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It has long been recognized that certain quantum correlations are incompatible with a particular assumption
about classical causal structure. Given a causal structure of unknown classicality, the presence of such correlations
certifies the nonclassical nature of the causal structure in a device-independent fashion. In structures where
all parties share a common resource, these nonclassical correlations are also known as nonlocal correlations.
Any constraint satisfied by all correlations which are classically compatible with a given causal structure
defines a causal compatibility criterion. Such criteria were recently derived for the triangle structure (E.
Wolfe et al., arXiv:1609.00672) in the form of polynomial inequalities, begging the question of whether any
of those inequalities admit violation by quantum correlations. Numerical investigation suggests that they do not,
and we further conjecture that the set of correlations admitted by the classical triangle structure is equivalent to
the set of correlations admitted by its quantum generalization whenever the three observable variables are binary.
Our main contribution in this work, however, is the derivation of causal compatibility inequalities for the triangle
structure which do admit quantum violation. This provides a robust-to-noise witness of quantum correlations in
the triangle structure. We conclude by considering the possibility of quantum resources potentially qualitatively
different from those known previously.
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I. INTRODUCTION

In recent decades, the technical utility of quantum me-
chanics has become abundantly clear. In the realm of com-
putation, quantum algorithms, such as Shor’s algorithm [1]
and numerous others [2], scale exponentially better than their
classical counterparts. In the realm of secure communication,
quantum protocols, a popular example being quantum key
distribution [3], are able to provide privacy even against
hypothetical adversaries with unlimited computational power,
a desideratum which classical protocols are unable to fulfill.
Throughout history, numerous quantum phenomena which
fail to be emulated by classical physics have been identified
as resources for solving computational or communication
problems [4]. Motivated by past successes, a primal objective
of modern quantum information theory is to discover new
situations wherein quantum mechanics offers an advantage and
to certify that the quantum advantage is genuine.

From a foundational prospective, the most robust demon-
strations of quantum phenomena with no classical emula-
tion have involved Bell inequalities [5,6]. Originally, Bell
inequalities were derived as a way to show that no hidden
variable theory could ever account for quantum mechanics;
in this sense Bell inequalities are a response to the famous
Einstein-Podolsky-Rosen paradox [7]. The enumeration of
Bell inequalities has since become a widespread systematic
method for demonstrating the nonclassicality of a given ob-
servation. More recently it has been appreciated that Bell
inequalities can be understood as consequences of causal
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inference [8]. Causal inference is concerned with classifying
observations into those which can and cannot be explained
by a hypothesized causal structure. The abstract nature of
causal inference is responsible for its presence in numer-
ous scientific fields including machine learning and biology
[9,10]. Causal compatibility inequalities, such as Bell and
instrumental inequalities [11–13], characterize the space of
observations that are compatible with a hypothesized causal
structure, albeit the characterization offered by practically
derivable inequalities is often only an approximation. To derive
the traditional Bell inequalities from causal inference one starts
with a (classical) causal structure known as the Bell structure,
as depicted in Fig. 1. The fundamental Bell structure involves
noncommunicating parties making measurements on some
hidden shared resource λ, where the measurement outcomes
(A and B) are presumed to be stochastic functions of the local
choices of measurement settings (SA and SB) and the shared
resource λ. Quantum nonclassicality in the Bell structure has
been thoroughly studied since Bell’s original work [6]. More
complex structures, however, such as the correlation scenarios
proposed by Fritz [14,15], are much less understood. Here
we investigate one particular correlation scenario named the
triangle structure (Fig. 2).

The triangle structure (Fig. 2) is a causal structure comprised
of three parties labeled A, B, and C arranged in a triangular
configuration while pairwise sharing hidden (latent) variables
X, Y , and Z. It has been extensively studied previously
(see, e.g., [16], Fig. 1; [17], Fig. 6; [18], Fig. 8; [19],
Fig. 8 and Appendix E; [14], Fig. 3; [20], Fig. 4; and [21],
Fig. 1). An overview of some milestone results is provided
in Sec. IV. Identifying causal compatibility inequalities for
this configuration has been seen as particularly challenging
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FIG. 1. Bell structure consisting of two observers A and B

together with measurement settings SA and SB , respectively. The
shared latent variable is labeled λ.

[18]. Further identifying causal compatibility inequalities of
such high resolution that such inequalities can be violated by
quantum-accessible distributions has remained out of reach for
the triangle structure.

This work finds causal compatibility inequalities for the
triangle structure that are known to be violated by quantum-
accessible distributions. This accomplishment was made pos-
sible through the combination of two previous developments:
first, the insight of Fritz [14] regarding the ability to reinterpret
the Bell structure as a portion of the triangle structure, and
second, the framework for solving causal inference problems
developed by Wolfe et al. [21] called the inflation technique.
Ultimately, this work serves as a validation that the inflation
technique is efficient and sensitive enough at low orders to
offer insights into quantum nonclassicality [22]. Moreover,
these inequalities offer an avenue for recognizing previously
unknown forms of nonclassicality. The authors’ attempts to
find such novel resources were met with only partial success,
suggesting the need for both conceptual refinements and future
exploration.

The first half of the paper, namely, Secs. II–V, is entirely a
review of previous works. Section II recalls important notions
from causal inference theory and sets up the notation to be used.
Section III offers a summary of the popular Bell structure and
associated inequalities. Section IV discusses the triangle struc-
ture and provides an overview of existing research, identifying
its stark differences from the Bell structure and motivating why
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FIG. 2. Triangle structure consisting of three observable variables
A, B, and C and three latent variables X, Y , and Z.

the triangle structure is worth studying. Section V defines and
discusses a singularly quantum correlation conceived of by
Fritz [14], which we term the Fritz distribution. In the same
work [14], the Fritz distribution was proven to be nonclassical
without the use of inequalities.

The second half of the paper, namely, Secs. VI–IX, presents
the main contributions made by this research project. Specif-
ically, in Sec. VII we improve upon the results of Fritz
[14] by offering a direct proof of the incompatibility of the
Fritz distribution using inequalities generated by the inflation
technique [21]. A sample of such inequalities is presented
in Sec. VII, specifically the inequalities (12), (13), and (15).
Aside from confirming the utility of the inflation technique,
this paper explores the importance of having derived these
inequalities. First, an inequality-based proof has the advantage
of being robust to experimental noise. In Sec. VII B the Fritz
distribution is subjected to noise in order to measure the
robustness of the derived inequalities. Second, we numerically
optimize our derived inequalities over quantum-accessible
distributions (using qubits) in an effort to find the maximum
violations achievable by quantum theory. The culmination
of these analyses naturally prompts a discussion, found in
Sec. IX, regarding the fundamental problem of recognizing and
classifying nonclassicality in the triangle structure. Section X
summarizes.

Appendix B briefly summaries the inflation technique in the
specific context of this work. Although the summary presented
in Appendix B is designed to be self-standing, a much more
pedagogical introduction is offered by the original work [21].
Appendix C demonstrates how the inflation technique was
used to derive the causal compatibility inequalities for the
triangle structure which admit violation by quantum-accessible
distributions.

II. CAUSAL COMPATIBILITY

The task of causal inference is to determine the set of
potentially observable probability distributions compatible
with some hypothesis about causal relationships [9]. If an
observed distribution can be explained by the hypothesized
causal mechanism, then the distribution is said to be compatible
with said causal mechanism. In order to define compatibility
rigorously, we first need to formally define the notion of a
causal hypothesis.

A hypothesis of causal mechanism is formally referred to as
a causal structure and can be represented as a directed acyclic
graph. A directed graph G is an ordered tuple (N , E ) of nodes
and edges, respectively, where each edge e ∈ E connects a
pair of nodes n,m ∈ N with a directed arrow e = {n → m}.
A directed graph is acyclic if there are no paths following the
directions of the edges starting from and returning to the same
node. The nodes N of a causal structure represent random
variables while the edges E represent a casual influence from
one variable to another pursuant to the prescribed direction.

Henceforth, we will utilize a number of familiar notions
from graph theory and denote them accordingly. The parents
of a node n ∈ N are all nodes which point directly into n, i.e.,
PaG (n) ≡ {m | m → n}. Similarly defined are the children of
a node ChG (n) ≡ {m | n → m}. Recursively defined are the
ancestors of a node AnG (n) ≡ ⋃

i∈N Pai
G (n), where Pai

G (n) ≡
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PaG (Pai−1
G (n)) and Pa0

G (n) = n, and the descendants of a node
DeG (n) ≡ ⋃

i∈N Chi
G (n), where Chi

G (n) ≡ ChG (Chi−1
G (n))

and Ch0
G (n) = n. Finally, we extend this notation to a subset

of nodes N ⊆ N by performing a union over elements. As
an example, the parents of the nodes N ⊆ N are defined
PaG (N ) = ⋃

n∈N PaG (n).
Let us now formalize the notion of compatibility between

a causal structure G and a probability distribution PN defined
over the nodes of G. A causal structure G hypothesizes that
each variable n ∈ N is only directly influenced by its parents
PaG (n). Therefore, if each variable is conditioned on its
parentage, the probability distribution PN should factorize
accordingly:

PN =
∏
n∈N

P (n | PaG (n)) = P (n1 | PaG (n1))

× · · · × P (nk | PaG (nk )). (1)

If a given distribution PN defined over all of the nodes N
of G satisfies Eq. (1), then PN is said to be compatible with
G. The conditional distributions in Eq. (1) (i.e., {Pn|PaG (n) |
n ∈ N }) are referred to as a set of causal parameters for
G. If a distribution PN cannot be factorized according to
Eq. (1), PN is said to be incompatible with G. When one is
specified with a joint distribution PN defined over all nodes
of a causal structure G, it is possible to completely determine
whether or not PN is compatible with G by computing the
causal parameters induced by PN and checking the equality
of Eq. (1). A challenge, however, is presented when one is
supplied with a partial observation, i.e., a joint distribution
PNO

where NO ⊂ N is some subset of variables referred to as
the observable nodes NO . In such cases, PNO

does not induce
a unique set of causal parameters for G and Eq. (1) cannot
be verified by direction calculation. Instead, compatibility
between G and PNO

depends on the existence or non-existence
of a set of causal parameters forG such that PNO

= ∑
n/∈NO

PN
where PN is again given by Eq. (1). The complementary,
unobservable nodes are termed latent nodes NL = N \ NO

and should be understood as hidden random variables that
either are unknowable by some fundamental process or cannot
be measured due to other limitations.

There are several approaches to tackling the compatibility
problem when dealing with latent variables; there are two
common approaches worth mentioning here. The first is to rec-
ognize that many equality constraints are implied by the causal
structure, including conditional independence relations and
so-called Verma constraints among others; see Refs. [23,24]
for thorough treatments. The failure to satisfy an equality
constraint immediately disqualifies PNO

from being compat-
ible with G. Equality constraints are easily derived given a
causal structure, and checking equality-constraint satisfaction
is the minimalistic algorithm which powers the overwhelming
majority of practical causal inference hypothesis testing in
the fields of machine learning and artificial intelligence. In
quantum theory, however, we require strong, more sensitive,
causal inference techniques. This is because the equality
constraints satisfied by compatible classical correlations are
also all satisfied by quantum correlations [19]. Our focus
therefore in on deriving inequality constraints (over PNO

and its
marginals) implied by a causal structure, which we term causal

compatibility inequalities.1 For some causal structures, the
equality constraints associated with it are sufficient to perfectly
characterize the distributions genuinely compatible with it;
for others, however, inequality constraints are also important.
Causal structures for which inequality constraints are relevant
have been termed interesting [19] and such structures include
the instrumental structure, the Bell structure, and the triangle
structure studied here, among infinitely many others. Herein
we use the inflation technique [21] to find causal compatibility
inequalities; Appendix B discusses the inflation technique as
applied in this work.

If a probability distribution PNO
happens to violate any

causal compatibility inequality, then that distribution is deemed
incompatible. Conversely, a singular inequality can only be
used to prove that a given distribution is incompatible; a
single inequality cannot certify compatibility. A complete
characterization of compatibility consists of a complete set of
all valid causal compatibility inequalities such that satisfaction
of the entire set certifies compatibility. Currently, however, it
is unknown how to obtain a complete characterization for all
causal structures, including the triangle structure.

From the perspective of identifying quantum nonclassi-
cality, a causal structure G adopts the role of a classical
hypothesis. Therefore, nonclassicality becomes synonymous
with incompatibility: If a distribution PNO

is incompatible,
then it is nonclassical. Henceforth, we will use these two
terms interchangeably. From a resource standpoint, if the
nonclassicality ofPNO

withG can be witnessed by an inequality
I , but nevertheless PNO

can be implemented using quantum
states and measurements while otherwise respecting the causal
relations of G, then the causal compatibility inequality I

represents a task or game where quantum resources outperform
classical resources relative to G.

III. BELL STRUCTURE

This section aims to define the Bell causal structure and
to review some of the traditional witnesses used to assess
the classicality (or lack thereof) of distributions relative to
it. The purpose of this section is to equip readers with the
pertinent background and also to draw comparisons between
the advancements made toward understanding nonclassicality
of the Bell structure versus analogous results obtained for
triangle structure later in this work.

The bipartite Bell structure (Fig. 1) refers to an iconic
causal structure involving two distant parties who observe
the outcomes of local measurements as random variables A

and B determined by their individual measurement settings
SA and SB and where the parties are also presumed to be
commonly informed by some shared latent resource λ [6]. The
observed correlations naturally form a conditional probability
distribution PAB|SASB

. Subject to the notions of compatibility

1We refer to these inequalities as causal compatibility inequalities
instead of Bell inequalities for two reasons. First, Bell inequalities
usually are associated specifically with the Bell structure. Second,
the inequalities derived in this work are fundamentally distinct from
a typical Bell inequality in that these inequalities are polynomial over
PNO

instead of linear.
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presented in Sec. II, PAB|SASB
is compatible with Fig. 1 if and

only if there exists some distribution Pλ and causal parameters
PA|SA,λ and PB|SB,λ such that2

PAB|SASB
is classically compatible with Fig. 1 ⇐⇒ PAB|SASB

=
∑

λ

PA|SA,λPB|SB,λPλ. (2)

Any observed distribution PAB|SASB
which fails to be ex-

plained by the classical causal hypothesis of the Bell structure
as defined by Eq. (2) is appropriately termed nonclassical.
Often, distributions incompatible with the Bell structure are
referred to as nonlocal because the Bell structure markedly
lacks causal influence from one party to another. In particular,
Bell [5] demonstrated that there exist distributions that are
nonclassical yet are attainable via local measurements on a
shared quantum resource.

Let us now contrast the classical definition of compati-
bility with its quantum generalization. Quantum correlation
arise from a quantumified version of the causal structure, in
which latent variables are replaced with quantum systems.
Concretely, a distribution is accessible with quantum resources
and measurements for the quantumified Bell structure if and
only if there exists a bipartite quantum state ρAB of arbitrary
dimension, as well as Hilbert-space-localized measurement
sets MA|SA

and MB|SB
,3 with indices conditional upon the

measurement settings, such that

PAB|SASB
is a quantum realization of Fig. 1 ⇐⇒ PAB|SASB

= Tr[ρABMA|SA
⊗ MB|SB

]. (3)

The nonclassicality of quantum distributions for the Bell
structure can be demonstrated through the use of Bell in-
equalities which constrain the correlations between binary
variables A and B for classically compatible distributions. A
notable example is the Clauser-Horne-Shimony-Holt (CHSH)
inequality [25]

〈AB|SA = 0, SB = 0〉 + 〈AB|SA = 0, SB = 1〉
+ 〈AB|SA = 1, SB = 0〉 − 〈AB|SA = 1, SB = 1〉

� 2. (4)

Nontrivial Bell inequalities such as the CHSH inequality are
capable of witnessing the nonclassical nature of quantum
distributions; the inequalities presented in Sec. VII are also of
this type. Equality constraints, as previously mentioned, never
have that sort of high-resolution discernment sensitivity.

IV. TRIANGLE STRUCTURE

As was mentioned in Secs. I and II, the triangle structure
(Fig. 2) is a causal structure G consisting of three observable
variables A, B, and C arranged in a triangular configuration

2Here the summation
∑

λ is used to denote a statistical marginal-
ization over the latent variable λ with unspecified support.

3Note that a measurement set MA = {M1
A, M2

A, . . . , Mk
A} ser-

vices a shorthand notation in the sense PA = Tr[ρMA] ⇒ PA(a) =
Tr[ρMa

A].

while pairwise sharing latent variables X, Y , and Z. Fol-
lowing the definition of causal compatibility from Sec. II,
a distribution PNO

= PABC is compatible with the triangle
structure if and only if there exists a choice of causal parame-
ters {PA|X,Y , PB|Y,Z, PC|Z,X, PX, PY , PZ} such that PABC is a
marginalization of PABCXYZ over X, Y , and Z,4 i.e.,

PABC is classically compatible with Fig. 2 ⇐⇒ PABC

=
∑

X,Y,Z

PA|X,Y PB|Y,ZPC|Z,XPXPY PZ. (5)

By contrast, the quantum realization of the triangle structure
is defined with substantially greater freedom, namely,

PABC is a quantum realization of Fig. 1 ⇐⇒ PABC

= Tr[�ᵀρAB ⊗ ρBC ⊗ ρCA�MA ⊗ MB ⊗ MC], (6)

where ρAB , ρBC , and ρCA are bipartite density matrices, MA,
MB , and MC are generic measurements sets, and � is a
permutation matrix to align the underlying tensor structure of
the states and measurements appropriately.

The triangle structure serves as an excellent test case for
furthering our understanding of quantum nonclassicality in
network causal structures. It maintains superficial simplicity
(only three observable variables) while introducing many
challenging features not found in the study of the Bell struc-
ture. For example, the spaces of both classical and quantum
distributions on the triangle structure are nonconvex [14,21],
unlike for the Bell structure. The convexity of the Bell struc-
ture’s distributions is arguably responsible for the wealth of
knowledge about it, including its complete characterization of
classicality [6]. Importantly, Fritz [14] explicitly demonstrated
the existence of (at least) one incompatible but quantum
distribution for the triangle structure, so it is known to pos-
sess quantum nonclassicality. It seems reasonable to assume
that quantum nonclassicality in the triangle structure should
be translatable into a computational advantage for certain
computational circuits [26]; novel instances of nonclassicality
are expected to correspond to novel information-theoretical
quantum advantages. A fundamental limitation of Fritz’s proof
of nonclassicality, however, is that it does not involve causal
compatibility inequalities and hence does not advance our
repertoire of inequality constraints for the triangle structure.
Some inequality constraints for the triangle structure have been
derived in previous works. For example, Steudel and Ay [16]
derived an inequality distinguishing the distributions compat-
ible with the triangle structure from those compatible with
structures in which all the observable variables share a common
latent ancestor. Henson et al. [19] derived a family of entropic
inequalities for the triangle structure, which was then expanded
somewhat by Weilenmann and Colbeck [20]. Recently, Wolfe
et al. [21] derived a variety of especially sensitive, polynomial
causal compatibility inequalities for the triangle structure.
In particular, the inequalities of [21] expose a previously
unclassified (as assessed by all formerly known constraints)

4Here the summation
∑

X,Y,Z is used to denote a statistical marginal-
ization over the latent variables X, Y , and Z with unspecified support.
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FIG. 3. Triangle structure reimagined to mimic the Bell structure.
The measurement settings SA and SB are latent nodes unlike the Bell
structure (Fig. 1).

distribution called the w distribution5 as incompatible with the
triangle structures. Remarkably, none of the existing causal
compatibility inequalities for the triangle structure were known
to admit violation by any quantum distribution. That is to say, it
was unknown if any inequality known for the triangle structure
might be useful for distinguishing quantum distributions from
their classical counterparts. Section VI reports our attempt
to utilize these aforementioned inequalities to search for in-
compatible distributions that are also quantum accessible. The
subsequent failure of these approaches effectively motivates
the remainder of this work. In summary, the triangle structure is
a desirable case study because it is known to admit nonclassical
distributions using quantum resources, but yet no inequality
heretofore could separate its classical distributions from its
quantum distributions. This failure represents a gap in our
understanding of quantum nonclassicality and prompts the
discovery of alternative inequalities.

V. FRITZ DISTRIBUTION

As realized by Fritz [14], one may construct quantum
distributions incompatible with the triangle structure by re-
casting quantum distributions incompatible with the familiar
Bell structure into a settings-free tripartite format. To explain,
imagine rearranging the triangle structure into the configura-
tion depicted in Fig. 3 so that it closely resembles the Bell
structure (Fig. 1). Evidently, under the correct relabeling, large
portions of the triangle structure resemble the Bell structure.
The crucial distinction is that SA and SB are random variables
representing the recorded measurement settings in the Bell
structure, whereas those SA and SB are latent variables in the
triangle structure, which get reported as auxiliary outcomes for
Alice and Bob.

The analysis of nonclassicality changes, however, when SA

and SB are not freely chosen by the observers but rather by a
process outside of the individual party’s control. Relaxing the
assumption of measurement independence opens up a possible

5Although the w distribution is nonclassical, it is also nonquantum.
The nonquantum nature of the w distribution has been demonstrated
by Navascués and Wolfe [27].

loophole, namely, the possibility that the auxiliary outcomesSA

and SB of Alice and Bob might be manipulated via dependence
on their shared latent variable λ. This loophole is closed by
having the third party in the triangle structure, Charlie, also
report the latent variables SA and SB as a multivariate outcome.
In this manner, the perfect correlation of C’s record of SA and
SB with the records of SA reported by A and of SB reported
by B testifies to the independence of SA and SB from λ.
Consequently, any distribution over A, B, SA, and SB that is
incompatible with the Bell structure is also incompatible with
the triangle structure provided that C is perfectly correlated
with SA and SB [14].

The exemplifying quantum distribution corresponding to
a recasting of a nonclassical Bell structure distribution into
the triangle structure is the Fritz distribution [14]. In the Fritz
distribution, denoted by PF, each of the variables A, B, and C

is taken to have four possible outcomes {0, 1, 2, 3}. Explicitly,
PF can be written as

PF(000) = PF(110) = PF(021) = PF(131) = PF(202)

= PF(312) = PF(233) = PF(323) = 1
32 (2 +

√
2),

PF(010) = PF(100) = PF(031) = PF(121) = PF(212)

= PF(302) = PF(223) = PF(333) = 1
32 (2 −

√
2).

(7)

In Eqs. (7), the notation PF(abc) = P (A → a, B → b, C →
c) is used as shorthand. The Fritz distribution is quantum
accessible in the sense thatPF can be implemented using a set of
quantum states ρAB , ρBC , and ρCA and measurements MA, MB ,
and MC realized on Fig. 2 using Eq. (6). When expressing the
outcomes {0, 1, 2, 3} as pairs of binary digits {00, 01, 10, 11},
it can be seen that the left-hand bits for A and B (respectively
denoted by Al and Bl) are fixed by the outcome of C,

PF(00, 00, 00) = PF(01, 01, 00) = PF(00, 10, 01)

= PF(01, 11, 01) = 1
32 (2 +

√
2),

PF(10, 00, 10) = PF(11, 01, 10) = PF(10, 11, 11)

= PF(11, 10, 11) = 1
32 (2 +

√
2),

PF(00, 01, 00) = PF(01, 00, 00) = PF(00, 11, 01)

= PF(01, 10, 01) = 1
32 (2 −

√
2),

PF(10, 01, 10) = PF(11, 00, 10) = PF(10, 10, 11)

= PF(11, 11, 11) = 1
32 (2 −

√
2). (8)

In Eqs. (8), the notation PF(alar , blbr , clcr ) = P (Al →
al, Ar → ar, Bl → bl, Br → br, Cl → cl, Cr → cr ) is used
as shorthand. This observation can be difficult to verify using
Eqs. (8), but becomes easier after organizing the possible
outcomes into a 4 × 4 × 4 grid as depicted in Fig. 4. From this
diagram, it can be seen that each of C’s outcomes restricts the
possible outcomes for A and B into a 2 × 2 block. Effectively,
C’s bits are perfectly correlated with the left-hand bits of
A and B; Cl = Al and Cr = Bl . Therefore, pursuant to the
embedding of Fig. 3, the left-hand bits Al and Bl emulate the
measurement settings SA and SB , whereas the right-hand bits
Ar and Br emulate the outcomes which would be obtained
by A and B back in the Bell structure (Fig. 1). Provided that
C is perfectly correlated with Al and Bl , any Bell inequality
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FIG. 4. Fritz distribution visualized using a 4 × 4 × 4 grid. The four outcomes of A, B, and C are written in binary as a doublet of bits to
illustrate that certain bits act as measurement pseudosettings.

for the Bell structure defined over A, B, SA, and SB can be
directly converted to an inequality for the triangle structure by
performing the surjective relabeling

Ar ← A, Br ← B, Al ← SA, Bl ← SB,

Cl ← SA, Cr ← SB. (9)

As an example, the famous CHSH inequality (4) [25] is
translated into a constraint on the correlation between the
right-hand bits of A and B under Eqs. (9),

C = ClCr = AlBl =⇒ 〈ArBr |C = 00〉 + 〈ArBr |C = 01〉
+ 〈ArBr |C = 10〉 − 〈ArBr |C = 11〉 � 2,

(10)

where the correlation 〈ArBr〉 between the right-hand bits of A

and B is defined as

〈ArBr〉 = PArBr
(00) + PArBr

(11) − PArBr
(01) − PArBr

(10).

(11)

Therefore, every compatible distribution PABC for which
C is perfectly correlated with Al and Bl must satisfy the
inequality (10). Substituting PF into the inequality (10) yields
the traditional maximal quantum violation [28] 3(1/

√
2) −

(−1/
√

2) = 2
√

2 �� 2.
It is important to understand the domain in which Fritz’s

proof of incompatibility is valid; its proof relies on the per-
fect correlation between C’s outcomes and the measurement
pseudosettings (left-hand bits) of A and B. For example, if
one combines Eq. (7) with slight uniform noise, what can
be said with confidence regarding if the resulting modified
distribution is classical or not? At what point does the resulting
distribution transition from incompatibility to compatibility?
These questions are partially answered in Sec. VII B.

Plainly, PF is a valid but manufactured example. The phe-
nomenology associated with Bell nonlocality or Bell incom-
patibility are well understood; examining these distributions
embedded in the triangle structure offers no additional insight
into the types of nonclassical resources made accessible by
quantum mechanics. The goal, therefore, is to find incom-
patible quantum distributions that are qualitatively different
from those previously considered for the Bell structure [29].

Recognizing this, Fritz [14] presented the following problem
(see [14], Problem 2.17).

Fritz’s problem. Find an example of nonclassical quantum
correlations in the triangle structure together with a proof of
its nonclassicality which does not hinge on Bell’s theorem.

Fritz’s problem is concerned with how to find and recognize
nonclassical quantum distributions specifically for the triangle
structure. The original proof of nonclassicality essentially
recycled Bell’s theorem and was limited by the requirement of
perfect correlations [14]. Fritz’s problem, as originally stated,
does not require that the type of nonclassicality be novel to the
triangle structure, rather only that the proof should avoid Bell’s
theorem. Section VI delineates our initial, failed attempts
at resolving Fritz’s problem; Sec. VII reports our eventual
success, via the discovery of different causal compatibility
inequalities.

Though not explicit, we read in the spirit of Fritz’s problem
a desideratum for the discovery of a truly different form of
nonclassicality for the triangle structure. Such a discovery
would presumably lead to an understanding of different ad-
vantages of quantum resources in network structures; this
related problem has attracted attention and conjecture [29], but
remains open. We attempt to make progress on this problem
by leveraging the causal compatibility inequalities derived
herein, but Sec. VIII delineates how the effort is plagued
by instabilities in our numerical optimization which we have
not yet overcome. Consequently, Sec. IX discusses potential
avenues for rigorously reformulating Fritz’s problem in order
to best capture this desire for novel quantum nonclassicality.

VI. PRELIMINARY RESEARCH

As a preliminary search for quantum incompatibility in
the triangle structure, we performed numerical optimizations
(in search of violation) against the previously published com-
patibility inequalities of Wolfe et al. [21], as well as against
the entropic inequalities of Henson et al. [19]. For historical
context, the entropic inequalities of [19] have already been
independently investigated for quantum incompatibility by
Weilenmann and Colbeck [20] using a variety of computa-
tional methods. Unfortunately, these methods failed to identify
quantum-accessible distributions capable of violating any of
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the entropic inequalities considered in [20]. Additionally,
the inequalities presented in [21] have not been previously
investigated numerically.

Explicitly, we parametrized the subset of quantum dis-
tributions accessible by bipartite qubit density matrices
and two-outcome positive-operator-valued measure (POVM)
measurements.6 This preliminary investigation did not yield in-
teresting solutions, as none of the triangle structure inequalities
in [21] or [19] were violated.7 Unfortunately, these early results
are inconclusive for two reasons. First, an exhaustive search
would need to consider the possibility of larger Hilbert spaces
for the shared quantum states. Second, it is known that the
inequalities [21] are incomplete; there exist other constraints
on two-outcome distributions for the triangle structure yet to
be discovered.

Nonetheless, having failed to observe a quantum-classical
gap in the triangle structure for binary-outcome measurements,
a continued search for nonclassical distributions in the triangle
structure must expand the gamut of inequalities to optimize
against to include inequalities referencing strictly more than
two outcomes.

VII. TRIANGLE STRUCTURE INEQUALITIES

Section II introduced the notion of causal compatibility
inequalities and Sec. V discussed the Fritz distribution PF

together with the initial inequality-free proof of its incom-
patibility with the triangle structure. Heretofore, there were
no known causal compatibility inequalities for the triangle
structure that were capable of witnessing the nonclassicality
of any quantum distributions [21]. By leveraging the incom-
patibility of the Fritz distribution [14] and tools provided
by the inflation technique [21], we have obtained numerous
causal compatibility inequalities for the triangle structure
that are violated by the Fritz distribution. A representative
trio of these PF-incompatibility-witnessing inequalities are
presented here: Iwagon wheel per the inequality (12), notable
for its simplicity; Iweb per the inequality (13), which best
witnesses the nonclassicality of PF in the presence of noise;
and Isymmetric web per the inequality (15), which is symmetric
with respect to all permutations of the three parties.

Readers who are unfamiliar with the inflation technique [21]
and wish to understand in detail how the following inequalities
are derived are recommended to consult Appendixes A–C,
wherein they will find a succinct yet sufficient presentation
of the requisites needed for this paper. To briefly summarize,
Appendix B reviews the basics of the inflation technique
and formally defines the notion of an inflation of a causal
structure. Appendix C demonstrates how to use the inflation
technique and a given probability distribution, such as the
Fritz distribution, to cast the causal compatibility problem as a
particular kind of linear program known as a marginal problem,
defined in Appendix A.

6In Sec. VIII we discuss methods for conducting similar
parametrizations of quantum states and measurements.

7We also directly checked all two-outcome coarse grainings of the
Fritz distribution against the inequalities in [19,21], with no violation.

The inflation technique is known to completely solve the
causal compatibility problem through increasing orders of
inflations [22]. Consequently, the derivation of the inequalities
(12), (13), and (15) is guaranteed by [22] for sufficiently
large inflations. Nonetheless, the following inequalities were
obtained using the relatively small inflations found in Fig. 8.8

This efficiency is not universally guaranteed; for comparison,
we remark that, unlike the Fritz distribution, the conjectured
incompatibility of the four-outcome distribution proposed in
[29] is not confirmed by inflation technique at the same level.

We emphasize that each of these causal compatibility
inequalities independently provides a positive resolution of
Fritz’s problem. The inequalities are derived without making
use of Bell’s theorem; rather, they follow from the inflation
technique’s broader perspective on nonclassicality as a special
case of causal inference. Afterward, Sec. IX returns to the topic
of Fritz’s problem and the status of our resolution.

A. Wagon-wheel inequality

The first causal compatibility inequality chosen for pre-
sentation, the wagon-wheel inequality Iwagon wheel, is reported
below:

+PAlBl
(11) − PAlBlClCr

(1111) + PAlBl
(00)PClCr

(11)

+PClCr
(01)PClCr

(10) − PClCr
(11)PAlArBlBrClCr

(000000)

−PClCr
(11)PAlArBlBrClCr

(010100)

−PClCr
(10)PAlArBlBrClCr

(001001)

−PClCr
(10)PAlArBlBrClCr

(011101)

−PClCr
(01)PAlArBlBrClCr

(100110)

−PClCr
(01)PAlArBlBrClCr

(110010)

+PClCr
(00)PAlArBlBrClCr

(101111)

+PClCr
(00)PAlArBlBrClCr

(111011) � 0. (12)

The inequality (12) is termed the wagon-wheel inequality and
is denoted by Iwagon wheel after the (identically named) inflated
structure of Fig. 8(b) used to derive it. To reiterate, a summary
of the methods used to derive the inequality (12) can be found
in Appendixes A–C. Moreover, note that the inequality (12) is
reported using the same two-bit notation discussed in Sec. V
such that PAlArBlBrClCr

(alarblbrclcr ) = PABC (abc).
Aside from increasing outcome cardinality, we are also

forced to consider larger inflations than those analyzed in [21].
This is because we found that the smaller inflations considered
there, such as the spiral inflation depicted in Fig. 8(a), were
simply unable to witness the incompatibility of the Fritz
distribution, even when analyzed explicitly using four possible
outcomes for every observable variable.

By construction, every distribution PABC that is compatible
with the triangle structure per Eq. (5) must satisfy Iwagon wheel.
On the other hand, the Fritz distribution violates Iwagon wheel

with violation 1
16 �� 0. Consequently, we affirm that the Fritz

8Note that the adjectives large and small used to describe an inflation
only become well defined in the context of the hierarchy proposed in
[22]. For example, the web inflation in Fig. 8(c) is second in the
hierarchy of [22], whereas the wagon-wheel inflation in Fig. 8(b) is
somewhere between the first and second order.
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distribution is incompatible with the triangle structure, a fact
previously only demonstrated without inequalities.

B. Web inequality

We next present the inequality (13), another causal compat-
ibility inequality for the triangle structure that is violated by

the Fritz distribution. The web inflation shown in Fig. 8(c) was
used to produce the eponymous Iweb per the inequality (13).
The web inflation is considerably larger than the wagon-wheel
inflation; it is computationally more demanding to work with,
albeit capable of yielding strictly stronger inequalities. For
brevity, we employ the shorthand P (abc) in lieu of PABC (abc)
in presenting the inequality Iweb:

+P (000)P (202) + P (000)P (212) + P (202)P (233) + P (302)P (312)
−2P (123)P (210) − 2P (123)P (310) − 2P (130)P (213) − 2P (133)P (210) − 2P (133)P (310) − P (000)P (003) − P (000)P (013) − P (000)P (023)

−P (000)P (033) − P (000)P (103) − P (000)P (113) − P (000)P (123) − P (000)P (133) − P (000)P (203) − P (000)P (213) − P (003)P (010)
−P (003)P (020) − P (003)P (030) − P (003)P (100) − P (003)P (110) − P (003)P (120) − P (003)P (130) − P (003)P (200) − P (003)P (210)
−P (003)P (220) − P (003)P (230) − P (003)P (300) − P (003)P (310) − P (003)P (320) − P (003)P (330) − P (010)P (013) − P (010)P (021)
−P (010)P (023) − P (010)P (033) − P (010)P (100) − P (010)P (103) − P (010)P (113) − P (010)P (123) − P (010)P (133) − P (010)P (203)
−P (010)P (213) − P (013)P (020) − P (013)P (030) − P (013)P (100) − P (013)P (110) − P (013)P (120) − P (013)P (130) − P (013)P (200)
−P (013)P (210) − P (013)P (220) − P (013)P (230) − P (013)P (300) − P (013)P (310) − P (013)P (320) − P (013)P (330) − P (020)P (023)
−P (020)P (033) − P (020)P (103) − P (020)P (113) − P (020)P (123) − P (020)P (133) − P (020)P (203) − P (020)P (210) − P (020)P (211)
−P (020)P (212) − P (020)P (223) − P (020)P (233) − P (020)P (310) − P (020)P (311) − P (020)P (312) − P (020)P (313) − P (021)P (100)
−P (021)P (121) − P (021)P (210) − P (021)P (211) − P (021)P (213) − P (021)P (310) − P (021)P (311) − P (021)P (313) − P (022)P (210)
−P (022)P (211) − P (022)P (212) − P (022)P (213) − P (022)P (310) − P (022)P (311) − P (022)P (312) − P (022)P (313) − P (023)P (030)
−P (023)P (100) − P (023)P (110) − P (023)P (120) − P (023)P (130) − P (023)P (200) − P (023)P (211) − P (023)P (212) − P (023)P (213)
−P (023)P (220) − P (023)P (230) − P (023)P (300) − P (023)P (311) − P (023)P (312) − P (023)P (313) − P (023)P (320) − P (023)P (330)
−P (030)P (033) − P (030)P (103) − P (030)P (113) − P (030)P (123) − P (030)P (133) − P (030)P (203) − P (030)P (210) − P (030)P (211)
−P (030)P (212) − P (030)P (223) − P (030)P (233) − P (030)P (310) − P (030)P (311) − P (030)P (312) − P (030)P (313) − P (031)P (210)
−P (031)P (211) − P (031)P (213) − P (031)P (223) − P (031)P (310) − P (031)P (311) − P (031)P (313) − P (032)P (210) − P (032)P (211)
−P (032)P (212) − P (032)P (213) − P (032)P (310) − P (032)P (311) − P (032)P (312) − P (032)P (313) − P (033)P (100) − P (033)P (110)
−P (033)P (120) − P (033)P (130) − P (033)P (200) − P (033)P (211) − P (033)P (212) − P (033)P (213) − P (033)P (220) − P (033)P (230)
−P (033)P (300) − P (033)P (311) − P (033)P (312) − P (033)P (313) − P (033)P (320) − P (033)P (330) − P (100)P (103) − P (100)P (113)
−P (100)P (123) − P (100)P (133) − P (100)P (203) − P (100)P (213) − P (103)P (110) − P (103)P (120) − P (103)P (130) − P (103)P (200)
−P (103)P (210) − P (103)P (220) − P (103)P (230) − P (103)P (300) − P (103)P (310) − P (103)P (320) − P (103)P (330) − P (110)P (113)
−P (110)P (123) − P (110)P (133) − P (110)P (203) − P (110)P (213) − P (113)P (120) − P (113)P (130) − P (113)P (200) − P (113)P (210)
−P (113)P (220) − P (113)P (230) − P (113)P (300) − P (113)P (310) − P (113)P (320) − P (113)P (330) − P (120)P (123) − P (120)P (133)
−P (120)P (203) − P (120)P (210) − P (120)P (211) − P (120)P (212) − P (120)P (223) − P (120)P (233) − P (120)P (310) − P (120)P (311)
−P (120)P (312) − P (120)P (313) − P (121)P (131) − P (121)P (210) − P (121)P (211) − P (121)P (213) − P (121)P (310) − P (121)P (311)
−P (121)P (312) − P (121)P (313) − P (122)P (210) − P (122)P (211) − P (122)P (212) − P (122)P (213) − P (122)P (310) − P (122)P (311)
−P (122)P (312) − P (122)P (313) − P (123)P (130) − P (123)P (200) − P (123)P (211) − P (123)P (212) − P (123)P (213) − P (123)P (220)
−P (123)P (230) − P (123)P (300) − P (123)P (311) − P (123)P (312) − P (123)P (313) − P (123)P (320) − P (123)P (330) − P (130)P (133)
−P (130)P (203) − P (130)P (210) − P (130)P (211) − P (130)P (212) − P (130)P (223) − P (130)P (233) − P (130)P (310) − P (130)P (311)
−P (130)P (312) − P (130)P (313) − P (131)P (210) − P (131)P (211) − P (131)P (213) − P (131)P (310) − P (131)P (311) − P (131)P (313)
−P (132)P (210) − P (132)P (211) − P (132)P (212) − P (132)P (213) − P (132)P (310) − P (132)P (311) − P (132)P (312) − P (132)P (313)
−P (133)P (200) − P (133)P (211) − P (133)P (212) − P (133)P (213) − P (133)P (220) − P (133)P (230) − P (133)P (300) − P (133)P (311)
−P (133)P (312) − P (133)P (313) − P (133)P (320) − P (133)P (330) − P (200)P (203) − P (200)P (213) − P (200)P (223) − P (200)P (233)
−P (200)P (303) − P (200)P (313) − P (200)P (323) − P (200)P (333) − P (203)P (210) − P (203)P (220) − P (203)P (230) − P (203)P (300)
−P (203)P (310) − P (203)P (320) − P (203)P (330) − P (210)P (213) − P (210)P (223) − P (210)P (233) − P (210)P (303) − P (210)P (313)
−P (210)P (323) − P (210)P (333) − P (212)P (212) − P (212)P (333) − P (213)P (220) − P (213)P (230) − P (213)P (300) − P (213)P (310)
−P (213)P (320) − P (213)P (330) − P (220)P (223) − P (220)P (233) − P (220)P (303) − P (220)P (313) − P (220)P (323) − P (220)P (333)
−P (223)P (230) − P (223)P (300) − P (223)P (310) − P (223)P (320) − P (223)P (330) − P (230)P (233) − P (230)P (303) − P (230)P (313)
−P (230)P (323) − P (230)P (333) − P (233)P (300) − P (233)P (310) − P (233)P (320) − P (233)P (330) − P (233)P (333) − P (300)P (303)
−P (300)P (313) − P (300)P (323) − P (300)P (333) − P (303)P (310) − P (303)P (320) − P (303)P (330) − P (310)P (313) − P (310)P (323)

−P (310)P (333) − P (313)P (320) − P (313)P (330) − P (320)P (323) − P (320)P (333) − P (323)P (330) − P (330)P (333) ≤ 0.
(13)

As mentioned in Sec. V, this original proof of the non-
classicality of PF required an idealistic condition to hold:

perfect correlations of C with Al and Bl . It is impossible
to use Fritz’s original argument to confirm nonclassicality
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FIG. 5. Distribution N0.085, a noisy yet still nonclassical variant of the Fritz distribution.

from an experimental point of view, because every laboratory-
achievable distribution is subject to some amount of noise. One
can minimize noise, e.g., by developing high-accuracy mea-
surement channels, but perfect correlations are unattainable.
Causal compatibility inequalities such as Iweb permit there to
be noise within a set of observations before the ability to certify
nonclassicality breaks down.

Here we quantify how much statistical noise can be added
to the Fritz distribution PF before Iweb fails to witness incom-
patibility; we define the ε-noisy Fritz distribution as

Nε = (1 − ε)PF + εUABC, (14)

where UABC (abc) ≡ 1
64 ∀a, b, c ∈ {0, 1, 2, 3}. As ε varies

from 0 to 1, noise is added to the Fritz distribution and
Nε transitions from an incompatible distribution N0 = PF

to a compatible distribution N1 = UABC . We find that Iweb

demonstrates that the Fritz distribution remains incompatible
with the triangle structure up to a noise parameter of ε � 0.085;
the associated distributionN0.085 is plotted in Fig. 5. Of course,
there remains the possibility that another inequality will be able
to withstand a larger degree of noise than Iweb; an exhaustive
search has not been conducted.

C. Symmetric web inequality

In Sec. VIII we will consider numerically optimizing
our inequalities over quantum strategies (seeking violations)

towards the desired end goal of discovering different forms
of nonclassicality in the triangle structure. Of course, if
some inequality achieves its optimal quantum violation on a
distribution qualitatively similar to PF, then such an inequality
is unlikely to lead us to discover nonclassicality of a type
different from PF. Indeed, we will show that the previous pair
of Iwagon wheel and Iweb, which were both specifically curated
to demonstrate the incompatibility of PF, apparently achieves
maximum quantum violation on distributions very similar to
PF itself.

In order for the numerical optimization to avoid distribu-
tions similar to PF we require an objective function which is
not tailor designed to witness PF. Finding such an inequal-
ity proved extremely challenging; while we could generate
thousands of inequalities using the inflation technique [21],
it appeared than only a vanishingly small fraction of those
inequalities admitted quantum violation whatsoever. We there-
fore modified the inflation technique to give us an inequality
which not only witnesses the nonclassicality of PF but is also
symmetric with respect to any permutation of the variables A,
B, and C, resulting in the inequality (15). The modification of
the inflation techniques which forces symmetry is explained in
Appendix D. As PF is strongly asymmetric due to the special
role of C, we can hope that a symmetric inequality (even one
which does witness PF) might achieve its optimal quantum
violation on a distribution qualitative distinct from PF. The
details of our numerical finding are discussed in Sec. VIII. We
have the symmetric web inequality Isymmetric web,
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+2[P (312)P (312)]6 + 3[P (000)P (323)]3 + 3[P (131)P (323)]3 + [P (000)P (121)]3 + [P (110)P (333)]3 + [P (202)P (202)]3
−12[P (002)P (031)]6 − 12[P (010)P (330)]6 − 12[P (032)P (210)]6 − 12[P (101)P (331)]6 − 12[P (122)P (321)]6 − 12[P (130)P (312)]6
−12[P (202)P (220)]6 − 16[P (002)P (120)]6 − 16[P (002)P (200)]6 − 16[P (002)P (220)]3 − 16[P (002)P (230)]6 − 16[P (002)P (302)]6
−16[P (002)P (303)]6 − 16[P (002)P (330)]3 − 16[P (003)P (032)]6 − 16[P (003)P (033)]6 − 16[P (003)P (231)]6 − 16[P (003)P (300)]6
−16[P (003)P (310)]6 − 16[P (003)P (320)]6 − 16[P (003)P (322)]6 − 16[P (012)P (202)]6 − 16[P (012)P (210)]6 − 16[P (012)P (313)]6
−16[P (013)P (120)]6 − 16[P (013)P (130)]6 − 16[P (013)P (203)]6 − 16[P (013)P (220)]6 − 16[P (020)P (101)]3 − 16[P (020)P (103)]6
−16[P (020)P (312)]6 − 16[P (021)P (311)]6 − 16[P (021)P (332)]6 − 16[P (022)P (203)]6 − 16[P (022)P (302)]6 − 16[P (022)P (303)]6
−16[P (022)P (311)]3 − 16[P (022)P (313)]6 − 16[P (023)P (103)]6 − 16[P (023)P (222)]6 − 16[P (023)P (232)]6 − 16[P (030)P (201)]6
−16[P (031)P (301)]6 − 16[P (031)P (332)]6 − 16[P (032)P (311)]6 − 16[P (033)P (202)]6 − 16[P (033)P (300)]3 − 16[P (033)P (312)]6
−16[P (033)P (331)]6 − 16[P (033)P (333)]3 − 16[P (102)P (130)]6 − 16[P (102)P (220)]6 − 16[P (102)P (230)]6 − 16[P (102)P (310)]6
−16[P (103)P (110)]6 − 16[P (103)P (133)]6 − 16[P (113)P (130)]6 − 16[P (113)P (220)]3 − 16[P (113)P (321)]6 − 16[P (120)P (201)]6
−16[P (120)P (223)]6 − 16[P (120)P (303)]6 − 16[P (120)P (313)]6 − 16[P (123)P (230)]6 − 16[P (123)P (302)]6 − 16[P (123)P (330)]6
−16[P (130)P (203)]6 − 16[P (130)P (223)]6 − 16[P (131)P (303)]3 − 16[P (132)P (202)]6 − 16[P (133)P (202)]6 − 16[P (201)P (330)]6
−16[P (203)P (330)]6 − 16[P (210)P (213)]6 − 16[P (222)P (303)]3 − 16[P (223)P (310)]6 − 16[P (231)P (301)]6 − 16[P (232)P (330)]6
−16[P (233)P (303)]6 − 16[P (300)P (331)]6 − 16[P (301)P (330)]6 − 16[P (302)P (331)]6 − 16[P (313)P (320)]6 − 20[P (132)P (301)]6
−20[P (133)P (301)]6 − 24[P (033)P (310)]6 − 24[P (102)P (231)]6 − 24[P (103)P (331)]6 − 24[P (130)P (303)]6 − 2[P (010)P (031)]6

−2[P (100)P (100)]3 − 2[P (100)P (223)]6 − 2[P (110)P (223)]3 − 2[P (121)P (312)]6 − 2[P (212)P (302)]6 − 3[P (000)P (333)]1
−3[P (031)P (312)]6 − 3[P (223)P (333)]3 − 3[P (302)P (312)]6 − 4[P (000)P (022)]3 − 4[P (000)P (212)]3 − 4[P (000)P (301)]6
−4[P (001)P (031)]6 − 4[P (003)P (211)]6 − 4[P (010)P (132)]6 − 4[P (010)P (311)]6 − 4[P (011)P (211)]3 − 4[P (012)P (021)]6
−4[P (022)P (122)]3 − 4[P (022)P (222)]3 − 4[P (022)P (232)]6 − 4[P (031)P (233)]6 − 4[P (100)P (122)]3 − 4[P (100)P (230)]6
−4[P (101)P (131)]3 − 4[P (110)P (123)]6 − 4[P (110)P (320)]6 − 4[P (111)P (311)]3 − 4[P (111)P (321)]6 − 4[P (122)P (122)]3
−4[P (122)P (220)]6 − 4[P (122)P (232)]6 − 4[P (123)P (131)]6 − 4[P (132)P (332)]6 − 4[P (201)P (201)]6 − 4[P (201)P (311)]6
−4[P (202)P (311)]6 − 4[P (202)P (321)]6 − 4[P (212)P (310)]6 − 4[P (212)P (331)]6 − 4[P (223)P (312)]6 − 4[P (302)P (333)]6
−4[P (311)P (323)]6 − 5[P (010)P (333)]3 − 5[P (031)P (100)]6 − 5[P (223)P (223)]3 − 5[P (233)P (333)]3 − 8[P (000)P (030)]3
−8[P (000)P (032)]6 − 8[P (003)P (111)]3 − 8[P (003)P (331)]3 − 8[P (012)P (030)]6 − 8[P (012)P (110)]6 − 8[P (012)P (221)]6
−8[P (013)P (021)]6 − 8[P (013)P (022)]6 − 8[P (013)P (311)]6 − 8[P (020)P (100)]6 − 8[P (020)P (110)]6 − 8[P (020)P (112)]6
−8[P (020)P (210)]6 − 8[P (022)P (121)]6 − 8[P (022)P (130)]6 − 8[P (023)P (112)]6 − 8[P (023)P (213)]6 − 8[P (030)P (210)]6
−8[P (030)P (311)]6 − 8[P (032)P (111)]6 − 8[P (033)P (121)]6 − 8[P (033)P (131)]6 − 8[P (100)P (132)]6 − 8[P (102)P (321)]6
−8[P (110)P (300)]6 − 8[P (111)P (130)]6 − 8[P (112)P (123)]6 − 8[P (112)P (331)]3 − 8[P (113)P (200)]6 − 8[P (113)P (331)]3
−8[P (120)P (220)]6 − 8[P (120)P (302)]6 − 8[P (120)P (310)]6 − 8[P (121)P (211)]6 − 8[P (121)P (301)]6 − 8[P (121)P (303)]3
−8[P (121)P (320)]6 − 8[P (122)P (201)]6 − 8[P (122)P (203)]6 − 8[P (123)P (200)]6 − 8[P (123)P (203)]6 − 8[P (123)P (222)]6
−8[P (123)P (313)]6 − 8[P (130)P (212)]6 − 8[P (131)P (310)]6 − 8[P (132)P (310)]6 − 8[P (132)P (312)]6 − 8[P (132)P (322)]6
−8[P (133)P (200)]3 − 8[P (133)P (213)]6 − 8[P (133)P (222)]3 − 8[P (133)P (300)]3 − 8[P (133)P (312)]6 − 8[P (133)P (322)]3
−8[P (201)P (313)]6 − 8[P (210)P (320)]6 − 8[P (211)P (221)]6 − 8[P (211)P (320)]6 − 8[P (213)P (322)]6 − 8[P (220)P (223)]3
−8[P (221)P (312)]6 − 8[P (222)P (312)]6 − 8[P (231)P (312)]6 − 8[P (232)P (313)]3 − 8[P (233)P (313)]6 − 8[P (302)P (332)]6

−8[P (311)P (321)]6 − [P (000)P (121)]3 − [P (000)P (323)]3 − [P (110)P (333)]3 − [P (121)P (333)]3 − [P (131)P (323)]3
−[P (312)P (312)]6 ≤ 0.

(15)

Note that P (abc) is shorthand for PABC (abc) and
[P (113)P (330)]3 is shorthand for a sum the over permutations
of A, B, and C, e.g., [P (113)P (330)]3 ≡ P (113)P (330) +
P (131)P (303) + P (311)P (033).

VIII. NUMERICAL OPTIMIZATION

In order to find quantum distributions that are more non-
classical than the Fritz distribution, we perform numerical
optimizations against each inequality I by parametrizing the
space of quantum-accessible probability distributions that can
be realized on the triangle structure (Fig. 2) and thus expressed
in the form of Eq. (6). In order to parametrize all such
distributions, we elect to parametrize the states and measure-
ments separately. In order to qualify the scope of Eq. (6) and
associated computational complexity of the parametrization,
there are a two restrictions that are made with justification.

Motivated by the fact that the Fritz distribution (Sec. V) only
requires qubit states, the states ρ are taken to be bipartite qubit
states which are more computationally feasible compared to
n-dimensional states whereby the joint density matrix ρAB ⊗
ρBC ⊗ ρCA becomes an n6 × n6 matrix. Additionally, we re-
strict our focus to projective-valued measures (PVMs) instead
of POVMs for three reasons. First, Fritz [14] demonstrates via
the Fritz distribution that PVMs are sufficient for generating
incompatible quantum distributions in the triangle structure.
Second, although generating k-outcome POVM measurements
is possible using rejection sampling techniques [30], a valid
unbiased parametrization is not found for k > 2. Finally, PVMs
provide considerable computational advantage over POVMs as
they permit Eq. (6) to be rewritten as

PABC (abc) = 〈mA,amB,bmC,c|�ᵀρAB ⊗ ρBC

⊗ ρCA�|mA,amB,bmC,c〉. (16)
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Although there are numerous techniques that can used when
parametrizing quantum states and measurements [4,30–34],
a single technique by Spengler et al. [35] was found to be
most computationally suitable for our purposes. Spengler et al.
[35] demonstrated that all d × d unitary matrices U can be
parameterized without degeneracy as

U =
[

d−1∏
m=1

(
d∏

n=m+1

exp(iPnλn,m) exp(iσm,nλm,n)

)]

×
(

d∏
l=1

exp(iPlλl,l )

)
, (17)

where the real-valued parameters λ = {λn,m | n,m ∈
1, . . . , d} have periodicities λm,n ∈ [0, π

2 ] for m < n and
λm,n ∈ [0, 2π ] for m � n. Moreover, Pl are one-dimensional
projective operators Pl = |l〉〈l| and the σm,n are generalized
antisymmetric σ matrices σm,n = −i|m〉〈n| + i|n〉〈m|,
where 1 � m < n � d. This parametrization has the useful
feature that each of the real-valued parameters λn,m has a
direct and intuitive physical affect on each element of a
computational basis {|1〉, . . . , |d〉}. Explicitly, exp(iσm,nλm,n)
applies a rotation to the subspace spanned by |m〉 and |n〉
for m < n. Analogously, exp(iPnλn,m) generates the relative
phase between |m〉 and |n〉 for m > n and exp(iPlλl,l )
fixes the global phase of |l〉. Finally, although not explicitly
mentioned in [35], it is possible to remove the reliance on the
computationally expensive matrix exponential operations [36]
in Eq. (17) and replace them with elementary trigonometric
functions in the parameters λm,n.

By parametrizing unitary matrices, it becomes possible to
parametrize d-dimensional density matrices and d-element
PVMs by recognizing that any orthonormal basis {|ψj 〉}
(where 1 � j � d) can be transformed into the computational
basis {|j 〉} by a unitary transformation U , i.e., U |ψj 〉 =
|j 〉. First consider a d-element PVM M = {|mj 〉〈mj | | 1 �
j � d}. Since {|mj 〉} forms an orthonormal basis, one can
parametrize M by writing M = {U †|j 〉〈j |U | 1 � j � d} and
parametrizing U using Eq. (17). This method was inspired
by the measurement seeding method for iterative optimization
used by Pál and Vértesi [37]. Analogously, this argument can
be extended to full-rank d-dimensional density matrices ρ by
performing a spectral decomposition ρ = ∑d

j=1 pj |pj 〉〈pj |
into eigenvalues {pj } and eigenstates {|pj 〉}. Since Tr(ρ) =∑d

j=1 pj = 1 the eigenvalues of ρ are parametrized without
degeneracy using a tuple of d − 1 real-valued parameters with
periodicity [0, 2π ] using hyperspherical coordinates [31,35].
Additionally, since ρ is Hermitian, the eigenstates {|pj 〉} form
an orthonormal basis and therefore the eigenstates are analo-
gously parametrized using Eq. (17): ρ = ∑d

j=1 pjU
†|j 〉〈j |U .

For our purposes, we have set d = 4 and fixed λl,l = 0 for
1 � l � d in Eq. (17) because the global phase contributions
are irrelevant for Eq. (16).

Since the inequalities we seek to optimally violate are
polynomial and since the space of quantum-accessible distri-
butions is nonconvex, we employ a number of optimization
methods consecutively in an attempt to avoid pitfalls associated
identifying local minima and ill-conditioned convergence.

Specifically, the Broyden-Fletcher-Goldfarb-Shanno method
[38, p.142] and the Nelder-Mead simplex method (see [38],
p. 238) were used along with a method called basin hopping
[39], which is a hybrid between simulated annealing and
gradient-descent-based methods.

Nevertheless, we strongly caution against misinterpreting
the numerical optima present in Sec. VIII as if our findings
represent genuine global maxima of violation. Evidence for
the unreliability of our numerical methods is the following:
When supplied with randomly sampled initial parameters, all
optimization methods consistently converged to saturating the
target inequalities, instead of violating it, even though we know
that all the inequalities we consider do admit quantum viola-
tion, namely, by PF. To achieve inequality violation, we found
ourselves forced to initialize the numerical optimizer with
parameters that were nearby (in parameter space) to parameters
which generate the Fritz distribution PF. Upon doing so, it was
observed that the numerical methods converged invariably to
parameters which generated distributions similar to PF (see
Fig. 6, for instance), consequently making interpreting the
results somewhat murky. Could it be that the inequality’s global
maximum is in fact not far from PF? Or is this a limitation of the
ill-conditioned nature of the optimization? The phenomenon
is likely due to a combination of both effects.

Numerical optimization results

Our best numerical optimization of Iwagon wheel was found to
be the Fritz distribution itself, visualized in Fig. 4. Therefore,
PF is either a local minimum of the parameter space or in fact
the maximally violating distribution of Iwagon wheel; it remains
unclear to us if this behavior is related to the global optimality
of the Fritz distribution or if it is an artifact of the methods
used to derive Iwagon wheel, though we suspect the former.

Our best numerical optimization of Iweb is visualized in
Fig. 6. Almost immediately, it is evident that Fig. 6 closely
resembles the Fritz distribution; in fact Figs. 6 and 4 share their
possibilistic structure. A distribution’s possibilistic structure is
the subset of events which it assigns a non-zero probability.
That Fig. 6 and Fig. 4 have the same possibilistic structure
is not entirely unexpected, as was mentioned in Sec. VII, as
Iweb was derived specifically to prove the incompatibility of
the Fritz distribution with the triangle structure. Consequently,
it seems that Iweb best witnesses incompatibility of those
distributions that closely resemble the PF. It could be, however,
that the sharing of possibilistic structure is an artifact of
unreliable convergence, such that the true optimally violating
Iweb quantum distribution might have a different structure.

It is perhaps curious, however, that violation achieved by
the distribution in Fig. 6 is not accessible when the bipar-
tite states in Eq. (6) are restricted to maximally entangled
states. This finding of more violation with less entanglement
resembles a feature of quantum mechanics originally presented
by Methot and Scarani [40] demonstrating that entanglement
and nonclassicality are different resources.

Our best numerical optimization of Isymmetric web is visual-
ized in Fig. 7. Counterintuitively, the distribution in Fig. 7,
which achieves a greater violation of Isymmetric web than PF,
shares its possibilistic structure with the Fritz distribution.
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FIG. 6. Quantum probability distribution of the triangle structure that maximizes violation of Iweb. Notice that this distribution has precisely
the same possibilistic structure as the Fritz distribution, as might be expected, since Iweb was specifically generated to witness the nonclassicality
of PF.

Additionally, since Isymmetric web is symmetric with respect to
the permutation of parties, one might expect that the maximum
violating distribution be symmetric as well. To the contrary, our
numerical optimization failed to find any symmetric quantum
distributions capable of violating Isymmetric web.

IX. REVISITING FRITZ’S PROBLEM

In Sec. V we defined the Fritz distribution and summarized
the inequality-free proof of its incompatibility with the triangle
structure due to [14]. In addition, Sec. V discusses Fritz’s
problem as a quest to find quantum distributions incompatible
with the triangle structure that are also qualitatively distinct
from those distributions which are incompatible with the Bell
structure. In light of the perhaps unsatisfactory results of
Sec. VIII, the purpose of this section is to revisit Fritz’s problem
and to attempt to rigorously formulate a criterion for quantum
nonclassicality that is genuine to the triangle structure.

When specifically concerned with entanglement resources,
Bell structure nonclassicality exploits the entanglement of
a single bipartite quantum state. Unlike the Bell structure

in Fig. 1, the observable nodes of the triangle structure in
Fig. 2 have access to potentially three different bipartite
quantum states. As noted in [14], the Fritz distribution can be
implemented using only a single entangled state.9 Therefore,
it becomes reasonable to propose that any quantum nonclassi-
cality in the triangle structure that requires entanglement in at
least two shared states constitutes nonclassicality distinct from
Bell nonclassicality. At first, one might suspect that finding
such distributions would affirmatively demonstrate a form of
entanglement resource unique to the triangle structure. Unfor-
tunately, this is not the case. By increasing the cardinality of
each variable A, B, and C to 43 = 64, it is possible to generate
a distribution that is nonclassical yet quantum and requires
all three of the shared resources to be entangled. This can be
accomplished by superimposing three copies of statistically
independent Fritz distributions to the triangle structure, each

9Of course there exist implementations that make use of three
entangled states, but at minimum, one is necessary.
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FIG. 7. Quantum probability distribution of the triangle structure that maximizes violation of Isymmetric web. Notice that this distribution has
precisely the same (asymmetric) possibilistic structure as the Fritz distribution, even though Isymmetric web itself is symmetric with respect to
permutations of the variables A, B, and C.
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FIG. 8. Some inflations of the triangle structure: (a) spiral inflation, (b) wagon-wheel inflation, and (c) web inflation.

of which utilizes a distinct party to announce the correspond-
ing measurement pseudosettings. Such a distribution would
require entanglement in all three quantum states; under this
construction, the removal of any entangled resource would
render the distribution quantum inaccessible.10 Consequently,
demanding the necessity of entanglement in every shared state
is insufficient for finding novel nonclassicality.

In consideration of this particular construction, perhaps the
correct assessment for novel nonclassicality must incorporate
a restriction on the cardinality of the observed variables. Pur-
suant to this objective, we were able to prove the nonclassicality
of a variant of the Fritz distribution where C has only two
outcomes: the first corresponding to A and B correlations
and the second corresponding to A and B anticorrelations.11

Nonetheless, such a distribution fails to deviate significantly
from Bell nonclassicality.

It is worth noting that there are quantum-accessible distribu-
tions which are conjectured, but not proven, to be incompatible
with the triangle structure. For instance, the distribution pro-
posed in [29] required the use of entangled measurements and
thus if proven incompatible might constitute a different form
of quantum nonclassicality. Unfortunately, as was previously
noted in Sec. VII, the proposed distribution in [29] satisfies all
inequalities generated by the inflations considered in Fig. 8.
Presently, computational limitations prevent us from consider-
ing inflations larger than those in Fig. 8, although we remain
optimistic.

In truth, properly defining the novelty of quantum cor-
relations and also recognizing the resourcefulness of those
correlations in the triangle structure, or any other causal
structure, is a deep and meaningful, albeit unsettled, problem.
Ultimately, if a satisfactory classifier of novelty is constructed,

10This observation was original provided by Navascués [41].
11An inequality-free proof of the incompatibility of this distribution,

using arguments analogous to those presented in [14], can be found
in [20]. Assessing the compatibility of this variant using the methods
in Appendixes A–C was first suggested to the authors by Rosset [42].

it remains unclear whether or not novel distributions even
exist.

X. CONCLUSION

In Sec. IV we elucidated that establishing or rejecting
compatibility with the triangle structure has been a challenging
problem for nearly a decade [14,16,18,19,29]. Though some
causal compatibility inequalities were known, those inequal-
ities did not appear useful for the purpose of witnessing
quantum nonclassicality. Recently, Fritz [14] gave an example
of quantum nonclassicality in the triangle structure, relying on
an inequality-free proof that is not robust to any amount of
noise.

In Sec. VII we presented examples of causal compatibility
inequalities capable of having quantum violations in the sense
that they are violated by quantum-accessible distributions. This
result was made possible through the inflation technique [21]
(Appendix B) applied to the Fritz distribution. Moreover, the
inequalities in Sec. VII were derived using the inflations in
Fig. 8, each of which is low in the hierarchy proposed by
[22], thus revealing the relative efficiency of the inflation
technique.

In Sec. VII B it was demonstrated that these causal com-
patibility inequalities are robust to noise, directly revealing a
critical departure from Fritz’s original proof of the incompat-
ibility of Fritz’s perfect-correlation example. In Sec. VIII we
found quantum distributions quantitatively distinct from Fritz’s
example of a recycled Bell theorem, such that these optimized
distributions more strongly violate certain causal compatibility
inequalities.

Despite these advancements, the distributions we discov-
ered hew closely to the Fritz distribution, indicating that their
nonclassical nature remains some recycled version of the
nonclassicality found in the Bell structure. Section IX discusses
potential proposals certifying the genuineness of nonclassi-
cality in the triangle structure. Presently, the existence, and
subsequent suitable classification of fundamentally novel non-
classicality, remains speculative and certainly warrants future
research.
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APPENDIX A: MARGINAL SATISFIABILITY
AND INEQUALITIES

This Appendix aims to explain how to solve the following
decision problem: Given a collection of probability distribu-
tions {PV1 , . . . , PVm

} where each set of variables Vi ⊆ J is a
subset of some complete set of variables J , does there exist
a joint distribution PJ such that each PVi

can be obtained
by marginalizing PJ over the variables not in Vi , i.e., PVi

=∑
J \Vi

PJ ? Colloquially, this problem is referred to as the
marginal problem [43]. Additionally, this section aims to
accomplish something further: If such a joint distribution
PJ exists, how does one find it? If not, how does one find
an inequality whose violation by {PV1 , . . . , PVm

} proves the
nonexistence of a joint distribution? This is accomplished by
illustrating how the marginal problem can be expressed as a
linear program in which the solution to the marginal problem is
encoded in the feasibility or infeasibility of said linear program.
This Appendix is presented prior to Appendix B as the marginal
problem becomes an integral component of the inflation
technique in subsequently deriving the inequalities presented
in Sec. VII. Moreover, the marginal problem is presented here
logically independent from the remainder of the paper both
for procedural clarity and because the marginal problem has
applications in numerous areas of mathematics including game
theory [44], database theory, knowledge integration of expert
system, and of course quantum information theory [43].

To begin, several pieces of nomenclature will be introduced
to facilitate discussions. First, the set M = {V | V ⊆ J } of
subsets of J is referred to as the marginal scenario and
each element V ∈ M is termed a (marginal) context of M.
The complete set of marginal distributions is referred to as
the marginal model and is denoted by a superscript PM ≡
{PV | V ∈ M}. A marginal model acts as the most general
description of a family of observations that can be made overJ .
Strictly speaking, as defined in [43], a marginal scenario forms
an abstract simplicial complex where it is required that all sub-
sets of contexts are also contexts:V ′ ⊂ V : V ′ ∈ M ∀V ∈ M.
Throughout this Appendix we exclusively consider (without
loss of generality) the maximal marginal scenario, restricting
our focus to the largest marginal contexts. Additionally, all
marginal scenarios are taken to be complete in the sense that
the marginal scenario covers the complete set of observable
variables, i.e., J = ⋃

V ∈M V . Finally, we henceforth assume
that each variable v ∈ J has a finite cardinality.

The marginal problem is, given a marginal model PM =
{PV | V ∈ M}, marginal to the joint variables J , whether
there exists a joint distribution PJ such that each context PV

can be obtained by marginalizing PJ :

PV =
∑
J \V

PJ ∀V ∈ M. (A1)

A marginal model PM is said to be contextual if it does
not admit a joint distribution and noncontextual otherwise.
Notice that Eq. (A1) is inherently a linear system of constraints
which can be solved efficiently using linear programs. In
consideration of this, we will now endeavor to discuss how
to cast Eq. (A1) as a matrix multiplication equation so that
it becomes possible to discuss existing methods for deriving
constraints on the set of contextual marginal models.

To every discrete random variable v there corresponds a
prescribed set of outcomes Ov . We also define the set of
all events over v, denoted by E (v),12 to be the set of all
functions s : {v} → Ov , each representing the event that a
measurement on v was made where s(v) ∈ Ov was observed.
Evidently, E (v) and Ov have a one-to-one correspondence and
this distinction can be confounding. There is rarely any harm
in referring synonymously to either as outcomes. Nonetheless,
a sheaf-theoretic treatment of contextuality [45] demands the
distinction. Specifically for this work, the distinction becomes
essential for our discussion and exploitation of marginal sym-
metries in Appendix D. As a natural generalization we define
the events over a set of random variables V = {v1, . . . , vn} in
a parallel manner,

E (V ) ≡ {s : V → OV | ∀i : s(vi ) ∈ Ovi
}. (A2)

Each event s can be compactly represented as a set of mappings
over each element of V , i.e., s = {vi → s(vi )}ki=1. The domain
D(s) of an event s is the set of random variables it valuates, i.e.,
if s ∈ E (V ), then D(s) = V . Under this framework, a proba-
bility distribution PV can be considered as a map from E (V )
to the unit interval [0, 1]. The marginal problem inherently
depends on the concept of probabilistic marginalization. This
concept can be understood at the level of events; one event
s ∈ E (V ) can be marginalized or restricted to a smaller event
s ′ ∈ E (W ) whenever W ⊆ V . For every W ⊆ V and s ∈ E (V ),
the restriction of s onto W [denoted by s|W ∈ E (W )] is the
event in E (W ) that agrees with each of s’s assignments for
variables in W : s|W (v) = s(v) ∀v ∈ W .

For every marginal scenario M = {V1, . . . , Vk}, it is useful
to put special emphasis on the joint events E (J ) which
represent all possible global events over the entire set of
joint variables. Similarly, we define the context events for a
particular context V ∈ M as E (V ). Finally, we elect to define
the marginal events as the disjoint union over all context events
and by an abuse of notation we will define this union as
E (M) = ∐

V ∈M E (V ). Each marginal section m ∈ E (M) has
a domain D(m) = V for some V ∈ M. By construction, each
marginal event m ∈ E (M) is a restriction of some joint event
j ∈ E (J ).

The marginalization operation of the marginal problem
is a linear operation, mapping a joint probability distribu-

12In the language of sheaf theory, E (v) is the sheaf of events [45].
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tion PJ : E (J ) → [0, 1] into a marginal model PM = {PV :
E (V ) → [0, 1] | V ∈ M}. Since E (M) and E (J ) are finite,
the marginal problem can be represented as a |E (M)| × |E (J )|
matrix.

Definition. The incidence matrix M for a marginal scenario
M = {V1, . . . , Vk} is a bitwise matrix where the columns are
indexed by joint events j ∈ E (J ) and the rows are events by
marginal events m ∈ E (M). The entries of M are populated
whenever a marginal event m is a restriction of the joint

event j ,

Mm,j ≡
{

1 for m = j |D(m)

0 otherwise.
(A3)

The incidence matrix has |E (J )| columns, |E (M)| =∑
i |E (Vi )| rows, and k|E (J )| nonzero entries.
To illustrate this concretely, consider the following exam-

ple. Let J be three binary variables J = {A,B,C} and M
be the marginal scenario M = {{A,B}, {B,C}, {A,C}}. The
incidence matrix for M is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(A,B,C) → (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
(A → 0, B → 0) 1 1 0 0 0 0 0 0
(A → 0, B → 1) 0 0 1 1 0 0 0 0
(A → 1, B → 0) 0 0 0 0 1 1 0 0
(A → 1, B → 1) 0 0 0 0 0 0 1 1
(B → 0, C → 0) 1 0 0 0 1 0 0 0
(B → 0, C → 1) 0 1 0 0 0 1 0 0
(B → 1, C → 0) 0 0 1 0 0 0 1 0
(B → 1, C → 1) 0 0 0 1 0 0 0 1
(A → 0, C → 0) 1 0 1 0 0 0 0 0
(A → 0, C → 1) 0 1 0 1 0 0 0 0
(A → 1, C → 0) 0 0 0 0 1 0 1 0
(A → 1, C → 1) 0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

The incidence matrix acts (to the right) on a vector representing
the joint probability PJ distribution and outputs a vector
representing the marginal model PM. The joint distribution
vector P J for a probability distribution PJ is the vector
indexed by joint events j ∈ E (J ) whose entries are populated
by the probabilities that PJ assigns to each joint event:
P J

j = PJ (j ). Analogously, the marginal distribution vector
PM for a marginal model PM is the vector whose entries
are probabilities over the set of marginal outcomes E (M):
PM

m = PD(m)(m).
By design, the marginal and joint distribution vectors are

related via the incidence matrix M . Given a joint distribution
vector P J , one can obtain the marginal distribution vector PM

by multiplying M by P J ,

PM = M · P J . (A5)

As a quick remark, the particular ordering of the rows and
columns of M carries no importance, but it must be consistent
between M , P J , and PM. The marginal problem can now be
rephrased in the language of the incidence matrix. Suppose
one obtains a marginal distribution vector PM; the marginal
problem becomes equivalent to the question of whether there
exists a joint distribution vector P J such that Eq. (A5)
holds. This question is naturally framed as the marginal linear
program:

minimize ∅ · x

subject to x � 0,

M · x = PM. (A6)

If this “optimization”13 is feasible, then there exists a vector
x than can satisfy Eq. (A5) and is a valid joint distribution
vector. Therefore, feasibility of the marginal linear program
not only implies that P J exists but returns P J . Moreover, if
the marginal linear program is infeasible, then there does not
exist a joint distribution P J . For every linear program there
exists a dual linear program that characterizes the feasibility
of the original [46]. Constructing the dual linear program is
straightforward [47]:

minimizey · PM

subject toy · M � 0. (A7)

The dual marginal linear program not only answers the
marginal problem for a specific marginal model PM but
as a by-product provides an inequality that witnesses its
contextuality. If this is not obvious, first notice that the dual
problem is never infeasible; by choosing y to be trivially
the null vector ∅ of appropriate size, all constraints become
satisfied. Second, if the dual constraint y · M � 0 holds and
the primal is feasible, theny · PM = y · M · x � 0. Therefore,
the sign of the dual objective d ≡ min(y · PM) classifies
a marginal model’s contextuality; if d < 0 then y · PM �
0 is violated and therefore PM is contextual. Likewise if

13“Optimization” is presented in quotes here because the minimiza-
tion objective is trivially always zero (∅ denotes the null vector of all
zero entries). The primal value of the linear program is of no interest;
all that matters is its feasibility.
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d � 0 (satisfying y · PM), then PM is noncontextual.14 This
is a manifestation of Farkas’s lemma [46]. An infeasibility
certificate [49] is any vector y that satisfies y · M � 0. Most
linear program software packages such as MOSEK [50], GUROBI

[51], CPLEX [52], and CVX/CVX OPT [53,54] are capable of
producing infeasibility certificates. Furthermore, for every y

satisfying y · M � 0 there corresponds a certificate inequality
that constraints the set of noncontextual marginal models. If y

is an infeasibility certificate, then y · PM � 0 is satisfied by
all contextual marginal models.

The marginal problem can sometimes take on a more
general variant that does not begin with a specific marginal
model [43,55,56]: Given a marginal scenario M, what is
the set of all noncontextual marginal models? Pitowsky [57]
demonstrates that the set of noncontextual marginal models
forms a convex polytope called the marginal polytope. The
extremal rays of a marginal polytope directly correspond to
the columns of M which further correspond to determinis-
tic joint distributions P J . Since all joint distributions P J

are probability distributions, their entries must sum to unity∑
j∈E (J ) P

J
j = 1. This normalization defines the convexity of

the polytope; all noncontextual marginal models are convex
mixtures of the deterministic marginal models pursuant to
Eq. (A5). The marginal polytope is a beneficial tool for
understanding contextuality. First, the facets of a marginal
polytope correspond to a finite set of linear inequalities that are
complete in the sense that all contextual distributions violate
at least one facet inequality [6]. From the perspective of a
marginal polytope, linear quantifier elimination or convex hull
algorithms can be used to compute a representation of the
complete set of linear inequalities and completely solve the
marginal problem. A popular tool for linear quantifier elimina-
tion is Fourier-Motzkin elimination [21,55,58]. Applying the
Fourier-Motzkin procedure to completely solve the marginal
problem is discussed in more detail by Fritz and Chaves [43].
An excellent survey of existing techniques for solving the
marginal problem including equality set projection [59] and
Hardy-type hypergraph transversals can be found in the work
of Wolfe et al. [21]. In conclusion, there are a number of
computational tools available to solve the marginal problem
completely whenever no marginal model is provided.

Each of the above-mentioned techniques suffers from com-
putational complexity limitations. For example, the Fourier-
Motzkin procedure is in the worst case doubly exponential in
the number of initial inequalities [58]. For the purposes of this
research, solving the marginal problem without reference to a
marginal model was intractable. This will become apparent
in Appendix C when the inflation technique is applied to
the triangle structure, producing considerably large marginal

14Actually, if d � 0 then it is exactly d = 0 due to the existence of
the trivial y = ∅. This observation is an instance of the complementary
slackness property of [48]. Moreover, if d < 0, then it is unbounded
d = −∞. This latter point becomes clear upon recognizing that
for any y with d < 0, another y ′ = αy can be constructed (with
α > 1) such that d ′ = αd < d . Since a more negative d ′ can always
be found, it must be that d is unbounded. This is a demonstration
of the fundamental unboundedness property of [48]; if the dual is
unbounded, then the primal is infeasible.

models. Luckily, the Fritz distribution allows one to avoid
the complexity issues of the complete marginal problem and
instead focus on the original problem of determining whether
or not a particular marginal model admits a joint distribution
or not.

APPENDIX B: INFLATION TECHNIQUE

The inflation technique by Wolfe et al. [21] and inspired
by the do-calculus and twin networks of Pearl [9] is a family
of causal inference techniques that can be used to determine
if an observable probability distribution PNO

is compatible or
incompatible with a given causal structure G. As a precursor,
the inflation technique begins by augmenting a causal structure
G with additional copies of its nodes, producing an inflated
causal structure G ′ called an inflation, and then exposes how
causal inference tasks on the inflation can be used to make
inferences on the original causal structure. For reference, a few
inflations of the triangle structure are depicted in Fig. 8. Copies
of nodes in the inflated causal structure are distinguished by an
additional subscript called the copy index. For example, node
A of Fig. 2 has copies A1, A2, A3, and A4 in the inflated causal
structure in Fig. 8(c). All such copies are deemed equivalent
via a copy-index equivalence relation denoted by ∼. A copy
index is effectively arbitrary, so we will refer to an arbitrary
inflated copy of A as A′, i.e., A ∼ A1 ∼ A′ �∼ B ∼ B1 ∼ B ′.15

In addition to the common graph-theoretic terminology
and notation presented in Sec. II, two related concepts need
introductions. First, an induced subgraph of G for a subset of
nodes N ⊆ N is the graph composed of nodes N and all edges
e of the original graph that are contained in N : SubG (N ) ≡
(N, {e = {n → m} | n,m ∈ N}). An ancestral subgraph of G
for a subset of nodes N ⊆ N is the induced subgraph due to
the ancestry of N : AnSubG (N ) ≡ SubG (AnG (N )).

The inflation technique begins with distribution PN defined
over some observable nodes N ofG and the a priori assumption
that it is compatible with G pursuant to the definitions provided
in Sec. II. Regarding G as a causal hypothesis, the observable
correlation PN can only be influenced by the ancestry of N

in G. Consequently, for any set of nodes N ′ of an inflation
G ′ where the ancestral subgraph AnSubG ′ (N ′) happens to
be homomorphic to the ancestral subgraph AnSubG (N ), one
can conclude that the distribution PN ′ , induced by PN ,16 is
compatible with G ′ using the same latent explanations for PN

in G. This observation is known as the inflation lemma (see
[21], Lemma 3).

To formalize the inflation lemma, we define the injectable
sets of G ′, denoted by InjG (G ′), as all sets of nodes in G ′
whose ancestral subgraphs are homomorphic (via copy-index
removal) to an ancestral subgraph in G: InjG (G ′) ≡ {N ′ ⊆
N ′ | ∃N ⊆ N : AnSubG ′ (N ′) ∼ AnSubG (N )}. Analogously

15Note that we preemptively generalize the notion of copy-index
equivalence to other mathematical objects such as sets, graphs, and
groups by saying that X ∼ Y if and only if X is equivalent to Y upon
removal of the copy index.

16The inflated distribution PN ′ assigns the same probability to all
events of PN whenever the events are equivalent under the removal
of copy indices.
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FIG. 9. Some injectable sets InjG (G ′) of the spiral inflation G ′ and their corresponding images ImInjG (G ′) in the triangle structure G:
(a) AnSubG′ ({A1}), (b) AnSubG ({A}), (c) AnSubG′ ({A2, C1}), and (d) AnSubG ({A,C}).

defined are the images of the injectable sets in G: ImInjG (G ′) ≡
{N ⊆ N | ∃N ′ ⊆ N ′ : AnSubG ′ (N ′) ∼ AnSubG (N )}.

To illustrate these concepts, consider the spiral inflation G ′
depicted in Fig. 8(a). The ancestral subgraph of {A1} in the
spiral inflation [denoted by AnSubG ′ ({A1})] is highlighted in
Fig. 9(a) and is clearly homomorphic to the ancestral subgraph
of its image {A} in the triangle structure (G) [Fig. 9(b)].
Additionally, the set {A2, C1} is an injectable set of G ′ because
AnSubG ′ ({A2, C1}) [highlighted in Fig. 9(c)] is homomorphic
(via copy-index removal) to the AnSubG ({A,C}) in the trian-
gle structure (G) [Fig. 9(d)].

The injectable sets of an inflation are of principle impor-
tance to the inflation technique. Given a distribution PNO

defined over the observable nodes of G, one can compute a
marginal model defined over the injectable sets P InjG (G ′ ) =
{PN ′ | N ′ ∈ InjG (G ′)} and their images P ImInjG (G ′ ) = {PN |
N ∈ ImInjG (G ′)}. The contrapositive of the inflation lemma
casts the compatibility problem for P ImInjG (G ′ ) (which exhibits
equivalent compatibility as PNO

) into a compatibility problem
for P InjG (G ′ ) of any nontrivial inequalities. If P InjG (G ′ ) is found to
be incompatible withG ′, then P ImInjG (G ) (and also PNO

) must be
incompatible with G. Fortunately, the inflated causal structure
G ′ possesses its own d-separation relations, which enforces
conditional independence equality constraints on P InjG (G ′ ). A
useful subset of d-separation relations are those corresponding
to unconditional d separations, known as ancestrally indepen-
dent sets [9]. Two sets N ′

1 and N ′
2 are ancestrally independent

(N ′
1 ⊥ N ′

2) if they have distinct ancestry in G ′,

N ′
1 ⊥ N ′

2 ⇐⇒ AnG ′ (N ′
1) ∩ AnG ′ (N ′

2) = ∅. (B1)

Ancestral independence implies an unconditional probabilis-
tic independence: If N ′

1 ⊥ N ′
2, then PN ′

1∪N ′
2
= PN ′

1
PN ′

2
. If

N ′
1, N

′
2 ∈ InjG (G ′), then the associated probabilistic constraint

is applicable to P InjG (G ′ ). This notion generalizes to more than
two ancestrally independent (AI) sets. A set N ′ ⊆ N ′ is an
AI-expressible set if it can be decomposed into the disjoint
union of injectable sets N ′ = ∐

i N
′
i | N ′

i ∈ InjG (G ′) and all
pairs N ′

i , N
′
j are ancestrally independent: N ′

i ⊥ N ′
j ∀i, j . The

analogous probabilistic constraint is PN ′ = P∐
i N ′

i
= ∏

i PN ′
i

[9].17 Throughout this work, we let AIExprG (G ′) denote the set
of all AI-expressible sets.18 Efficient algorithms for computing
the injectable and AI-expressible sets of an inflation can be
found in [21]. Table I and II tabulate the AI-expressible sets
and the associated ancestral separations for the wagon-wheel
and web inflations [respectively Figs. 8(b) and 8(c)].

Unlike P ImInjG (G ′ ), which is noncontextual by construction,
P InjG (G ′ ) contains overlapping marginals, meaning its contex-
tuality remains unknown and must be determined using any
of the techniques discussed in Appendix A. More importantly,
the inflation technique introduces constraints relating to the AI-
expressible sets. In practice, the equality constraints implied by
AIExprG (G ′) permit one to construct a marginal model defined
over the AI-expressible sets AIExprG (G ′) resulting in greater
resolution in classifying the compatibility of PNO

. In summary,
the inflation technique partially transforms the compatibility
problem into a marginal problem, wherein one can solve
the marginal problem (Appendix A) to either determine the
compatibility of an observable distribution PNO

with G or

17In [21], this concept is generalized into terms which can be factor-
ized via d-separation conditions and the corresponding inflated sets
are termed expressible sets. This generalization was not required for
this work in particular because the ancestral independence relations
formed a generating set of d-separation conditions for all of the
inflations considered in Fig. 8.

18Analogously to a marginal scenario M, the AI-expressible sets
AIExprG (G ′) form an abstract simplicial complex. Therefore, in
practice, it is completely sufficient to focus on the maximally AI-
expressible sets.

TABLE I. Maximally AI-expressible sets for the wagon-wheel
inflation.

AIExprG (G ′) Ancestral separations

{A2, B1, C3, C1} {A2, B1, C3} ⊥ {C1}
{A1, B1, C4, C2} {A1, B1, C4} ⊥ {C2}
{A1, B2, C1, C3} {A1, B2, C1} ⊥ {C3}
{A2, B2, C2, C4} {A2, B2, C2} ⊥ {C4}
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TABLE II. Maximally AI-expressible sets for the web inflation.

AIExprG (G ′) Ancestral separations

{A1, B1, C1, A4, B4, C4} {A1, B1, C1} ⊥ {A4, B4, C4}
{A1, B2, C3, A4, B3, C2} {A1, B2, C3} ⊥ {A4, B3, C2}
{A2, B3, C1, A3, B2, C4} {A2, B3, C1} ⊥ {A3, B2, C4}
{A2, B4, C3, A3, B1, C2} {A2, B4, C3} ⊥ {A3, B1, C2}

{A1, B3, C4} {A1} ⊥ {B3} ⊥ {C4}
{A1, B4, C2} {A1} ⊥ {B4} ⊥ {C2}
{A2, B1, C4} {A2} ⊥ {B1} ⊥ {C4}
{A2, B2, C2} {A2} ⊥ {B2} ⊥ {C2}
{A3, B3, C3} {A3} ⊥ {B3} ⊥ {C3}
{A3, B4, C1} {A3} ⊥ {B4} ⊥ {C1}
{A4, B1, C3} {A4} ⊥ {B1} ⊥ {C3}
{A4, B2, C1} {A4} ⊥ {B2} ⊥ {C1}

derive compatibility inequalities for G, the latter of which is
discussed in Appendix C.

APPENDIX C: DERIVING INEQUALITIES FROM THE
INFLATION TECHNIQUE

Appendix B summarizes how the inflation technique [21]
can cast the compatibility problem into the marginal problem
by leveraging inflations of the triangle structure. Explicitly,
for a given inflation G ′ of the triangle structure, one constructs
a marginal problem (Appendix A) for the marginal scenario
M composed of the maximal AI-expressible sets of G ′, i.e.,
M = AIExprG (G ′).

Recall that the first inequality (12) presented in Sec. VII
was derived using the wagon-wheel inflation [Fig. 8(b)]. The
wagon-wheel inflation possesses four copies of C (C1, C2,
C3, and C4) and two copies of A (A1 and A2) and B (B1 and
B2) arranged in the shape of a wagon wheel. The maximal
AI-expressible sets of the wagon-wheel inflation along with
their ancestral dependences can be found in Table I. These
maximal AI-expressible sets define a marginal scenario where
the joint variables J are the set of observable nodes in the
wagon-wheel inflation J = N ′

O :

M = AIExprG (G ′) = {{A2, B1, C3, C1}, {A1, B1, C4, C2},
{A1, B2, C1, C3}, {A2, B2, C2, C4}}.

(C1)

Given that the Fritz distribution is defined over four-outcome
variables, the variables in the marginal scenario are assigned
four outcomes as well. This marginal scenario M then de-
fines an incidence matrix M capable of accommodating the
Fritz distribution that has |E (M)| = 4 × 44 = 1024 rows and
|E (J )| = 48 = 65 536 columns; this matrix is not reproduced
here. The sheer size of the incidence matrix used here makes
complete solutions of the marginal problem using tools such
as linear-quantifier elimination intractable. To construct the
marginal distribution vector PM for the Fritz distribution, one
begins with PM defined in a symbolic form

PMᵀ = (PA2B1C3C1 (0000), . . . , PA1B1C4C2 (3232), . . . , PA2B2C2C4 (3333))︸ ︷︷ ︸
1024 entries

, (C2)

which can be factored into the ancestrally independent injectable sets using Table I,

PMᵀ = (PA2B1C3 (000)PC1 (0), . . . , PA1B1C4 (323)PC2 (2), . . . , PA2B2C2 (333)PC4 (3)). (C3)

Penultimately, each probability distribution in Eq. (C3) is deflated by dropping copy indices,

PMᵀ = (PABC (000)PC (0), . . . , PABC (323)PC (2), . . . , PABC (333)PC (3)). (C4)

This step is permitted because all of the remaining distri-
butions in Eq. (C3) are defined over the injectable sets of
the wagon-wheel inflation. Finally, each of the elements of
PM are replaced with numerical values pursuant to the Fritz
distribution. For example, PABC (323)PC (2) is assigned the
following numerical value:

PABC (323)PC (2) = 1
32 (2 +

√
2) × 1

4 � 0.0267. (C5)

The same is applied to all other entries of PM. Finally,
this numerical version of PM and M are subjected to linear
programming software and an infeasibility certificate y was
obtained, corresponding precisely to the inequality (12) using
Eq. (C4) in bitwise notation.

The remaining inequalities in Sec. VII were derived using
the web inflation of Fig. 8(c). The maximal AI-expressible
sets of the wagon-wheel inflation along with their ances-
tral dependences can be found in Table II. Analogously to

the wagon-wheel inflation, these AI-expressible sets form a
marginal scenario M which defines an incidence matrix M

that has |E (M)| = 4 × 46 + 8 × 43 = 16 896 rows, |E (J )| =
412 = 16 777 216 columns, and 201 326 592 nonzero entries.

APPENDIX D: DERIVING SYMMETRIC CAUSAL
COMPATIBILITY INEQUALITIES

Appendix B detailed how to obtain causal compatibility
inequalities for any causal structure by constructing a corre-
sponding marginal problem (as defined in Appendix A) and
supplying an incompatible distribution to generate an infea-
sibility certificate. The inequality (15) presented the causal
compatibility inequality Isymmetric web which is symmetric under
permutations of the variables A, B, and C. This section
aims to describe a general technique that can be used to
derive Isymmetric web and other inequalities also exhibiting this
symmetry. In brief, this is accomplished by grouping marginal
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events m ∈ E (M) of a marginal scenario M into orbits under
the action of variable permutations.

Exploiting symmetries of the marginal scenario is useful
for a few distinct reasons. First, Bancal et al. [60] discuss
computational advantages in considering symmetric versions
of marginal polytopes mentioned in Appendix A; the number
of extremal points typically grows exponentially in J , but
only polynomially for the symmetric polytope. They also note
that a number of interesting inequalities (such as the CHSH
inequality [25]) can be written in a way that is symmetric
under the exchange of parties, demonstrating that nontrivial
inequalities can be recovered from facets of a symmetric
polytope. Second, numerical optimizations against symmetric
inequalities lead to one of two interesting cases: Either the
extremal distribution is symmetric itself or it is not. The
latter case generates a family of incompatible distributions
obtained by applying symmetry operations on the extremal
distribution.19

To clarify which symmetries we have in mind, first con-
sider the marginal scenarioM = {{A,B,C}, {C,D}, {A,D}}
where each variable inJ = {A,B,C,D} has binary outcomes
{0, 1}. Here IM ≡ {PABC (010) � PCD (00) + PAD (01)} is an
inequality constraining the set of noncontextual marginal
models PM. Now the contextuality of a distribution PABCD

should be invariant under those permutations of the variable
labels in J which map the marginal scenario to itself, but
not all variable relabelings preserve M. An example of a
permutation ϕ ∈ Perm(J )20 which does not preserve M is
ϕ[{a, b, c, d}] = {c, a, d, b}. The action of ϕ on IM is

ϕ[IM] = {Pϕ[abc](010) � Pϕ[cd](00) + Pϕ[ad](01)}
= {Pcad (010) � Pdb(00) + Pcb(01)}
= {Pacd (100) � Pbd (00) + Pbc(10)}, (D1)

which yields a valid albeit irrelevant inequality, as the resulting
inequality no longer pertains to M.

Permutations ϕ that modify the marginal scenario have no
application within the framework of the inflation technique
(Appendix B) because the inflation lemma only holds when
the inflated inequality constrains injectable sets. Therefore, the
desired set of symmetries for our purposes is a subgroup of
Perm(J ) that takes M to M.

The variable permutation group �(M) for a marginal
scenario M is the joint permutation subgroup that stabilizes
the marginal scenario, �(M) ≡ {ϕ ∈ Perm(J ) | ∀V ∈ M :
ϕ[V ] ∈ M}. In general, the variable permutation group �(M)
can be obtained using group stabilizer algorithms. After ob-
taining �(M), one can take known compatibility inequalities
IM and create a whole family of inequalities {ϕ[IM] | ϕ ∈
�(M)} that are valid for the same marginal scenario ϕ[IM] =
ϕ[I ]ϕ[M] = ϕ[I ]M.

Although useful for reducing computational complexity
[60], we divert our attention to finding symmetric inequali-
ties, i.e., those where ϕ[IM] = IM ∀ϕ ∈ �(M). To generate

19If the extremal distribution happens to be asymmetric, then one
can conclude that the space of accessible distributions is nonconvex.

20The permutation group Perm(S ) over a set S is the set of all
bijective maps ϕ : S → S.

inequalities that exhibit certain symmetries using the methods
described in Appendix A, it is sufficient to perform a change of
basis on the incidence matrix M for a given marginal scenario
M. Through repeated action of ϕ ∈ � on marginal outcomes
m ∈ E (M) and joint outcomes j ∈ E (J ), one can define group
orbits of � in E (M) and E (J ): Orb�(m) ≡ {ϕ[m] | ϕ ∈ �}
and Orb�(j ) ≡ {ϕ[j ] | ϕ ∈ �}, respectively. The action of
ϕ ∈ � on any outcome f ∈ E (V ) (denoted by ω[f ]) is defined
as (ϕ[f ])(v) ≡ f (ϕ−1[v]) pursuant to intuitive action used in
Eq. (D1). Using these group orbits, it is possible to contract the
incidence matrix M of a marginal scenario into a symmetrized
version. The symmetric incidence matrix M� for a marginal
scenario M and the variable permutation group � is a con-
tracted version of the incidence matrix M for M. Each row of
M� corresponds to a marginal orbit Orb�(m). Analogously,
each column of M� corresponds to a joint orbit Orb�(j ). The
entries of M� are integers and correspond to summing over
the rows and columns of M that belong to each orbit,

(M�)Orb�(m),Orb�(j ) =
∑

j ′ ∈ Orb�(j )
m′ ∈ Orb�(m)

Mm′,j ′ . (D2)

It is possible to analogously define a symmetric joint
distribution vector P J

� indexed by Orb�(j ), (P J
� )Orb�(j ) =∑

j ′∈Orb�(j ) P
J
j ′ , and a symmetric marginal distribution vector

PM
� indexed by Orb�(m), (PM

� )Orb�(m) = ∑
m′∈Orb�(m) P

M
m′ .

Together, M�, P J
� , and PM

� define a symmetric marginal
problem PM

� = M� · P J
� . The symmetric marginal problem

can be solved using the same computational methods discussed
in Appendix A and will produce symmetric inequalities.

In the context of the inflation technique, a variable sym-
metry �(M′) over an inflated marginal scenario M′ does
not always correspond to a variable symmetry under defla-
tion �(M). In order to derive deflated inequalities that are
symmetric under an exchange of parties, it is required that
�(M′) ∼ �(M) are equivalent up to the copy index.

For the triangle structure in particular, the variable per-
mutation group is the set of permutations on A, B, and C:
�(M) = Perm(A,B,C). For the web inflation [Fig. 8(c)],
we have obtained �(AIExprG (G ′)), an order 48 group with the
following four generators:

ϕ1

A1 → A4

A2 → A3

A3 → A2

A4 → A1

B1 → B4

B2 → B3

B3 → B2

B4 → B1

C1 → C4

C2 → C3

C3 → C2

C4 → C1

ϕ2

A1 → A1

A2 → A3

A3 → A2

A4 → A4

B1 → C1

B2 → C3

B3 → C2

B4 → C4

C1 → B1

C2 → B3

C3 → B2

C4 → B4

ϕ3

A1 → C1

A2 → C2

A3 → C3

A4 → C4

B1 → A1

B2 → A2

B3 → A3

B4 → A4

C1 → B1

C2 → B2

C3 → B3

C4 → B4

ϕ4

A1 → A1

A2 → A2

A3 → A3

A4 → A4

B1 → B2

B2 → B1

B3 → B4

B4 → B3

C1 → C3

C2 → C4

C3 → C1

C4 → C2. (D3)
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Note that ϕ1, ϕ2, ϕ3, and ϕ4 are all automorphisms of the web
inflation. Moreover, they stabilize the AI-expressible sets of
Table II. Importantly,

�(AIExprG (G ′)) ∼ Perm(A,B,C). (D4)

To see this, ϕ1 and ϕ4 become the identity element in
Perm(A,B,C) upon removal of the copy index, leaving ϕ2 to
generate reflections and ϕ3 to generate rotations.

The symmetric incidence matrix M� for the web inflation
is considerably smaller than M . The number of rows of M�

is a number of distinct orbits Orb�(m) in E (M). Likewise
the number of columns is the number of distinct orbits
Orb�(j ) in E (J ). For the web inflation in particular, M�

is 450 × 358 120. Using the symmetric incidence matrix and
linear programming methods, an infeasibility certificate was
found that is capable of witnessing the Fritz distribution. The
corresponding deflated inequality is presented in Sec. VII as the
inequality (15).
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