other experimental attempts to measure the Unruh
effect—comes from the extreme time dilatation experienced
by the accelerated observer. The laboratory time t along the
Rindler trajectory (2) depends exponentially on the proper time
(5) for large η, as sinh η ∼ eη/2. So in order to resolve the
Planck spectrum, an exponentially large time is required (but
thanks to the mirrors not an exponentially large laboratory
space—Fig. 3). One resolves the Planck spectrum if the
characteristic factor e−πν is resolved between the Fourier-
transformed modes and the Fourier transforms of their complex
conjugates. For achieving this, the resolution �ν must be in
the order of

�ν = 1

2π
. (B1)

We obtain from the time-frequency uncertainty relation,
�ν �η ∼ 1, that �η ∼ 2π , which sets the minimal time
window required for measuring the Planck spectrum.

Suppose a signal along the trajectory of the accelerated ob-
server is detected. One needs to Fourier transform and possibly
filter this signal. We assume that the signal is multiplied with a
filter function F that describes both the finite observation time
and the filtering:

AF = F (η) A(η). (B2)

In the Fourier transform, F appears as the convolution,

ÃF = 1

2π

∫ +∞

−∞
F̃ (μ) Ã(ν − μ) dμ. (B3)
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FIG. 9. Half-odd Fourier analysis. The signal [Fig. 4(b), m = 10,
ξ = 0.001L] was Fourier–transformed in the minimal observation
window η ∈ {−2π, +2π}. The Fourier-transformed signals were
compared for the mode (solid curve) and its complex conjugate
divided by the characteristic exponential e−πν (dotted). One sees
that the two curves only agree, to a very good approximation, at the
half-odd Fourier components (points) of Eq. (B9). For these Fourier
components one can measure with minimal observation time a nearly
perfect Planck spectrum with Unruh temperature [Eq. (1)].

The most efficient way of taking data is without filtering at all:

F (η) = �(η + �η) �(�η − η), (B4)

where F only reflects the finite observation time we put to the
minimal,

�η = 1

�ν
= 2π. (B5)

However, avoiding filtering completely produces a problem:
The Fourier transform of the finite observation window con-
tains long, oscillatory wings:

F̃ = 2 sin(ν/�ν)

ν
. (B6)

Furthermore, according to Eq. (20), each Fourier-transformed
mode has a pole at ν = 0. The convolution of the wings of the
Fourier-transformed filter function with the pole completely
obscures the Planckian relationship of Eq. (21), unless the pole
contribution vanishes (Fig. 9).

Consider a single pole at ν = 0; imagine that Ã in the
convolution (B3) is replaced by the pole. In this case the
convolution integral takes the shape of the Hilbert transform
[37] (Kramers-Kronig relation),

Ref = 1

π

∫ +∞

−∞

Imf (μ)

ν − μ
dμ, (B7)

for complex functions f analytic on the upper half plane. Such
a function is (2/ν) exp(iν/�ν) with the desired imaginary part
(B6) and the real part,

Ref = 2 cos(ν/�ν)

ν
. (B8)

The real part, and hence the convolution of the pole, vanishes
for

ν = 2n + 1

2
π�ν = 2n + 1

4
with n ∈ N. (B9)

For filtering out the pole one should thus use finite Fourier
analysis at half odd integers—just between the usual Fourier
components of periodic functions.
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