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Self-averaging of random quantum dynamics
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The stochastic dynamics of a quantum system driven by N statistically independent random sudden quenches
in a fixed time interval is studied. We reveal that with increasing N the system approaches a deterministic
limit, indicating self-averaging with respect to its temporal unitary evolution. This phenomenon is quantified by
the variance of the unitary matrix governing the time evolution of a finite-dimensional quantum system which,
according to an asymptotic analysis, decreases at least as 1/N . For a special class of protocols (when the averaged
Hamiltonian commutes at different times), we prove that for finite N the distance (according to the Frobenius
norm) between the averaged evolution unitary operator generated by the Hamiltonian H and the unitary evolution
operator generated by the averaged Hamiltonian 〈H 〉 scales as 1/N . Numerical simulations enlarge this result to
a broader class of noncommuting protocols.
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I. INTRODUCTION

Self-averaging is a well-established concept in the statistical
physics of disordered and random systems. Loosely speaking,
a certain property X of a system is self-averaging if most
realizations of the randomness have the same value of X

in some limiting regime. More precisely, a system is self-
averaging with respect to X if the relative variance of X tends
to 0 in this limiting regime. If, e.g., we consider a system of
combinatorial objects of size N , then the relative variance〈

X2
N

〉 − 〈XN 〉2

〈XN 〉2
→ 0 (1)

as N → ∞.
For a large class of randomly driven quantum systems

such as quenched disordered systems [1,2], the question of
self-averaging of their properties is essentially nontrivial [3].
There have been studies on self-averaging of a free energy for
spin systems with short-range [4] or long-range interactions
[5], self-averaging of diffusion in heterogeneous media [6],
self-averaging of Lyapunov exponents in fluids [7], and self-
averaging of the reduced density matrices [8], to mention only
a few.

In this paper, we consider a broad class of randomly driven
quantum systems (see the recent paper [9] on random evolu-
tion) for which the time evolution is universally self-averaging.
In particular, we study quantum dynamics in the presence of
subsequent random and independent steplike perturbations of
finite-dimensional quantum systems. Such a driving corre-
sponds to the quantum quench dynamics of closed quantum
systems—a rapidly developing and intensively investigated
research area [10] which recently has found experimental
realizations [11]. Thermalization [12], quantum phase tran-
sitions [13,14], integrability [15], simple out-of-equilibrium
quantum systems [16], and work fluctuations [17]—this is
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a far from complete list of examples of quantum quench
scenarios that have been studied. We investigate the driving of a
quantum system formed as a series of statistically independent
random quenches—multiple random quench (MRQ)—and its
continuous limit of an infinite number of quenches occurring
in a finite time interval—continuous random quench (CRQ).
Self-averaging of the unitary time evolution for the MRQ
protocol occurs with an increasing number N of quenches
in the fixed time interval. This phenomenon is quantified
by vanishing variance of the unitary time-evolution matrix
representation, which decreases at least as 1/N . This behavior
is formally proved for an arbitrary distribution supported on
bounded intervals of the randomly controlled Hamiltonians.
According to the self-averaging property, the considered uni-
tary evolution almost surely converges to its mean value. We
estimate this mean value for a special class of protocols when
an instantaneous average of the Hamiltonian (with respect to
the matrix ensemble) commutes at different time instants. We
call this property ”the commutation in the statistical sense.”
For this case we prove that the self-averaged unitary evolution
converges to the evolution governed by a mean value of a
random Hamiltonian and convergence is in the sense of the
Frobenius (Hilbert-Schmidt) norm. In other words, in the basis
where the average of the Hamiltonian is diagonal, off-diagonal
elements with vanishing mean value contribute less and less
to the time evolution as the number of quenches increases.
Moreover, we have also performed numerical simulations in
order to analyze the noncommuting case for a qubit. For some
particular drivings we show that also in this case, in the CRQ
limit, the evolution is generated by the mean value of the
Hamiltonian, even though it does not commute in a statistical
sense at different points in time (i.e., when instantaneous
averages cannot be simultaneously diagonalized). For this
noncommuting case and two other examples of the MRQ
protocols for a qubit space, results of numerical simulation
apparently exhibit the exact power law 1/N , which is the lower
asymptotic estimation predicted analytically.
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The layout of the paper is as follows. In Sec. II, we provide
the necessary information on the theory of random matrices
required for further reasoning. Next, in Sec. III, we formulate
a unitary time evolution of quantum systems with random
quenches and introduce the notion of the effective Hamiltonian
of the system. In the same section, we define commutation
of operators in the statistical sense. In Sec. IV, we discuss
the statistics of the effective Hamiltonian of the MRQ control
(with two main propositions concerning its properties), and as
a consequence we formulate a self-averaging condition for the
unitary time evolution. In Sec. V, we provide a numerical sim-
ulation for more general MRQ protocols. Finally, in Sec. VI,
we summarize our results and we present some ideas for future
work. We postpone proofs of the propositions formulated in
Sec. IV to Appendixes A–F.

II. RANDOM MATRIX THEORY

In order to describe and define MRQ we utilize random
matrix theory [18], a rapidly developing branch of mathematics
useful in many branches of modern physics starting from
Wigner’s classification of “canonical” random matrix ensem-
bles for the description of statistics of nuclear levels spacing up
to quantum chaos, many-body physics, and quantum statistical
mechanics. The MRQ driving studied in this paper is a further
example.

Let us represent an M-dimensional complex and Hermitian
matrix H as point H = (h1, h2, . . . , hd ) in a d-dimensional
real space Rd , where d = M2 is the number of real and inde-
pendent parameters specifying the matrix H . In the following,
we consider an ensemble of matrices with random parameters
hi and the probability distribution

Pr(H ∈ D) =
∫

D

dH�(H ) (2)

that H = (h1, h2, . . . , hd ) ∈ D ⊂ Rd , where �(H ) =
�(h1, h2, . . . , hd ) is a probability density function (pdf)
and dH = dh1dh2 . . . dhd . We restrict our reasoning to the
distribution �(H ), which we call a matrix-pdf, supported on
the bounded probability space P ⊂ Rd and normalized in
such a way that ∫

P
dH�(H ) = 1 . (3)

Let HN be an ordered set of random and statistically indepen-
dent matrices

HN = (H1,H2, . . . , HN ), (4)

with the joint pdf given by the product of individual distribu-
tions ensuring statistical independence,

ρ(HN ) = �1(H1)�2(H2) . . . �N (HN ), (5)

where the pdf �k (Hk ) = �k (h(k)
1 , h

(k)
2 , . . . , h

(k)
d ) for k =

1, 2, . . . , N . For any matrix U depending on the set HN one
can define the first statistical moment 〈U 〉 as an average of the
elements [〈U 〉]αβ = 〈[U ]αβ〉, where

〈[U ]αβ〉 =
∫
P

dHN [U ]αβ ρ(HN ). (6)

FIG. 1. Schematic visualization of the process of “integration”
of arbitrary time-dependent driving into the unitary time-evolution
operator. Solid red lines represent changes in time of an arbitrary
finite-dimensional, time-dependent Hamiltonian. The deterministic
regime in the upper panel shows an increasing number of partially
constant Hamiltonians (solid black lines) forming a steplike realiza-
tion which, in the limit of an infinite number of quenches, converges
into the time-evolution operator of a continuous driving (red line). The
stochastic realization in the lower panel is a sketch of the same idea
of an “integration” into a unitary operator, however, in this case for
each partially constant Hamiltonian we take a statistically independent
random matrix with some dispersion (indicated by green boxes). In
this case solid black lines represent a particular realization of this
stochastic process and the red line represents the mean value of the
time-dependent Hamiltonian.

Here, [·]αβ denotes a matrix element, dHN = ∏N
k=1 dHk ,

and dHk = dh
(k)
1 dh

(k)
2 . . . dh

(k)
d . We define per analogiam

the variance matrix Var(U ) as the matrix of variances, i.e.,
[Var(U )]αβ = Var([U ]αβ ) with

Var([U ]αβ ) = 〈|[U ]αβ |2〉 − | 〈[U ]αβ〉 |2. (7)

In the following we use a Frobenius matrix norm ‖ · ‖ defined
by

‖U‖2 = Tr[UU †] (8)

which is known to be submultiplicative, i.e., ‖AB‖ � ‖A‖‖B‖
for any matrices A and B.

III. SUDDEN QUENCH EVOLUTION

In this section, using the random matrix terminology, we
formulate the time evolution of quantum systems subjected
to random quenches. For completeness we start with the
more intuitive case of deterministic dynamics, which can be
considered as a limiting case of more general dynamics, which
is our primary object of investigation.

A. Deterministic case

We consider a quantum system driven by a deterministic
time-dependent Hamiltonian H (t ) in the time interval T =
[0, τ ), where τ is fixed. The unitary evolution of the system is
determined by the operator

U (τ, 0) = T e−i
∫ τ

0 dtH (t ), (9)

where T is the time-ordering (chronological) operator. This
evolution can be approximated by an N -step-like Hamil-
tonian HN (t ) consisting of partially constant Hamiltoni-
ans H1,H2, . . . , HN in equal time intervals Tk = [(k −
1)τ/N, kτ/N ) of length δt = τ/N (see Fig. 1). For any time
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t ∈ T = ∪N
k=1Tk we define

HN (t ) = Hk for t ∈ Tk, (10)

where

Hk = H (tk ), tk = k − 1

N
τ, k = 1, 2, . . . , N. (11)

The corresponding evolution operator takes the form

UN (τ, 0) = T e−i
∫ τ

0 dtHN (t ) =
N∏

k=1

e− i
N

Hkτ . (12)

The last equality follows from the composition property

U (τ, 0) = U (tN+1, tN )U (tN , tN−1) . . . U (t3, t2)

× U (t2, t1) (13)

and means that the evolution operator with burdensome time
ordering reduces to the product of unitary operators generated
by time-independent Hamiltonians.

In this approach, the exact starting Hamiltonian H (t ) is the
limit of the sequence HN , i.e.,

H (t ) = lim
N→∞

HN (t ), (14)

and as a consequence,

U (τ, 0) = lim
N→∞

UN (τ, 0). (15)

Let us note that any such steplike evolution can be described
by an effective Hamiltonian H̃N which satisfies the relation

UN (τ, 0) = exp[−iτ H̃N ]. (16)

We should have in mind that τ is fixed. If τ is changed to
another value, then the effective Hamiltonian H̃N also changes
accordingly.

B. Stochastic case

Now, let us consider the probabilistic case for which a
system is driven by time-dependent random matrices H (t )
in the time interval T = [0, τ ) with fixed τ . The definition
of a stochastic steplike driving of a quantum system, i.e.,
the MRQ protocol, is analogous to a set of statistically in-
dependent Hamiltonians HN = (H1,H2, . . . , HN ) which are
random matrices of the joint matrix-pdf ρ(HN ) [cf. Eq. (5)].
Moreover, since all the matrices in HN are assumed to
be statistically independent, for time-dependent and random
driving of the MRQ protocol HN (t ), one can postulate just the
time-dependent matrix-pdf �t (H ) defined in a time interval T
in such a way that

Pr(H (t ) ∈ D) =
∫

D

dH�t (H ). (17)

One can represent the distribution ρ(HN ) in the time domain
as

ρ(HN ) =
N∏

k=1

�tk (Hk ), tk = k − 1

N
τ. (18)

The case of a finite number of quenches N , when the
evolution is driven by the Hamiltonian HN (t ) in Eq. (10), is
hereinafter referred to as a multiple random quench, whereas

the limiting case for the Hamiltonian H (t ) [Eq. (14)] is called
a continuous random quench. This continuous limit inherits
the condition that for any t, s ∈ T the Hamiltonians H (t ) and
H (s) are statistically independent random matrices. Note that
all protocols for an arbitrary number N (including the limiting
CRQ case) can be completely specified by the time-dependent
pdf �t (H ).

C. Effective Hamiltonian

The effective Hamiltonian defined in Eq. (16) can explicitly
be obtained by using relation (12), from which it follows that

e−iτ H̃N =
N∏

k=1

e− i
N

Hkτ . (19)

For a given set HN = (H1,H2, . . . , HN ), we can calculate
the effective Hamiltonian by use of the Baker-Campbell-
Hausdorff formula [19] for the operators Ak = −iHkτ ,
namely,

N∏
k=1

e
1
N

Ak = eZN , (20)

where ZN has the following structure:

ZN = 1

N

N∑
i1=1

Ai1 + 1

N2

N∑
i1,i2=1

αi1,i2

[
Ai1 , Ai2

]

+ 1

N3

N∑
i1,i2,i3=1

αi1,i2,i3

[
Ai1 ,

[
Ai2 , Ai3

]] + . . . . (21)

The parameters αi1,...,ik for k = 2, 3, . . . can in principle be
computed. Some effective algorithms for numerical calcula-
tions are presented, e.g., in Refs. [20,21]. However, the explicit
form of the higher order terms is not straightforward since
they involve more general nested commutators, like the com-
mutators [[A,B], [C,D]]. They are not present in Dynkin’s
expansion [22] for two exponentials, as the commutators in
Dynkin’s form are “segregated to the right,” but nevertheless,
the expansion has the structure of Lie polynomials; i.e., it
consists of commutators multiplied by numbers, which is
crucial for the derivation of some of the results presented in
this paper.

Henceforth we use an equivalent form of Eq. (21) given by
the expansion of the commutators

ZN = 1

N

N∑
i1=1

Ai1 + 1

N2

N∑
i1,i2=1

βi1,i2Ai1Ai2

+ 1

N3

N∑
i1,i2,i3=1

βi1,i2,i3Ai1Ai2Ai3 + . . . (22)

with a new set of coefficients βi1,...,in which can be expressed
by the α coefficients in (21).

From the above relations (19)–(22) it follows that the
effective Hamiltonian H̃N can be represented by a series of
polynomials Pn(HN ) of nth degree of noncommuting matrix
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variables, namely,

H̃N = i

τ

∞∑
n=1

Pn(HN ), (23)

where according to Eq. (22) one gets

P1(HN ) = −iτ

N

N∑
i1=1

Hi1 , (24)

P2(HN ) = (−iτ )2

N2

N∑
i1,i2=1

βi1,i2Hi1Hi2 , (25)

P3(HN ) = (−iτ )3

N3

N∑
i1,i2,i3=1

βi1,i2,i3Hi1Hi2Hi3 , (26)

and so on. Although an effective Hamiltonian H̃N obeying
(16) always exists, representation (23) is valid locally in
some convergence domain of the series. There are various
quantifiers estimating the convergence domain [21,23,24].
However, the generalized case for N exponentials requires
a separate treatment (see Appendix A). It is crucial for our
further reasoning to represent the mean value of the effective
Hamiltonian as

〈H̃N 〉 = i

τ

∞∑
n=1

〈Pn(HN )〉 (27)

and the variance matrix as the series

Var(H̃N ) =
∞∑

n,m=1

Sn,m(HN ), (28)

where

[Sn,m(HN )]αβ = 〈[Pn(HN )]αβ[Pm(HN )]∗αβ〉
− 〈[Pn(HN )]αβ〉 〈[Pm(HN )]αβ〉∗ . (29)

To maintain mathematical rigor and to ensure the existence
of these averages one can simply assume that the ensemble is
contained in the convergence domain.

D. Commutation in the statistical sense

At the end of this introductory part we define a special condi-
tion required in the following proofs that we call commutation
in the statistical sense. To this aim, let us note that the mean
value of the Hamiltonian H (t ) for the CRQ protocol can be
expressed as an ensemble average over the distribution �t (H ),
namely,

〈H (t )〉 =
∫
P

dHH�t (H ). (30)

We say that two observables O1 and O2 commute in the
statistical sense if their mean values with respect to the matrix
ensemble commute, i.e., [〈O1〉 , 〈O2〉] = 0. In our particular
case, we say that the whole MRQ protocol, defined solely by
the distribution �t (H ), commutes in the statistical sense if

[〈H (t )〉 , 〈H (s)〉] = 0 (31)

holds true for any t, s ∈ T . Note that the above condition also
implies that [〈HN (t )〉 , 〈HN (s)〉] = 0 for an arbitrary number

of quenches N . We stress that commutation in the statistical
sense is a weaker condition than standard commutation. In
particular, it means that the first moments at different points in
time can be simultaneously diagonalized.

IV. SELF-AVERAGING LIMIT

In this section we present two propositions implying ex-
plicit conditions for self–averaging, i.e., when a deterministic
description can effectively approximate an essentially random
system. In the following we use the abbreviation

β(n) = max
i1,i2,...,in

∣∣βi1...in

∣∣ (32)

and the dimensionless quantity

K (n) = max
t∈T

∫
P

dHτn‖H‖n�t (H ). (33)

In order to simplify the notation we also put K (n,m) ≡ K (n +
m) + K (n)K (m).

Now we can state our main result. Let HN be a set
of random matrices representing a stochastically controlled
quantum system via the MRQ protocol. The mean values of
the polynomials Pn(HN ) and Sn,m(HN ), which constitute the
expansion of the mean effective Hamiltonian 〈H̃N 〉 in Eq. (27)
and Var(H̃N ) in Eq. (28), respectively, satisfy the following
conditions:

Theorem 1. For the MRQ protocol in the time interval T =
[0, τ ) with pdf �t (H ),

‖Sn,m(HN )‖ � Rn+m(N )β(n)β(m)K (n,m) (34)

for any n + m < N . Moreover, if MRQ commutes in the
statistical sense [Eq. (31)], then for N > n > 1,

‖ 〈Pn(HN )〉 ‖ � Rn(N )β(n)K (n), (35)

where

Rn(N ) = 1 − N !

Nn(N − n)!
= O

( 1

N

)
. (36)

Theorem 2. For the MRQ protocol in the time interval T =
[0, τ ) with time-independent distribution �(H ) ≡ �t (H ) =
�s (H ) for any t, s ∈ T , the equation

〈P2n(HN )〉 = S2n,2m+1(HN ) = S2n+1,2m(HN ) = 0 (37)

holds true for any n,m ∈ N. In addition, if �(−H ) = �(H ),
then 〈Pn(HN )〉 = 0.

Note that a rough estimation of β(n) shows that β(n) < 1
and that it is a decreasing function of n. Further, if one
additionally assumes the convergence condition to be satisfied,
K (n) is an exponentially decreasing function of n. Hence, one
concludes that for Hamiltonians and time scales satisfying the
convergence, the expected value and variance of the effective
Hamiltonian can be approximated by a finite number of terms
in Eq. (23) which, for large N , decrease as O(1/N ).
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A. Variance of the unitary time evolution

For MRQ protocols satisfying the convergence condition
(see Appendix A) the variance matrix satisfies

‖Var(H̃N )‖ �
∞∑

n,m=1

‖Sn,m(HN )‖ = O

(
1

N

)
. (38)

This condition is sufficient to show not only that the variance
of the time-evolution unitary matrix decreases as O(1/N ) but
also that an arbitrary product of these matrices decreases as
O(1/N ) (see Appendixes D and F). In other words, a vanishing
variance of the local generator (i.e., the effective Hamiltonian)
implies the vanishing of the variance of the unitary matrix
in a larger domain. Thus, for an arbitrary distribution ρt (H )
supported on a bounded interval

SN := ‖Var[UN (τ, 0)]‖ = O

(
1

N

)
. (39)

One infers that the magnitude of the variance matrix for a
convergent series, (28), becomes arbitrarily small with an
increasing number N of quenches, i.e., for the steplike MRQ
protocol one obtains self-averaging of the time evolution of the
quantum system. In particular, in the limiting case of control
given by the CRQ protocol one obtains

lim
N→∞

SN = 0 (40)

and this implies that UN (or correspondingly H̃N ) approaches
a degenerate random variable, i.e., it almost surely converges
to its mean value,

lim
N→∞

T e−i
∫ τ

0 dtHN (t ) = lim
N→∞

〈
T e−i

∫ τ

0 dtHN (t )
〉
. (41)

This result is of interest for potential experimental ap-
plications. For general MRQ protocols one expects that the
driving of a quantum system given by steplike independent
random changes of the Hamiltonian becomes more regular in
the limiting control of the CRQ protocol, which can serve as
an effective classification scheme of different stochastic time
evolutions (convergent to the same self-averaged one).

Note that the commonly defined self-averaging condition,
(1), involves scaling of the variance by the square of the mean
value. Per analogiam, we can scale quantity SN by the quantity
‖ 〈UN (τ, 0)〉 ‖2, however, any unitary matrix is constant in the
Frobenius norm, (8), and equal to dimension M of the Hilbert
space [see Eq. (8)], thus

‖Var[UN (τ, 0)]‖
‖ 〈UN (τ, 0)〉 ‖2

= 1

M
SN = O

(
1

N

)
. (42)

Henceforth we just use the quantity SN .

B. Average of the unitary time evolution

Let us now examine the mean value of the effective Hamil-
tonian. From the second part of Theorem 1, if the additional
assumption of commutation in the statistical sense holds true
[cf. Eq. (31)], a growing number of quenches N results in a
decreasing absolute value of the noncommutative part of series
(23). In particular, this implies that

‖ 〈H̃N 〉 − 1

τ

∫ τ

0
dt 〈HN (t )〉 ‖ = O

(
1

N

)
. (43)

This condition is sufficient to derive an analogous relation in
terms of the unitary operator,

DN := ∥∥ 〈
T e−i

∫ τ

0 dtHN (t )〉 − T e−i
∫ τ

0 dt〈HN (t )〉∥∥ = O

(
1

N

)
,

(44)

which is valid for an arbitrary distribution ρt (H ) supported on
the bounded interval (see Appendixes E and F). In the limit it
gives

lim
N→∞

〈
T e−i

∫ τ

0 dtHN (t )
〉 = T e−i

∫ τ

0 dt〈H (t )〉 . (45)

Note that in fact, due to condition (31), the time ordering can
be dropped here, however, we left it since in the next section
we numerically compute the quantity DN in a more general
case.

Surprisingly, the numerical simulation performed for qubits
and presented in the next section confirms the validity of
formula (45) also in the noncommuting case. This observation,
although very particular, suggests the conjecture that Eq. (45)
can be valid generally and thus can be successfully applied
in practice as an extremely useful tool simplifying very
complicated calculations of averaged unitary evolutions.

A special case of Hamiltonians commuting in the statistical
sense is exemplified by protocols with time-independent dis-
tributions such that �t (H ) = �s (H ) ≡ �(H ). In this case the
set of HN consists of independent and identically distributed
random matrices and we refer to this protocol as the IID
protocol. Based on Theorem 2 we conclude that only odd terms
contribute to the series,

〈H̃N 〉 = i

τ

∞∑
n=0

〈P2n+1(HN )〉 . (46)

Moreover, the second part of Theorem 2 also implies that for
an even pdf, 〈H̃N 〉 = 0, or equivalently 〈UN (τ, 0)〉 = 1, for an
arbitrary number of quenches N . Also, one half of the terms
in series (23) vanish and the variance matrix, Eq. (28), reduces
to the series

Var(H̃N ) =
∞∑

n,m=0

〈S2n,2m(HN ) + S2n+1,2m+1(HN )〉 . (47)

For this special case the instantaneous first moment 〈H (t )〉 is
time independent and equal to the effective Hamiltonian in the
CRQ limit, i.e.,

〈H (t )〉 = lim
N→∞

H̃N =
∫
P

dHH�(H ). (48)

V. NUMERICAL TREATMENT

In this section we numerically analyze an MRQ protocol
applied to a two-dimensional Hilbert space which describes
quantum two-level systems. Despite their simplicity, two-level
systems play a crucial role in many branches of theoretical and
applied physics. The celebrated nuclear magnetic resonance
(NMR) is probably the most spectacular example which is one
of the primary stages for dynamical decoupling and averaging
schemes [25,26]. Our work, at least partially, goes beyond
those studies since here we apply averaging to stochastically
driven two-level systems. These can mimic the realistic but
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randomly disturbed NMR systems and hence can be of po-
tential applicability not only in theoretical studies of quantum
random dynamics but also in magnetic-based imaging ranging
from solid state physics to quantum chemistry to medical
physics. Moreover, two-level systems, qubits per se, are the
basic building blocks for encoding quantum information.
Unfortunately, decoherence and uncontrollable fluctuations
(both deterministic and random) seem to be one of several
obstructions to the effective implementation of the power
of quantum information processing and quantum computing.
Stochastic averaging is one potential candidate for controlling
and correcting errors of a certain type.

For the random evolution of a qubit we represent the time-
dependent Hamiltonian in the form

H (t ) = 1
2 �α(t ) · �σ , (49)

where �σ is a vector of Pauli matrices and �α(t ) is a vector of
independent random components distributed according to the
normal distribution with mean values μi (t ) (for i = 1, 2, 3)
and the same variance s2 for all components.

We consider three protocols: (i) the time-independent IID
protocol, (ii) the time-dependent commuting case, and (iii) the
time-dependent noncommuting case. For these three cases, we
calculate SN and DN with respect to a number of quenches N .
For the IID protocol

�μI (t ) = �μ (50)

with magnitude | �μ| = μ. Note that if μ = 0 or if the vector
�μ has only one nonvanishing component, we obtain the
Gaussian unitary ensemble [18] for the qubit space. For the
time-dependent commuting case we take the single harmonic

�μC (t ) = μ(sin(ωt ), 0, 0) (51)

and for the noncommuting case we assume that

�μN (t ) = μ(sin(ωt ), cos(ωt ), 0). (52)

In order to calculate SN and DN numerically we have
performed Monte Carlo simulation: we generate a set of three
independent random numbers, distributed according to the
corresponding normal distributions. Next, from this set we
construct a random matrix representing the Hamiltonian Hk

given by Eqs. (11) and (49). Then we calculate its matrix
exponential exp(−iHkτ/N ) using the scaling-and-squaring
method combined with Padé approximation [27] and repeat the
same procedure for k = 1, . . . , N . Consequently, we construct
the unitary operator UN (τ, 0) [Eq. (12)] as a product of
corresponding matrix exponentials, and finally, we calculate
the statistics of the unitary operator given by the mean value
〈UN (τ, 0)〉 and the variance Var[UN (τ, 0)] from a sample of
106 realizations, which gives us the values of SN and DN .

Results presented in Figs. 2–4 reveal that the quantities
SN and DN obey power-law behavior 1/N for sufficiently
large values of N . Note that in Eqs. (39) and (44) we state
only that they behave at least as O(1/N ). Surprisingly, the
same behavior is also observed for the noncommuting case.
According to numerical simulations (Fig. 4), for this particular
driving of the two-level system it is shown that the quantity
DN vanishes as 1 over the number of quenches. This result
suggests that Eq. (44) could be valid in the more general
case. However, this subject needs further studies for higher
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FIG. 2. Graphs of SN and DN with respect to the number of
quenchesN presented in the log-log plot for the IID protocol [Eq. (50)]
for different values of the dimensionless parameter sτ [s is the
variance of the random components of the two-level Hamiltonian in
Eq. (49)] with the constant value μτ = 1 (μ is the mean value of the
random components). Graphs apparently show a power law for large
values of N . From linear regression we obtain SN ∝ N−1.00, N−0.98,
N−0.96 and DN ∝ N−0.99, N−0.99, N−0.98 with respect to an increasing
value of the parameter sτ = 5, 10, 15.

dimensional systems and other distributions of the MRQ
protocol.

VI. SUMMARY

Time-dependent and stochastically manipulated quantum
systems are very important for modern applications since they
effectively mimic external control applied to gain the desired
dynamic properties. In particular, stochastic description be-
comes unavoidable either if there is a certain degree of uncer-
tainty or randomness affecting the control strategy or if there
is disorder essentially present in the system under considera-
tion. Examples are random decoupling schemes for quantum
dynamical control and error suppression [28]. In many cases, a
proper description requires random operators [9,29], resulting
in models which are still very elegant and effective but not easy
to analyze. This is why every result simplifying the analysis
or serving as a useful tool not only is ”theoretically attractive”
but also is of great practical importance. Self-averaging is one
among such concepts developed to investigate a certain class
of stochastically modified quantum systems which still remain
challenging not only for mathematical physicists (cf. chap. 3

022111-6
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FIG. 3. Graphs of SN and DN with respect to the number of
quenches N presented in a log-log plot for the statistically commuting
case [Eq. (51)] and for selected values of the dimensionless parameter
sτ with the constant value μτ = 1 and ωτ = π/4. Graphs apparently
show a power law for large values of N . From linear regression we
obtain SN ∝ N−1.00, N−0.98, N−0.95 and DN ∝ N−0.99, N−0.99, N−0.98

with respect to an increasing value of the parameter sτ = 5, 10, 15.

in Ref. [29]) but also for these who want to effectively and
credibly simulate quantum dynamics of nontrivial systems.

In our work we formulated and studied quantum systems
undergoing multiple random quench protocols. A more ab-
stract approach to the problems studied in this paper can
be found in Ref. [30]. General results put in the framework
of convolution semigroups are presented in Ref. [31]. Here,
we have investigated the statistical properties of an effective
unitary dynamics with an emphasis on the self-averaging
property. We recognized that for a broad class of randomly
driven systems satisfying relatively nonrestrictive conditions,
the self–averaging phenomenon occurs and can be utilized for
considerable simplification of the treatment of such systems.
Our findings, derived via mathematically rigorous reasoning,
are supported by numerical calculations. Such a test not only
allows us to verify theoretical and more formal predictions
but also helps us to formulate a conjecture that is applica-
ble beyond mathematically proven cases. Our results form
a bridge between formal but sometimes highly restricted
mathematical treatment and more informal purely numerical
modeling, which is applicable to a broad, but so far not
precisely defined, class of random systems. We hope that our
modest contribution—besides enhancing our understanding of
quantum stochastic dynamics—can also serve as a training
ground suitable for testing numerical tools: even if one is

−6

−5

−4

−3

−2

−1

 0

 1

 4  5  6  7  8  9  10

ln
[S
N]

ln[N]

s τ =5
s τ =10
s τ =15

−6

−5

−4

−3

−2

−1

 0

 1

 4  5  6  7  8  9  10
ln
[D
N]

ln[N]

s τ =5
s τ =10
s τ =15

FIG. 4. Graphs of SN and DN with respect to the number of
quenches N presented in a log-log plot for the statistically noncom-
muting case [Eq. (52)] and for various values of the dimensionless
parameter sτ with the constant value μτ = 1 and ωτ = π/4. Graphs
apparently show a power law for large values of N . From linear
regression we obtain SN ∝ N−1.00, N−0.98, N−0.96 and DN ∝ N−0.99,
N−0.99, N−0.98 with respect to an increasing value of the parameter
sτ = 5, 10, 15.

interested in dynamic properties of systems which do not fulfill
the requirements of the propositions stated in this paper, such
that numerical treatment becomes unavoidable, one can still
verify the credibility of numerics applied to a class of systems
described here.
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APPENDIX A: ESTIMATION OF THE
CONVERGENCE DOMAIN

Let us express the polynomials Pn(HN ) in Eq. (23) in the
associative representation

Pn(HN ) = (−iτ )n

Nn

N∑
i1,...,in

βi1,...,inHi1Hi2 . . . Hin . (A1)
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From this relation one can estimate∑
n

‖Pn(HN )‖ �
∑

n

τ n

Nn

N∑
i1,...,in

∣∣βi1,...,in

∣∣∥∥Hi1Hi2 . . . Hin

∥∥
�

∑
n

τ n

Nn

N∑
i1,...,in

∥∥Hi1

∥∥∥∥Hi2

∥∥ . . .
∥∥Hin

∥∥.

(A2)

Under the assumption that

Hi ∈ C = {H : ‖H‖ < 1/τ } (A3)

for i = 1, 2, . . . , N , we infer that there exists a number M < 1
such that ∑

n

‖Pn(HN )‖ �
∑

n

1

Nn

N∑
i1,...,in

Mn

�
∑

n

Mn < ∞,

(A4)

and this proves the absolute convergence of series (23).

APPENDIX B: PROOF OF THEOREM 1

1. First statistical moment

From the Lie representation of the polynomials Pn(HN )
we conclude that any of them can be represented by a linear
combination of the terms

Hi1Hi2 . . . Hip−1

[
Hip ,Hip+1

]
Hip+2 . . . Hin , (B1)

where n > p > 1. Thus, for a subset of different indices i1 �=
i2 �= · · · �= in one obtains

〈Hi1Hi2 . . . Hip−1 [Hip ,Hip+1 ]Hip+2 . . . Hin〉
= 〈Hi1Hi2 . . . Hip−1〉 〈[Hip ,Hip+1 ]〉 〈Hip+2 . . . Hin〉 , (B2)

where the assumption of statistical independence of the matri-
ces Hi is utilized. Next, under the assumption of commutation
of the first moments we get

〈[Hj,Hk]〉 = 〈Hj 〉 〈Hk〉 − 〈Hk〉 〈Hj 〉 = [〈Hj 〉 , 〈Hk〉] = 0.

(B3)
Finally, we show that

N∑
i1 �=···�=in

βi1,...,in

〈
Hi1Hi2 . . . Hin

〉 = 0. (B4)

The number of vanishing terms in this sum, if N > n > 1, is
equal to the number of partial permutations of length n from
the set of N elements, i.e., N !/(N − n)!. Consequently, the
number of all nonzero terms in the sum (A1) is

Gn−1(N ) = Nn − N !

(N − n)!
, (B5)

where Gk (N ) denotes the kth-degree polynomial of the vari-
able N . Further, we estimate that∥∥ 〈

Hi1Hi2 . . . Hin

〉 ∥∥ �
〈∥∥Hi1Hi2 . . . Hin

∥∥〉
�

〈∥∥Hi1

∥∥∥∥Hi2

∥∥ . . .
∥∥Hin

∥∥〉
� K (n)/τn, (B6)

and as a consequence, only if N > n > 1 do we get

‖ 〈Pn(HN )〉 ‖ � τn

Nn

∥∥∥∥∥∥
N∑

i1,...,in

βi1,...,in

〈
Hi1Hi2 . . . Hin

〉∥∥∥∥∥∥
� Gn−1(N )

Nn
β(n)K (n) = Rn(N )β(n)K (n).

(B7)

2. Variance

For the elements of the variance-matrix series Var(H̃N ) we
have

[Sn,m(HN )]αβ

= τn+m

Nn+m

N∑
i1,...,in

N∑
j1,...,jm

βi1...inβj1...jm

[
Si1,...,in,j1,...,jm

]
αβ

,

(B8)

where[
Si1,...,in,j1,...,jm

]
αβ

= 〈[
Hi1 . . . Hin

]
αβ

[
Hj1 . . . Hjm

]∗
αβ

〉
− 〈[

Hi1 . . . Hin

]
αβ

〉 〈[
Hj1 . . . Hjm

]∗
αβ

〉
.

(B9)

In analogy to previous considerations for the subset of indices
i1 �= j1 �= i2 �= j2 �= · · · �= in �= jn, under the assumption of
statistical independence, we have

N∑
i1 �=j1 �=···�=in �=jn

βi1...inβj1...jm
× [

Si1,...,in,j1,...,jm

]
αβ

= 0 (B10)

for any n + m < N . Thus, the number of all nonzero terms in
the sum (B8) at least is

Gn+m−1(N ) = Nn+m − N !

(N − n − m)!
. (B11)

Similarly to the earlier reasoning we estimate that∥∥Si1,...,in,j1,...,jm

∥∥ �
〈∥∥Hi1Hi2 . . . Hin

∥∥∥∥Hj1Hj2 . . . Hjm

∥∥〉
+ 〈∥∥Hi1Hi2 . . . Hin

∥∥〉 〈∥∥Hj1Hj2 . . . Hjm

∥∥〉
� K (n,m)/τn+m, (B12)

where we use the fact that the matrix defined by the elements
[Z]αβ = [X]αβ[Y ]αβ satisfies the relation ‖Z‖ � ‖X‖‖Y‖.

Finally, we obtain, in analogy to prior reasoning,

‖ 〈Sn,m〉 ‖ � Gn+m−1(N )

Nn+m
β(n)β(m)K (n,m)

= Rn+m(N )β(n)β(m)K (n,m). (B13)

APPENDIX C: PROOF OF THEOREM 2

We define the set H̄N = (HN,HN−1, . . . , H1), which is the
reverse protocol of HN . From the identity

e−iH̃N τ = e− i
N

HNτ . . . e− i
N

H2τ e− i
N

H1τ , (C1)

we can rearrange the order and get

eiH̃N τ = e
i
N

H1τ e
i
N

H2τ . . . e
i
N

HNτ , (C2)
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which implies that for any polynomial Pn(HN ) of nth degree
the relation

Pn(−H) = −Pn(H̄N ) (C3)

is satisfied. What is more, for any n ∈ N,

P2n(−HN ) = P2n(HN ),

P2n+1(−HN ) = −P2n+1(HN ). (C4)

The joint pdf for i.i.d. matrices HN has the form

ρ(HN ) = �(H1)�(H2) . . . �(HN )

= �(HN ) . . . �(H2)�(H1) = ρ(H̄N ), (C5)

and this leads to the relation

〈Pn(HN )〉 = 〈Pn(H̄N )〉 . (C6)

Finally, taking into consideration Eqs. (C3), (C4), and (C5),
we have

〈P2n(HN )〉 = − 〈P2n(H̄N )〉 = − 〈P2n(HN )〉 = 0 (C7)

for any n ∈ N. Similarly to before, we have the relation

Sn,m(−HN ) = Sn,m(H̄N ). (C8)

Thus, for any n,m ∈ N with pdf Eq. (C5), in analogy one can
show that

S2n,2m+1(HN ) = S2n+1,2m(HN ) = 0, (C9)

and this proves the first part of Theorem 1.
The proof of the second part is straightforward if one notes

that for even pdf �(H ) we have

〈Pn(−H)〉 = 〈Pn(HN )〉 . (C10)

APPENDIX D: VARIANCE OF THE UNITARY TIME
EVOLUTION

Let us assume that x1, x2, . . . are complex random variables
and each of them behaves as

Var(xk ) = O

(
1

N

)
. (D1)

Then the sum of them

Var

(∑
i

xi

)
=

∑
i,j

Cov(xi, xj ) �
∑
i,j

√
Var(xi )Var(xj )

(D2)

behaves as

Var

(∑
i

xi

)
= O

(
1

N

)
. (D3)

Next, we would like to estimate the variance of the product.
To this aim, let us define the centered random variable,

δxi = xi − 〈xi〉 , (D4)

where Var(δxi ) = Var(xi ) and 〈δxi〉 = 0. Then the product can
be expanded as∏

i

xi =
∏

i

〈xi〉 +
∑

k

δxk

∏
i �=k

〈xi〉 + . . . . (D5)

Thus up to the leading orders of N we have

Var

(∏
i

xi

)
=

∑
k,m

|〈xk〉||〈xm〉|
∏

i �=k,m

|〈xi〉|2Cov(xk, xm),

+ . . . (D6)

which implies that

Var

(∏
i

xi

)
= O

(
1

N

)
. (D7)

For the self-averaging effective Hamiltonian we have shown
that any of its elements is asymptotically equivalent to func-
tions belonging to O(1/N ), and since the unitary matrix can
be expressed as the series

UN (τ, 0) =
∑
k=1

(−iH̃Nτ )k

k!
, (D8)

which involves sums and products of the effective Hamiltonian
elements, hence we conclude also that

‖Var[UN (τ, 0)]‖ = O

(
1

N

)
. (D9)

APPENDIX E: MEAN OF THE UNITARY TIME
EVOLUTION

We want to prove that∥∥ 〈
T e−i

∫ τ

0 dtHN (t )
〉 − T e−i

∫ τ

0 dt〈HN (t )〉∥∥ = O

(
1

N

)
(E1)

assuming that

‖ 〈H̃N 〉 − ĤN‖ = O

(
1

N

)
, (E2)

where ĤN = 1
τ

∫ τ

0 dt 〈HN (t )〉 and

[〈H (t )〉 , 〈H (s)〉] = 0 (E3)

for any t, s ∈ T . First, one can estimate

‖ 〈T e−i
∫ τ

0 dtHN (t )〉 − T e−i
∫ τ

0 dt〈HN (t )〉‖

= ‖ 〈e−iH̃N τ − e−iĤN τ 〉 ‖ �
∑

k

τ k

k!

∥∥ 〈
H̃ k

N − Ĥ k
N

〉 ∥∥. (E4)

Let us define the matrix

δHN = H̃N − ĤN . (E5)

We note that it satisfies

‖ 〈δHN 〉 ‖ = ‖ 〈H̃N − ĤN 〉 ‖ = O

(
1

N

)
, (E6)

and variance

‖Var(δHN )‖ = ‖Var(H̃N )‖ = O

(
1

N

)
. (E7)

Further,

H̃ k
N − Ĥ k

N =
k−1∑
m=0

Ĥm
N δHNĤ k−m−1

N + . . . , (E8)
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where dropped terms involve higher powers of δHN elements.
According to (E6) and (E7), the leading order of the average
is then equal to

〈
H̃ k

N − Ĥ k
N

〉 =
k−1∑
m=0

Ĥm
N 〈δHN 〉 Ĥ k−m−1

N + . . . . (E9)

However, due to the submultiplicative condition of the norm
we conclude that∥∥∥∥∥

k−1∑
m=0

Ĥm
N 〈δHN 〉 Ĥ k−m−1

N

∥∥∥∥∥ � k‖ 〈δHN 〉 ‖‖ĤN‖k−1,

(E10)

and this finally implies that∥∥ 〈
H̃ k

N − Ĥ k
N

〉 ∥∥ = O

(
1

N

)
. (E11)

According to (E4), this proves relation (E1).

APPENDIX F: BEYOND THE CONVERGENCE DOMAIN

1. Variance SN

Let us consider an MRQ evolution

UN (τ, 0) = T e−i
∫ τ

0 dtHN (t ) =
N∏

k=1

e− i
N

Hkτ , (F1)

where the convergence condition, (A3), is not satisfied. Nev-
ertheless, one can always split the unitary evolution into m

products

UN (τ, 0) =
m∏

k=1

UN/m(τk+1, τk ), (F2)

where τk = (k − 1)τ/m, such that for each term the conver-
gence condition is obeyed. Then if

Var[UN/m(τk+1, τk )] = O

(
1

N

)
(F3)

according to relations (D3) and (D7), one concludes that also
an arbitrary finite product of matrices satisfies

‖Var[UN (τ, 0)]‖ =
∥∥∥∥∥Var

[
m∏

k=1

UN/m(τk+1, τk )

]∥∥∥∥∥ = O

(
1

N

)
.

(F4)

2. Distance DN

Further, let us define a matrix

δU
(k)
N/m = UN/m(τk+1, τk ) − ÛN/m(τk+1, τk ), (F5)

where

ÛN/m(τk+1, τk ) = T e
−i

∫ τk
τk+1

dt〈HN (t )〉
. (F6)

If H (t ) commute in the statistical sense, then from Eq. (44) we
obtain ∥∥ 〈

δU
(k)
N

〉 ∥∥ = O

(
1

N

)
(F7)

and variance∥∥Var
(
δU

(k)
N

)∥∥ = ‖Var[UN/m(τk+1, τk )]‖ = O

(
1

N

)
. (F8)

Finally, we can expand the unitary time-evolution matrix up to
leading terms of N ,

UN (τ, 0) = ÛN (τ, 0)

+
m−1∑
k=0

ÛkN/m(τ, τm−k+1)δU (k)
N/m

× Û(m−k−1)N/m(τm−k, 0) + . . . , (F9)

which, due to (F7), once again gives

‖ 〈UN (τ, 0)〉 − ÛN (τ, 0)‖ = O

(
1

N

)
(F10)

and proves Eq. (44).
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