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Generalized nonlocality criteria under the correlation symmetry
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The most general class of nonlocality criteria for N -partite d-chotomic systems with k number of measurement
settings is derived under the constraint of measurement symmetries. It is the complete characterization of the
multipartite nonlocality when the correlation is assumed to be symmetric under the choice of measurement
settings. The generalized nonlocality condition is obtained using the correlation functions, which are derived
from Fourier analysis of probability spectrums. It is found that the condition for the local hidden variable model
is violated by multipartite quantum states and general constraints for the quantum violation of the maximally
entangled state has been obtained.
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I. INTRODUCTION

Since John Bell formulated a condition for local realistic
model in bipartite two-level systems [1], generalization of
the theorem to an arbitrary large quantum system, with many
measurement settings, become one of the most challenging
topics in the study of quantum information science [2–13]. The
problem is closely related to the possible characterization of
the large quantum system [3], quantum key distribution scheme
[9], network characterization [14], and entanglement detection
in many-body systems [15–17].

Initially, the generalization of the local hidden variable
(LHV) model to an arbitrary large number of systems was
formulated through the term “all the Bell inequalities” by
Peres about two decades ago [4]. Although the problem has
been challenged by various methods, the full solution of the
problem is not yet obtained until now [5,6]. The problem is
highly nontrivial and is classified as a NP-hard problem. The
complexity is originated from the fact that the formulation en-
tails the exponentially large parameter space with respect to the
probability events. Even though it is an onerous investigation,
the full generalization is quite important as, for instance, it
will provide an important vehicle to investigate the network of
quantum correlations in a macroscopic system as well as the
LHV models of a complex system.

Generalized Bell-type inequality for many-particle system
provides the important benchmark for the nontrivial correlation
among multipartite quantum states. In order to quantify more
general type of multiparty entanglement, family of the
inequalities for multipartite systems with d measurement
outcome has been studied many times and interesting class
of inequalities are obtained through the various investigations
[11]. The main idea in most of the approaches is originated
from Svetlichny’s N -separability condition [7]. They obtained
a set of Bell inequalities up to the limited dimension by
quantifying the multiparty correlation [12]. In spite of
the progress, full generalization of the multipartite Bell
function has not been made yet and it is unclear whether the
generalization is possible through the conventional numerical
approaches using the probability polytope.

The experiment for the nonlocality test with many mea-
surement settings is also an important direction for the Bell test
generalization. There were many known cases that the increas-
ing number of measurements can identify nontrivial entangled
states, otherwise not being possible with two measurement
settings only [18]. The generalization has been made for the
two-dimensional systems and the similar approaches for the
case of the high dimensional system is needed to be made.

Symmetries in the generalized nonlocality test is less stud-
ied in the literatures so far. Although there has been a couple
of efforts to express the condition of nonlocality in terms of
the general set of symmetric correlation, the approaches are
either limited by their scenario [6,13] or limited by additional
assumption such as party-swapping only [19]. The derivations
are not extensive because the generalization of the hidden vari-
able test has been formulated through the probability polytope
without consideration of its structural redundancies in their
nonlocal correlation. Here, we try generic approaches for the
correlation symmetry in the generalized correlation function.
Such symmetries in the nonlocal correlation are possible to
identify from the most generic form of the correlation as

B =
∑

n̄

∑
m̄

fn̄,m̄En1,n2,...(m1,m2, . . .)

=
∑
m̄

∑
ᾱ

gᾱ,m̄p(α1, α2, . . . |m1,m2, . . .), (1)

where m̄ is the shorten notation for the vector indices of mea-
surement settings at each site (m1,m2, . . .). ᾱ and n̄ are their
measurement outcomes (α1, α2, . . .) and the corresponding
high-order correlation indices (n1, n2, . . .), respectively. The
functions f and g are weights of the correlation function E

and probability distribution p, respectively. In particular, g is
denoted as the generation function whose relation with f will
be shown in the following section. More precise definitions of
the functions will also be given in the section. Depending upon
the functional distribution of gᾱ,m̄ with respect to ᾱ and m̄, the
symmetries in the correlation can be found as they indicate the
probability weight for the total correlation.
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Recalling the simplest inequality by Clasuer et al. [2], the
correlation is defined under the symmetric constraints as it is

ECHSH(m1,m2) =
∑

ᾱ

gCHSH
ᾱ,m̄ p(α1, α2|m1,m2),

with gCHSH
ᾱ,m̄ = (−1)α1+α2+m1m2 and αi,mi ∈ {0, 1}. In that

case, the symmetry for the exchange of measurement settings
can be found from the invariance of correlation under the
measurement index exchange m1 ↔ m2 which allows one
to count the same parity measurements with equal weight.
Additionally, there exists party exchange symmetry that the
correlation function is invariant under the outcome index swap.
The invariance is caused from the fact that the combination of
measured values can be arranged in an arbitrary manner as there
is no preferred order of indices for the outcome sequences. In
our derivation of a generalized nonlocality function, similar
symmetric conditions in a generalized form are considered
as we impose relevant constraints in the formulation of the
generalized correlation function E.

In this paper, we provide a method for the analytic con-
struction of the most general correlation for the nonlocality test
of high-dimensional systems under the symmetric constraint.
We also found maximum upper bounds of the correlation for
the local hidden variable model as it is discussed in Sec. II.
Subsequently, it is demonstrated that the well-known inequal-
ities with symmetric condition for the multipartite nonlocality
can be derived from the generic form of the correlation. The
examples are given in Sec. III. Furthermore, we also provide
the condition that the inequalities are violated by maximally
entangled states as the bound can be claimed to be the criteria
for the local realistic model. The condition of the quantum
violation by maximally entangled state has been discussed in
Sec. IV. The technical details for the formulation are presented
in the appendix, Sec. IV, following after the main text.

II. GENERAL CLASS OF BELL’S INEQUALITY

The class of Bell’s inequalities is determined by the three
parameters N , k, and d; N local parties measure their systems
with k possible choices of observables which result in d differ-
ent measurement outcomes, respectively. Once N , k, and d are
determined, we can write conditional probabilities which con-
stitute full information about the system [20]: a set of functions,
which constitute a catalog of full information, take the form of
conditional probabilities p(α1, α2, . . . , αN |m1,m2, . . . , mN )
with 1 � αj � d and 0 � mj � k − 1, where αj is an integer
number indicating the measurement outcome index for a
particular choice of the observable mj . A Bell correlation
function, which is experimentally measurable, is derived from
the one-to-one correspondence between the probabilities and
multipartite high-order correlation functions. With these func-
tions, we can then formulate generalized Bell inequalities as
follows.

Mapping the measurement outcomes to d different values,
the most general correlation function can be written as

En1,n2,...(m1,m2, . . .) =
〈

N∏
j=1

A
nj

j (mj )

〉
, (2)

where 1 � j � N is the site index. We define a shorthand no-
tation En1,n2,...(m1,m2, . . .) := E�n( �m). By mapping the mea-
surement outcomes Aj (mj ) to one of the complex values
among the d root of unity, Aj (mj ) = ωαj (mj ), the correlation
function takes a complex valued number with ω = exp(i2π/d )
and αj ∈ {1, 2, . . . , d}. The function allowing predetermined
values of a measurement, is evaluated by the expectation of the
measured values (outcomes),

E�n( �m) =
d∑

{αj }=1

ω�n·�αp(�α| �m), (3)

where �α := (α1(m1), α2(m2), . . . , αN (mk )). αj (mj ) is deter-
mined by the physical process of the measurement whose full
structure is hidden and they are usually encapsulated in the
form of abstracted variables, conventionally denoted by λ.
Here, we consider the case that the number of outcomes is
symmetric at each party although an equivalent mapping is also
possible for the case of asymmetric measurement outcomes.
If the dimensions of each measurement are asymmetric, the
outcome ranges at each party become different as 1 � αj � dj

as thus for ωj = exp (2πi/dj ). Unless stated otherwise, our
discussion is limited to a symmetric case while the generaliza-
tion to the case of asymmetric measurement settings should be
straightforward.

It is notable that the correlation obtained from the proba-
bilities can be defined differently in general. That is because
the combination of measured values can be arranged in an
arbitrary manner as there is no preferred order of indices
for the outcome sequences. In order to consider the full se-
quences of arbitrary combinations, it is necessary to introduce
extra integer index c for a type of correlation: E�nc

( �m) =∑d
{αj }=1 ω�nc ·�αp(�α| �m) where �nc ≡ (c1n1, c2n2, c3n3, . . .) with

cj ∈ {1,−1}. The subscript c takes an integer value between
1 and 2N as it specifies the type of possible correlations.
Subsequently, it is possible to recover all the spectra of relevant
probabilities p(�α| �m) = 1

dN

∑d
{nj }=1 ω−�nc ·�αE�nc

( �m) where the

total number of distinguishable probabilities are dNkN . The
equality provides the one-to-one correspondence between
probabilities for measurement outcomes and the high-order
correlations.

Without any other constraints, the probability function sat-
isfies (i) positivity p(�α| �m) � 0, ∀αj ,∀mj and (ii) the normal-
ization condition

∑
{αj } p(�α| �m) = 1 as the correlation function

is required to satisfy |E�nc
( �m)| � 1 and E �dc

( �m) = 1 for any

choices of �m with �dc = (c1d, c2d, . . .). Differently from the
previous approaches in the complex valued observable [10,21],
the complete set of distinctive correlations has been identified
with the parity factors {cj } as it generates all the possible
distinctive index matching to the measurement outcomes. The
set of all the possible multiparty correlations then allows us to
derive the Bell inequalities of the most general class including
an arbitrary number of measurement settings.

If we generalize the interdependency of the probabilities
from different measurements, due to incompatibilities, it is
possible to derive a Bell-type inequality in the most general
situation. This is the main result of this work. Using the
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definition, the most general Bell function Gc
N,k,d is given by

Gc
N,k,d :=

d∑
{αj }=1

k−1∑
{mj }=0

gc
�α, �mp(�α| �m)

=
d−1∑
�n=1

f (�nc )

˝
N∏

j=1

⎡
⎣ k−1∑

mj =0

ωcj nj mj /kA
cj nj

j (λ,mj )

⎤
⎦
˛

+ c.c., (4)

where c.c. denotes the complex conjugate. The coefficient gc
�α, �m

is a real function governing the linear sum of the probabilities
and f (�nc ) is a complex weighting function for the correlation.
For the LHV model, the average is taken over the hidden
variable λ for the measurement which determines the value
of the measurement function Aj .

The choice of the functionf (�nc ) ≡ f (c1n1, c2n2, . . .) spec-
ifies the weight of each high-order correlation function in the
sum and is related to the coefficient gc

�α, �m as

gc
�α, �m = 2 Re

[∑
�n

f (�nc )ω�nc ·(�α+ �m/k)

]
. (5)

From its Fourier analysis, it is also possible to show that
the choice of function f (�nc ) generates all the possible com-
binations of the correlations E�nc

( �m). The decomposition of
the generation function is obtained when the full correlations
have been taken into account. Mathematically, it means that∑k−1

mj =0 ωcj nj mj /kA
cj nj

j (λ,mj ) = 0 when nj = d, ∀j .
The decomposition of the correlation into the probabilities

in Eq. (A1) provides the most general correlation as it con-
stitutes “all the Bell inequalities” [4]. The only difference in
this construction from the original formulation is the condition
of homogeneity and the symmetries in the choice of the
measurements. It means that the number of measurements
and the dimension of each party are chosen to be identical.
Additionally, it also means that all the probabilities of the
measurement choices are all equal as the choices are symmet-
rically distributed as to be completely random. In the formu-
lation, the generalized correlation displays two symmetries.
(i) Symmetric distribution of measurement: The weights of
mi th and mj th measurements of party i and j are the same
when mj = mi . (ii) Symmetric under party swapping: When
the order of correlation terms is homogeneous, nj = n∀ nj ,
the Bell function is invariant under any permutation of party
index j .

It can be shown that all the known Bell functions within the
homogeneous condition can be derived as a special case of the
function G in (A3).

For the LHV constraint, the first decomposition in (A1)
using the probabilities is directly linked to the modified version
of the Farkas lemma [22].

In the formulation, it is straightforward that the local
realistic (LR) bound can be obtained by the Farkas vector gc

�α, �m
after it is optimized over all the measurement outcomes as
max�α

[ ∑
�m gc

�α, �m
]
[24]. The application of the Farkas lemma is

explained more detailed in the Appendix A 2. The bound for

the correlation Gc
N,k,d is obtained as

Gc
N,k,d � BLR = max

�α

[∑
�m

gc
�α, �m

]
, (6)

which provides the most general criteria for the probabilities
allowed by the LHV model. Evaluation of the bound requires
the functional optimization over the measured values, and
the analytic evaluation is possible. It can be achieved by
the specification of local parameters under the functional
constraints. The analytical values can be obtained efficiently if
one follows the optimal counting method described explicitly
as it is illustrated in our previous work [23]. The usefulness of
our formalism in the calculation of local bound (6) is discussed
in the appendix section with examples.

The decomposition of the correlation function for possible
local measurements under the LHV model is nonetheless
trivial. It allows quantum characterization of the correlation
when the coefficients gc

�α, �m as well as f (�nc ) are appropriately
determined. In the Bell correlation function (A3), the general
decomposition of measurements with the weighting factor
f (�nc ) is obtained. In the following, we demonstrate the
derivation of known Bell functions through the specification
of gc

�α, �m and f (�nc ). The condition for quantum violation will
follow the analysis.

III. DERIVATION OF VARIOUS INEQUALITIES
FROM THE GENERAL FORM

First of all, we show that the function (A1) reduces to the
Clauser-Horne-Shimony-Holt (CHSH)-Bell inequality [2]. By
taking the generation function gCHSH

�α, �m = (−1)α1+α2+m1m2 , it is
straightforward to show that the left-hand side becomes CHSH
inequality. Through the evaluation of Eq. (6), it is possible to
obtain

GCHSH
2,2,2 � 2,

as it is known as the standard Bell-CHSH inequality. Here, one
can find the Fourier transformed the generating function which
is given as f CHSH

n1,n2
= (1 − i)δn1,1δn2,1/2.

The correlation function becomes the Collins-Gisin-
Linden-Massar-Popescu (CGLMP) function [8] for the (2,2,d)-
class system when the generating function takes the form,

gCGLMP
�α, �m = (−1)m1−m2

d−1∑
k=0

(
1 − 2k

d − 1

)

× δd (α2 − α1 − k − z(m1m2)), (7)

where δd is kroneker delta function in the modulo d

space and z(m1,m2) is a binary function mapping z(0, 0) =
z(1, 1) = z(1, 0) = 0 and z(0, 1) = 1. It results in GCGMLP

2,2,d �
max�α

[∑
�m gCGMLP

�α, �m
] = 2. In that case, the correlation weight-

ing function is given by

f CGMLP
n1,n2

= 1/2

d − 1

d−1∑
n=1

sec

[
nπ

2d

]
ω

n
4 δd

n1=nδ
d
n2=−n, (8)

whose detailed derivation is shown in [24]. The quantum
violation of the LR bound can be found in the original works
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[2,8] and can be recovered in the framework of generalized
correlation formalism in an analytical manner.

It can be demonstrated that the generic formula can be used
to derive the Bell functions for multipartite systems such as
Mermin and Zukowski-Brukner (ZB) functions [3,6].

The Mermin function GM
N,2,2 is obtained by assigning

gM
�α, �m = (−1)

∑
j αj Re[(i)

∑
j mj ] when we have f M (1) = 1/2.

From the form of g�α, �m, the Mermin bound can be found as
GM

N,2,2 � 2(N−1)/2 for odd N and GM
N,2,2 � 2N/2 for even N .

Ultimately, the most general (N,2,2)-class ZB correlation can
be obtained when f ZB(�n) = (1 − i)/2 as

G
c,ZB
N,2,2 =

1∑
{mj }=0

P (m1,m2, . . .)c
m1
1 c

m2
2 . . . E(m1,m2, . . .),

(9)

where the parity function P (m1,m2, . . .) ∈ {−1, 1} takes its
value 1 for [(

∑
j mj ) mod 4] ∈ {0, 1} and −1 for [(

∑
j mj )

mod 4] ∈ {2, 3}. The LR bound of the function can be found
as G

c,ZB
N,2,2 � 2N from the probability coefficient,

gZB
�α, �m = (−1)

∑
j cj αj Re

[
(1 − i)(i)

∑
j cj mj

]
,

through the maximization of
∑

�m g �m,�α over a proper choice
of (α1, α2, . . .) following its derivation in Eq. (A4). A more
general constraint of the Bell theorem for the class of full
correlation can be obtained as one combines G

c,ZB
N,2,2 for all

the possible �c as
∑2N

c=1 |Gc,ZB
N,2,2| � 2N .

For the case of (2, k, 2)-class Bell test scenario, the most
general correlation function has been inspected by Epping
et al. [13]. In that case, the correlation function can take the
form GEKB

2,k,2 = ∑
m1,m2

βm1,m2E(m1,m2) where E(m1,m2) is
the first-order correlation function defined in Eq. (2). The corre-
lation function can be found when βm1,m2 ≡ f (1)ω(m1+m2 )/k +
c.c. such that the coefficient β can be related to the probability
coefficient gEKB

�α, �m as gEKB
�α, �m = (−1)(α1+α2 )βm1,m2 . Thus, the LR

bound of the function is obtained as

GEKB
2,k,2 � max

�α

[∑
�m

(−1)(α1+α2 )βm1,m2

]

= 2|f (1)| max
�α

[∑
�m

cos(πᾱ) cos

(
θf + πm̄

k

)]

= 2|f (1)| cos θf / sin2(π/2k), for 0 � θf � π/2k,

(10)

where ᾱ = α1 + α2, m̄ = m1 + m2, and θf is the phase factor
of the complex functionf (1) asf (1) = |f (1)|eiθf . The second
equation in the formula is obtained after the optimization
through counting the largest cosine terms. Quantum maximum
of G

EKB,Q
2,k,2 is given by the singular value decomposition of the

β matrix, k||β||2 = k2|f (1)|, as argued in [13]. Furthermore, it
can be proved that the violation is optimal compared to the one
with a different number of measurement settings at each site as
k1 and k2 and it can be argued that the symmetric Bell function
is more resilient to experimental noise and inefficiencies than
the asymmetric case.

IV. CONDITION OF QUANTUM VIOLATION
BY MAXIMALLY ENTANGLED STATE

For quantum systems, the measured variables are expressed
by eigenvalues of an operator whose expectation corresponds
to the statistical average of measurement values. In that
case, the decomposition in Eq. (A1) can be represented by
measurement operators whose explicit form is given by

Âj (mj ) =
∑

α

ωα|Aα (mj )〉〈Aα (mj )|, (11)

where d-dimensional orthogonal bases |Aα (mj )〉 are chosen
to satisfy 〈Aα (mj )|Aβ (mj )〉 = δα,β . The bases |Aα (mj )〉 can
be obtained as a linear combination of the orthogonal com-
putational bases, |Aα (mj )〉 = 1√

d

∑d
β=1 ωβ(α+mj /k)|β〉 where

the mj th basis has been obtained by the phase shift of the
fourier transformed state whose phase shift is distributed from
0 to k − 1 evenly. In the sense that the measurement bases are
evenly distributed in Hilbert space, the bases can constitute a
maximal test.

From the bases, one can show that the spectral sum of
measurement operators become ladder lowering operators as

k−1∑
mj =0

ωnj mj /kÂ
nj

j (mj ) = k
∑

β

|β〉〈β + nj | ≡ kĴj
nj

, (12)

which corresponds to the nj th power of a lowering oper-
ator Ĵj = ∑

β |β〉j 〈β + 1| for a high dimensional state as

(Ĵj )nj |α〉 = |α − nj 〉. In addition, a phase shift operator P̂ν

acting on the orthogonal computational bases generates an
extra phase P̂ν |α〉 = ω−να|α〉 and can be used for the local
unitary transform on the lowering operator as P̂ †

ν Ĵ
nj

j P̂ν =
ωνnj Ĵ

nj

j . The phase shift operation is effective in order to obtain
the different measurement bases that produce the correlation
values beyond LR bounds.

Together with the sequence of the local phase shift operation
P̂νj

, the generalized Bell function for a quantum state can
be obtained in terms of high-order correlation functions. If
there is a state whose expectation goes beyond the LR bound,
the state cannot be described by the LHV model. With the
measurements and the local rotations, the correlation function
of a quantum state becomes

G
Q
N,k,d = kN

d−1∑
�n=1

f (�n)ω�ν·�n
〈

N⊗
j=1

Ĵj
nj

〉
+ c.c., (13)

where �ν = (ν1, ν2, . . .) represents the composite components
of local phase shifts at each site.

In the following, we show that the LR bound is violated
by a simple symmetric quantum state with an appropriate
choice of f (�n). When the powers of the lowering opera-
tors at each site are uniform, n1 = n2 = · · · = n, the N -
partite maximally entangled (ME) pure quantum state |ψ〉 =∑

α 1/
√

d |α〉⊗N gives the quantum correlation G
Q,ME
N,k,d =

kN
∑d−1

n=1

(
1 − n

d

)
f (n)ω(n

∑
j νj ) + c.c. with an arbitrary local

parameter νj representing a choice of measurements. If �ν is
chosen to satisfy that −n

∑
j νj = Arg[f (n)], the value of the

quantum correlation is upper bounded by the quantum maxi-
mum for the ME state G

Q,ME
N,k,d � 2kN

∑d−1
n=1

(
1 − n

d

) |f (n)| ≡
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QM . Thus, an appropriate specification of f (n) results in the
violation of the LR bound,

BLR � QM = 2kN

d−1∑
n=1

(
1 − n

d

)
|f (n)| ; (14)

the bound BLR is also determined by the function f (n), as
shown in (6). Therefore, the general constraint for BLR < QM

can be obtained from the appropriate choice of the weighting
factors. If |f (n)| is either a constant function or a monoton-
ically increasing function with respect to n/d, then a general
trend of violation, BLR < QM , can be obtained. Generally
speaking, the values of BLR determined from f (�n) provide the
criteria for the LHV model and constitutes the generalized Bell
function as long as BLR < QM . Explicit criteria in a couple of
special cases and their analysis can be found in [24].

The quantum upper bound of the CGMLP equation for the
ME state can be analytically formulated. For the ME state, the
quantum expectation of the general Bell function becomes

2 < QCGMLP
M = 4

d − 1

d−1∑
n=1

(
1 − n

d

)
sec

[
nπ

2d

]
(15)

for any value of d. Thus, the state is nonlocal although the
value is not quantum maximum. It is known that the maximal
violation of the CGMLP inequality is obtained by a partially
entangled state. In order to obtain the quantum maximum, the
correlation (13) should be evaluated for a partially entangled
quantum state and be optimized by the parameters of the state.
In that way, the maximum value of violation can also be derived
from our formalism as it is illustrated in [24].

V. REMARKS

In this work, we derived general criteria of the LHV
model analytically and provided examples that violate the
condition. The derivation was done through the one-to-one
correspondence between the general probability space and
the correlations of arbitrary high-order moments. We proved
that the decomposition of the correlation function using joint
probabilities gives the straightforward LR bound. The decom-
position by the full correlations of high-order moments can
be used for nontrivial quantum violation under the provided
settings of measurements. The result sheds light on the general
characterization of the quantum correlation in an arbitrary
number of high dimensional systems and the arbitrary number
of measurement settings.
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APPENDIX

In this appendix, we present that (i) the explicit derivation
of the equivalence between the decompositions for the gener-
alized Bell function using the full measurement probabilities
and the complete set of distinctive multipartite correlations, (ii)
the derivation of several major known Bell functions from the
generalized formalism, and (iii) the method to obtain the local
realistic bounds. They provide the explicit derivations of the
formulas in the main article, in order to support the argument

that the decomposition of our multipartite correlations leads to
the most general class of Bell’s inequalities.

1. Equivalent form of correlation

Equivalance between the probability polytope and the con-
vex sum of high order multipartite correlation can be provided
from its definition. Both of them can be used to construct
the general multipartite correlation, however, they represent
different aspects of the multipartite correlations. One is useful
for an explicit form of the physical measurements in the test
of the local realistic model while the other can be used for the
direct quantum maximal value in a straightforward manner.
The connection between the probability and the correlation
for the generic Bell function can be derived from their original
definition. As its first step, the general Bell function can be
represented by a convex combination of probabilities as

Gc
N,k,d :=

d∑
{αj }=1

k−1∑
{mj }=0

gc
�α, �mp(�α| �m)

=
d∑

{αj }=1

k−1∑
{mj }=0

1

2

[
Fc

�α, �m + Fc
�α, �m

∗]
p(�α| �m), (A1)

where we decompose the coefficient of the probability in the
correlation gc

�α, �m into an arbitrary imaginary function Fc
�α, �m. In

fact, it allows us to obtain the Bell function using the high order
correlation functions as

Gc
N,k,d = 1

2dN

d∑
{nj }=1

k−1∑
{mj }=0

d∑
{αj }=1

Fc
�α, �mω−�nc ·�αE�nc

( �m) + c.c.

= 1

2dN

d∑
{nj }=1

k−1∑
{mj }=0

d∑
{αj }=1

Fc
�α, �mω−�nc ·�α

〈
N∏

j=1

A
cj nj

j (mj )

〉
avg

+ c.c.

=
d−1∑
�n=1

f (�nc )

˝
N∏

j=1

⎡
⎣ k−1∑

mj =0

ωcj nj mj /kA
nj

j (λ,mj )

⎤
⎦
˛

+c.c.,

(A2)

where we define

1

2dN

d∑
{αj }=1

Fc
�α, �mω−�nc ·�α = f (�nc )ω�nc · �m/k. (A3)

From its definition, the function Fc
�α, �m can be obtained through

the Fourier transformation of f (�nc ) and thus we have

gc
�α, �m = 2 Re

[∑
�n

f (�nc )ω�nc ·(�α+ �m/k)

]
, (A4)

which relates the function f for the high-order correlations and
g for the coefficient strength of the measurement probabilities.
From the equivalence, it can be identified that the Bell function
can be expressed by a convex sum of probabilities and it can
be decomposed in terms of correlation functions. It also means
that the problem of the generalized Bell inequality can be
addressed in terms of a convex set of general probabilities
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as well as correlation functions of multiparty systems in an
equivalent manner.

2. Local realistic upper bound

The structural construction of Bell’s inequality is given as
following. For the case of the Bell function, it can take a value
of the algebraic upper bound when the system is subjected
to a local realistic model. The statement of the model is that
the expectation value of a correlation under a local choice of
measurements a and b can be obtained as

〈AB〉 =
∑

λ

ρ(λ)A(a, λ)B(b, λ), (A5)

where ρ(λ) is a probability density as a function of a hidden
variable λ. Here, we assumed that the variable is distributed in
a discrete manner.

Validity of the model is also provided by the existence of
legitimate probabilities ρ(λ) for the hidden variable λ which
satisfies the normalization condition

∑
λ ρ(λ) = 1. It means

that the spectrum of probabilities p(α1, α2|m1,m2), for all
the possible outcomes from the experimental tests can be
decomposed by the probabilities of a state which is determined
by the action of hidden variables λ as

p(α1, α2|m1,m2) =
∑

λ

ρ(λ)B (α1,α2|m1,m2 )
λ . (A6)

Here, we denote an arbitrary Boolean function, B (α1,α2|m1,m2 )
λ ∈

{0, 1}, in order to specify the type of a state with a specific
probability distribution of hidden parameters. From the con-
dition of the probability p(α1, α2|m1,m2), the constraints for
the Boolean function are given as∑

�α
B

(�α| �m)
λ = 1,

∑
�α

∑
�m

B
(�α| �m)
λ = NT , (A7)

where NT = dim[m1] × dim[m2] is the total number of mea-
surements throughout the sites. We illustrate this for the bipar-
tite system, however, it can be generalized into the arbitrary
number of systems in the same way.

From the constraints and the Farkas lemma [22], it
can be shown that the local realistic upper bound of
the generic Bell function can be derived from the for-
mulation of general probabilities. The statement of the
lemma is that if

∑
�α, �m gc

�α, �m
∏

j Aj (αj |mj, λ) � BLR is sat-
isfied by all λ and the local realistic (LR) bound BLR

then Gc
N,k,d = ∑

�α, �m gc
�α, �mp(�α| �m) � BLR where p(�α| �m) =∑

λ ρ(λ)
∏

j Aj (αj |mj, λ) and ρ(λ) is a positive function,
satisfying

∑
λ ρ(λ) = 1. The bound can be derived when one

considers the convex sum of the probabilities,

Gc
N,k,d =

∑
�α

∑
�m

gc
�α, �mp(�α| �m)

=
∑

λ

ρ(λ)

[∑
�α

∑
�m

gc
�α, �mB

(�α| �m)
λ

]

� max
λ

[∑
�α

∑
�m

gc
�α, �mB

(�α| �m)
λ

]
� max

�α

[∑
�m

gc
�α, �m

]
,

(A8)

where the maximal bound is found by the probability coef-
ficient gc

�α, �m maximized over the measurement outcomes �α.
For the inequalities, we use the fact that the convex sum of
the probabilities is upper bounded by the largest coefficient
in the sum, reads c1p1 + c2p2 + c3p3 + · · · � maxi ci when∑

i pi = 1 and 0 � pi � 1,∀i.
In this part, the usefulness of local realistic optimization

presented in (6) is discussed with an example. The optimization
can be summarized as the problem of distributing optimal
distribution of �α over

∑
�m gc

�α, �m. Although the problem is non-
trivial in general, the strategy of deriving optimal distribution
of {�α|∀ �m} under consideration of the constraint on �α can be a
useful approach to the problem. Moreover, the analysis of the
convexity of the generation function brings advantages in the
optimization problem.

We present the example of optimization with the familiar
case of CGLMP in our formalism. The original CGLMP
correlation can be equivalently modified as

Cd =
∑

�α

∑
�m

gCGMLP
�α, �m p(�α| �m) (A9)

=
d−1∑
k=0

1∑
ij=0

g(k)P
(
αm1m2

.= k mod d
)
, (A10)

where g(k) = 1 − 2k
d−1 , α00 = α1(0) − α2(0), α01 = α2(1) −

α1(0), α10 = α2(0) − α1(1) − 1, α1 = α1(1) − α2(1). Then
the constraint C on �α can be expressed as

∑
m1m2

αm1m2 =
−1. One can restrict the parameter space containing op-
timal distribution of outcome as {�α|C}. The constraint is
more restricted when we consider the functional convexity
of g and the form of local bound BLR = max�α

∑
�m gc

�α, �m =
max{α̇m1m2 }

∑
m1m2

g(α̇m1m2 ) where α̇m1m2 is the modulo-d value
of αm1m2 . Suppose the parameter set {α̇00, α̇01, α̇10, α̇11}. Then
one can think of the situation in which the maximal number of
0’s appears in the set such that {0, 0, 0, d − 1}. The other sets
can be obtained from substituting elements in {0, 0, 0, d − 1}
under the constraint C. One way is to maintain the sum of
the elements and the other way is to change the sum as
the multiple of the d − 1 larger than d − 1. The former are
achieved by adding a and −a to the element 0 and d − 1,
respectively. In this case the correlation value is invariant
as g is linear, i.e., g(0) + g(d − 1) = g(a) + g(d − a − 1).
The other case is given when adding arbitrary values to 0
elements such that the sum of elements result in the multiple
of d − 1. It always gives smaller correlation value because
g is decreasing function. Therefore the correlation is always
the same or smaller than 3g(0) + g(d − 1) = 2 when two
types of substitution are successively conducted to the set
{0, 0, 0, d − 1}. And no other case can occur. In our formalism,
we always can consider the functional form of the generation
functions given with (A4). It provides the possibility of further
restriction to the parameter set containing the optimal case as
explained above.

Also, it might be worth noting that our formalism can
be applied to the problem of the analytic derivation of facet
inequalities of the local polytope in the generalized Bell
scenario. In our approach the number of optimal parameter set
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N corresponding to the local bound can be calculated from the
constraint on the outcome parameter. Deriving the constraint
that maximizes N such that N is larger than the dimension of
the local bound can be an analytic approach to tighten a Bell’s
inequality. As the condition is the necessary condition for a
Bell’s inequality to be tight [25].

3. Derivation of correlation coefficient for CGMLP inequality

As it has been shown, the inequalities of the general class
for the characterization of the realistic model can be derived
from the formalism above. The most notable class of Bell
inequalities for the bipartite high dimensional system (d × d

system) is the one by Collins-Gisin-Massar-Linden-Popescu
(CGMLP) [8] and the other by Son-Lee-Kim (SLK) [10].
While the derivation of SLK inequality from the generic
correlation function is straightforward due to its original
definition, the relation between CGMLP and the generic Bell
function is not trivial. In this section, we show how to derive
the CGMLP function in a different decomposition explicitly.
The importance of the different decompositions lies not just in
the demonstration of the generality of the generic Bell function
but also in the efficient derivation of the maximal bound of the
(quantum as well as classical) correlation.

In its original construction [8], the function for the CGMLP
inequality takes the form,

Cd =
([d/2]−1)∑

k=0

(
1 − 2k

d − 1

)

×{P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+P (A2 = B2 + k) + P (B2 = A1 + k)}
− {P (A1 = B1 − k − 1) + P (B1 = A2 − k)

+P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)},

whose local realistic upper bound is violated by a quantum
state. After shuffling the probabilities which are in the equiva-
lent classes, the distribution of probabilities can be rearranged
and it can be rewritten as

Cd =
d−1∑
k=0

(
1 − 2k

d − 1

)

×{P (A1 = B1 + k) + P (A2 = B2 + k)

−P (A2 = B1 + k) − P (A1 = B2 + k + 1)} (A11)

=
∑

�α

∑
�m

gCGMLP
�α, �m p(�α| �m), (A12)

where the coefficient takes the functional form gCGMLP
�α, �m =

(−1)m1−m2
∑d−1

k=0 [1−2k/(d−1)] δ(α1−α2 − k − z(m1,m2))
with an appropriate mapping for the choice of measurements.
They are indexed as (A1, A2) → (m1 = 0,m1 = 1) and
(B1, B2) → (m2 = 0,m2 = 1) together with a binary function
z(m1,m2) ∈ {0, 1}. In this case, the binary function will take
the values as z(0, 0) = z(1, 1) = z(1, 0) = 0 and z(0, 1) = 1.

Moreover, the coefficient gCGMLP
�α, �m can be further decomposed

as

gCGMLP
�α, �m = (−1)m1−m2

d

d−1∑
k=0

(
1 − 2k

d − 1

)

×
d−1∑
n=0

ωn(α1−α2−k−z(m1,m2 )) (A13)

= 2(−1)m1−m2

d − 1

d−1∑
n=1

ωn(α1−α2−z(m1,m2 ))

1 − ω−n

= 2Re

[∑
n1

∑
n2

f (n1, n2) ωn1α1+n2α2

× ω(n1m1+n2m2 )/2

]
, (A14)

where the weighting factor f is found as

f CGMLP(n1, n2) = 1/2

d − 1

d−1∑
n=1

sec

[
nπ

2d

]
ω

n
4 δn1=nδn2=−n.

(A15)

The equivalence in the last equation can be proved using the
straightforward Fourier analysis with the equalities,

d−1∑
n=1

ωn =
d−1∑
n=1

ω−n,

d−1∑
n=1

ωn/2 = −
d−1∑
n=1

ω−n/2,

sec

[
nπ

2d

]
= 2ω−n/4

1 + ω−n/2
. (A16)

Therefore, the derivation of the CGMLP correlation function
is possible from the generalized correlation formalism in
Eq. (A3). From the explicit expression of gCGMLP

�α, �m , it is not
difficult to find the local realistic bound of CGMLP function
as max�α[

∑
�m gCGMLP

�α, �m ] = 2.
Violation of the inequality by a quantum state can be

inspected further and the maximum value of the correlation
for a quantum state is still under investigation. With the
coefficients that had been found in the previous section, a
quantum correlation for CGMLP inequality can be obtained.
After Schmidt decomposition, a bipartite pure state can be
written in general as |ψ〉 = ∑d−1

n=0 γn|n, d − 1 − n〉 and the
CGMLP correlation function can be written as

G
Q,CGMLP
2,2,d = 22

d−1∑
n=1

f CGMLP
n

d−1∑
α=n

γ ∗
α−nγn + c.c.

= 2

d − 1

d−1∑
n=1

sec

[
nπ

2d

]
ω

n
4 �n + c.c., (A17)

where �n ≡ ∑d−1
α=n γ ∗

α−nγn. Up to the local unitary phase
shift, the correlation function is upper bounded by the real
component of �n as

G
Q,CGMLP
2,2,d � 4

d − 1

d−1∑
n=1

sec

[
nπ

2d

]
Re[�n], (A18)
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where the parameters in the upper bound have a constraint
�0 = 1. For example, when the system is two dimensional,
d = 2, the upper bound is characterized by a single unknown
parameter Re[�1] = Re[γ ∗

0 γ1] with a constraint equation
�0 = |γ0|2 + |γ1|2 = 1 and it results in the maximal bound
2
√

2. In the same way, further generalization is possible when
the optimal �n for the maximum G

Q,CGMLP
2,2,d is found with an

appropriate parametrization of γi .

4. N number of two outcome systems
with two measurements at each site

For the case of Mermin inequality, testing the (N,2,2)-class
system, the measurement function is defined,

M = 1
2 [(σx + iσy )⊗N + (σx − iσy )⊗N ], (A19)

which is equivalent to the general correlation when f = 1/2.
It means the coefficient of probability weighting function
becomes

gM
�α, �m = (−1)

∑
j αj Re

[
i (

∑
j mj )], (A20)

and it can be used to obtain the local realistic bound. The
bounds will be

max
�α

[∑
�m

gM
�α, �m

]
= 2(N−1)/2 for odd N,

= 2N/2 for even N. (A21)

With the coefficient gM
�α, �m, the correlation in terms of probability

distribution can be obtained as

〈M〉 =
∑

�α

∑
�m

gM
�α, �mp(�α| �m) (A22)

=
∑
�m∈all

Re
[
i (

∑
j mj )]

× [p(even # up| �m) − p(odd # up| �m)], (A23)

whose local realistic bound is violated by quantum state at a
large scale as it can be found in the original work [3].

As it is discussed in [6], the most general Bell function in
two binary outcome measurements at N sites can be obtained
from the generating function of all the correlations,

∑
s1,··· ,sN =±1

S(s1, . . . , sN )
N∏

j=1

[Aj (0) + sjAj (1)] = ±2N,

(A24)

where S(s1, . . . , sN ) stands for an arbitrary function of the
summation indices s1, . . . , sN ∈ {−1, 1}, such that their values
are only ±1, i.e., S(s1, . . . , sN ) = ±1. Since a general corre-
lation function is defined as E(m1,m2, . . .) = 〈∏j Aj (mj )〉,
the constrtraint for the convex sum of correlation functions are
given: ∣∣∣∣∣

∑
s1,··· ,sN =±1

S(s1, . . . , sN )

×
1∑

{mj }=0

s
m1
1 · · · smN

N E(m1, . . . , mN )

∣∣∣∣∣∣ � 2N. (A25)

Furthermore, compliance of the constraints for arbitrary
choices of S(s1, . . . , sN ) ∈ {−1, 1} can be equated with a
condition for a single correlation function. The correlation
function by ZB is

ZB =
∑

s1,··· ,sN =±1

×
∣∣∣∣∣∣

1∑
{mj }=0

s
m1
1 · · · smN

N E(m1, . . . , mN )

∣∣∣∣∣∣ � 2N,

(A26)

whose validation guarantees the satisfaction of inequalities
(A25) for any choice of S(s1, s2, . . .).

Comparing the ZB function to the generic Bell function,
the sum of all the correlation functions E(m1,m2, . . .) can
be obtained when f (�nc ) = f (c1n1, c2n2, . . .) are specified
as f ZB(c1, c2, . . .) = (1 − i)/2. Under the circumstance, the
generic Bell function becomes

G
ZB,c
N,2,2 =

1∑
{mj }=0

P (m1,m2, . . .)c
m1
1 c

m2
2 . . . E(m1,m2, . . .),

(A27)

where the parity function P (m1,m2, . . .) ∈ {−1, 1} takes its
value 1 for [(

∑
j mj ) mod 4] ∈ {0, 1} and −1 for [(

∑
j mj )

mod 4] ∈ {2, 3}. All the Bell function in this setting can be
found from the convex sum of the G functions and it reads

ZB =
∑

c

∣∣∣GZB,c
N,2,2

∣∣∣ � 2N, (A28)

which constitutes the most general nonlocality criteria in the
given setting.

5. Optimization for local realistic bound

In the previous section, it has been shown that the local
realistic bound is found as BLR = maxα

[∑
�m g�α, �m

]
. From

the relationship between g�α, �m and f (�n), the bound can
be expressed in terms of the correlation weighting factor
f (�n) as

BLR = max
α

[∑
�m

gc
�α, �m

]

= max
�α

⎡
⎣∑

�n
f (�n)

N∏
j=1

⎛
⎝∑

mj

ωcj nj [αj (mj )+ mj

k
]

⎞
⎠

⎤
⎦ + c.c.

= max
�α

∑
�n, �m

2|f (�n)| cos

[
nθf + 2π �nc

d

(
�α + �m

k

)]
.

(A29)

In order to make the local realistic bound optimal, the upper
bound of BLR is evaluated after an appropriate parametrization
�α = (α1(m1), α2(m2), . . .). In the following, we show how to
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derive the local realistic bound for an arbitrary choice of f (�n)
in a simple case.

In general, it is known that the function for the local
realistic bound is not possible to be evaluated trivially. It is
mainly because the maximization of the function with respect
to the measurement values is usually not straightforward
and it is possible through the optimal specification of kN

independent parameters. Furthermore, it can be proved that
the number can be reduced into kN + 1 − N due to the
symmetry in the trigonometric function. When the systems
become simple, the straightforward maximization can be
obtained.

For example, when the systems are in a simple case,
(2, k, 2), the function takes the form,

B
2,k,2
LR = max

α,β

{
2|f (1)|

∑
m1,m2

cos
[
παm1 + πβm2

]

× cos

[
θf + π (m1 + m2)

k

]}
, (A30)

and the optimization can be made through the specification of
αj (mj ). Through the assignment of the values αm1 and βm2 ,
the parity values of cos terms will be determined. Explicitly,
the function can be expended,

B
2,k,2
LR = 2|f (1)| max

�α

{
cos(θf )

[
(−1)α0+β0 − (−1)α1+βk−1 − (−1)α2+βk−2 · · · − (−1)αk−1+β1

]

+ cos

(
θf + π

k

)
[(−1)α0+β1 + (−1)α1+β0 − (−1)α2+βk−1 · · · − (−1)αk−1+β2 ] + · · · + · · ·

}

= 2|f (1)|
{
k cos(θf ) + (k − 2) cos

(
θf + π

k

)
+ · · · · · ·

}
= 2|f (1)|

k−1∑
l=0

(k − 2l) cos

(
θf + πl

k

)
, (A31)

where the maximization can be attained in the range 0 � θf � π
2k

. In the optimization, the parameters are specified in order
to make the coefficient of the larger cosin term weighted more by assignment α0 = α1 = α2 = · · · = αk−1 = 0, β0 = 0 and
β1 = β2 = · · · = βk−1 = 1. It can be proved that the value of function B

2,k,2
LR is maximum and the same procedure can be applied

to the other range of θf . In the other value of θf , it also can be proved that the same maximum can be obtained. The result provides
the local realistic bound for the setting (2, k, 2) which is the recent Bell test setting given by Epping et al. [13]. Another general
class of local realistic bound, the (N,2,d) class, has also been analyzed in [23] for the specific choice of f (n), as |f (n)| = 1 and
θf = π/4.
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