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The physics of highly excited Rydberg atoms is governed by blockade or exclusion interactions that hinder the
excitation of atoms in the proximity of a previously excited one. This leads to cooperative effects and a relaxation
dynamics displaying space-time heterogeneity similar to what is observed in the relaxation of glass-forming
systems. Here, we establish theoretically the existence of a glassy dynamical regime in an open Rydberg gas,
associated with phase coexistence at a first-order transition in dynamical large deviation functions. This transition
occurs between an active phase of low density in which dynamical processes take place on short timescales,
and an inactive phase in which excited atoms are dense and the dynamics is highly arrested. We perform a
numerically exact study and develop a mean-field approach that allows us to understand the mechanics of this
phase transition. We show that radiative decay—which becomes experimentally relevant for long times—moves
the system away from dynamical phase coexistence. Nevertheless, the dynamical phase transition persists and
causes strong fluctuations in the observed dynamics.
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Introduction. The study of cold-atomic ensemble dynamics
allows for the exploration of a vast array of many-body effects
relevant to condensed-matter and statistical physics in settings
accessible to modern experiments. Among these systems,
cold gases of highly excited (Rydberg) atoms constitute a
versatile platform due to their strong and tunable interac-
tions [1,2]. The competition between excitation and interaction
in these systems leads to complex collective behavior, which
is currently intensely explored both experimentally [3–5] and
theoretically [6–11]. Particularly interesting is that the physics
of these systems is governed by blockade effects reminiscent of
the excluded volume effects of classical many-body systems
close to the glass and jamming transitions [12,13] and their
idealization as kinetic constraints [14]. The resulting dynamics
is highly heterogeneous, with regions that evolve very rapidly
while others remain stuck in their local configurations for long
times [6,15].

In this Rapid Communication, we establish on firm grounds
that the heterogeneous dynamical behavior of Rydberg gases is
due to the emergence of a glassy regime which stems from an
underlying dynamical phase transition. The latter, associated
with sudden structural changes in the trajectories of the system,
is analyzed following a “thermodynamics of trajectories”
approach [16–20], which is based on a large-deviation princi-
ple [21–23]. This approach unveils the structure and dynamics
adopted by physical systems in order to sustain unlikely
values of certain observables over long periods of time. Here,
we shall focus on the activity [18,19,24], which counts the
number of atoms that (de)excite per unit time, and is a relevant
observable in the context of cold-atomic ensembles, as it can
be experimentally accessed by the continuous observation of
light scattered off the atoms [25]. The dynamical heterogeneity
of Rydberg gases, observed in the glassy regime, is explained
by the fact that the system lies at a coexistence point between

an active and an inactive phase (see Fig. 1, to be discussed
below).

The inactive space-time regions that appear as the transition
is approached from the active side, are “bubbles of inactivity,”
corresponding to a manifestation in trajectories of fluctuations
associated with the dynamical first-order transition (cf., e.g.,
vapor bubbles in a liquid near liquid-vapor coexistence). These
dynamical fluctuations are similar to those observed in more
traditional glass forming systems [26,27].

Generally speaking, the study of dynamical fluctuations in
terms of large deviations serves two purposes. On the one
hand, it shows how to engineer the dynamics of a system so
that trajectories display desirable features—such as ordered
sequences or bursts of photons—associated with rare events
taking place far away from the typical dynamics [28–33]. In
fact, the system can be conditioned to have specific output
statistics not only in the asymptotic time limit but also for
transient dynamics, which may be more easily accessible
experimentally than stationary states [33]. On the other hand,
the large deviation approach allows us to explain intriguing
phenomena such as intermittent dynamical regimes [18,34], or
the glassy regime of dissipative Rydberg gases that is studied
in this Rapid Communication.

Our goal is to establish the existence of the phase transition
that underlies the behavior of dissipative Rydberg gases, and
to discuss its main features. To this end, we perform a detailed
investigation of the dynamical phase diagram as a function of
the interaction strength, as well as in the presence of radiative
decay processes. The latter are particularly important in ex-
periments monitoring long-time behavior. Beyond numerical
simulations we develop a mean-field approach which leads
to an understanding of the phase transition mechanism in
terms of a dynamical free energy. Our work consolidates the
understanding of collective dynamical phenomena—such as
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FIG. 1. Dynamical first-order phase transition underlying the
dynamics of dissipative Rydberg gases. Activity k(s )/L in a system
of L = 15 atoms as a function of the tilting field s and the blockade
length R. Black curves correspond to R = 1, 1.5, 2, and 3, while
results for a range of R values are displayed in the two-dimensional
color map at the base (the red dashed line shows the position of the
inflection points). Representative trajectories for R = 1 (upper panel)
and R = 3 (lower panel) for L = 20 are displayed. Blue and white
indicate excited- and ground-state atoms, respectively.

dynamical heterogeneity—in dissipative Rydberg gases and
establishes a direct connection to soft-matter physics and
the physics of glassy matter in particular. We expect our
analysis to be applicable for uncovering collective dynamical
behavior also in other driven dissipative spin systems, such as,
e.g., systems of interacting nitrogen-vacancy centers [35,36]
or electrons and nuclei in nonequilibrium nuclear magnetic
resonance [37].

Model. We consider a driven dissipative system of highly
excited (Rydberg) atoms in a one-dimensional (1D) chain.
At each of the L sites lies an atom that can be in its
ground state |↓〉 or in a high-lying (Rydberg) excited state
|↑〉. The interaction potential between atoms j and k is
non-negligible only if both are in the excited state, and is
given by Vjk = Cα/|rj − rk|α , where rj gives the position of
j in units of the lattice spacing. The |↓〉 ↔ |↑〉 transition
is resonantly driven by a laser field with Rabi frequency
�. The coherent part of the dynamics is thus generated by
the Hamiltonian H = 1

2

∑L
j=1

∑L
k=1 Vjknjnk + �

∑L
j=1 σx

j ,
where nj = |↑〉j 〈↑| and σx

j = |↑〉j 〈↓| + |↓〉j 〈↑|. Further, we
consider that due to different forms of noise (laser linewidth,
thermal effects, etc. [2–5]) the system is affected by dephasing
with a rate γ . The evolution of the system is then governed by
the Lindblad equation ∂tρ = −i[H, ρ] + ∑L

j=1 L(
√

γ nj )ρ.
Here, L(J )ρ = JρJ † − 1

2 {J †J, ρ} is a dissipator in Linblad
form with jump operator J . In the large dephasing limit,
γ � �, there is a clear separation between the timescales on
which quantum coherences are produced and destroyed, which
allows us to perform an adiabatic elimination of quantum
coherences [6,38–42]. The resulting dynamics is governed by
a classical master equation with configuration-dependent rates

for transitions |↓〉j ↔ |↑〉j ,

�j = 4�2

γ

1

1 +
(
Rα

∑
k 	=j

nk

|rk−rj |α
)2 , (1)

with the interaction parameter R = (2Cα/γ )1/α giving the
length of the blockade radius [6,15]. The validity of this
approach has been confirmed in recent experiments [3,4,43].
Below, we consider the experimentally relevant case of van
der Waals interactions, α = 6, and rescale the rates �̃j =
γ�j /(4�2) so that the time unit reflects the excitation
timescale in the absence of interactions.

Dynamical phase transition: Numerically exact study of
finite-size systems. We start with a numerical exploration
of the stationary dynamics of the system. In the upper and
lower part of Fig. 1, we show representative trajectories
for R = 1 and R = 3 respectively obtained via continuous-
time Monte Carlo simulations [44,45]. While for R = 1 the
dynamics appears to be homogeneous and characterized by
a single timescale, for larger values of R we observe an
alternation of relatively dilute regions that evolve quite rapidly
and regions formed by blocks of contiguous excitations that
evolve along much longer timescales. The latter observation
is confirmed by the visual inspection of trajectories and
two-time correlation functions 〈nj (t )nj (0)〉, which display
prominent plateaus indicative of the existence of more than one
timescale [12].

This phenomenology is shown to arise from a dynamical
trajectory phase transition. This kind of transitions have been
previously studied in a large family of models of glassy
soft matter [18,46], but had not been previously identified
in dissipative Rydberg gases. Such transitions are probed
through a dynamical observable—the activity per unit time k =
K/t [18,19,24]—which quantifies the number of state changes
(spin flips) K in a trajectory of duration t . The phase diagram
corresponding to this dynamical order parameter is obtained
via a thermodynamics of trajectories approach [16,21], which
allows us to infer the presence of dynamical phase transitions
through the structure of the probability distribution of the
activity P (k). For long times, this probability satisfies a large
deviation principle P (k) ≈ e−tφ(k), where φ(k) is the so-called
large deviation function [46]. Often it is more convenient to
study the moment generating function Z(s) = 〈e−stk〉 ≈ etθ (s),
where the scaled cumulant generating function (SCGF) θ (s)
is related to φ(k) via a Legendre transformation [23]. Here,
Z(s) is a dynamical partition function of an ensemble of
trajectories—the s ensemble (see Ref. [46] and the recent
review [20]). In this framework, t plays the role of the volume
in equilibrium and k is an order parameter—analog of the
internal energy density—with a conjugate field s acting as
a control parameter. Notice that this parameter (which is
not experimentally accessible) allows for the exploration of
dynamical regimes that are unlikely to be observed as sponta-
neous fluctuations, since their probability decays exponentially
in time. Such regimes can be attained, however, by suitably
engineering the dynamics of the system [28–33].

We will focus our study on the SCGF θ (s), whose nonan-
alyticities correspond to phase transitions between dynamical
phases. It is given by the eigenvalue with the largest real part
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FIG. 2. Scaled cumulant generating function and activity for
finite-size systems. (a) Activity density k(s )/L (main panel) and
scaled cumulant generating function θ (s )/L (inset) as functions of
the tilting field s for R = 3 and system sizes L = 6, 9, 12, and 15.
(b) Scaled cumulant generating function θ (s ) in a system of L = 15
sites for R = 0.5, R = 1, R = 1.5, 2, 3, 4, and 5. For R = 0.5, the
curve closely follows the Poissonian form e−s − 1 (see the black line).

of the so-called tilted generator [20,23],

Ws =
L∑

j=1

[
�̃j

(
e−sσ x

j − 1
)]

, (2)

that governs the evolution biased by the field s [46], which
“tilts” the systems towards more (if s < 0) or less (if s > 0)
active dynamics. For s = 0, the unbiased dynamics of the
(unperturbed) system is recovered.

In Fig. 1 we show the activity density k(s)/L for a range
of values of R. We observe a qualitative change as R is
varied at s = 0: Whereas for small R the change from active
(s < 0) to inactive (s > 0) is smooth, a discontinuity develops
in the system for R � 2. The jump becomes smaller as R is
increased, as the activity for s < 0 decreases (i.e., when the
blockade radius is larger, the overall activity is lower). This
discontinuity indicates the presence of a first-order dynamical
phase transition [46], which is below theoretically established
at the mean-field level. The dynamics observed in the trajectory
for R = 3 (and for other values of R > 2 that we have
numerically explored) arises from the coexistence of space-
time regions, with low-activity regions playing the role of the
familiar bubbles of an equilibrium transition in a fluid.

The activity density k(s)/L shown in Fig. 1 is obtained from
the SCGF θ (s) through the relation k(s)/L = −θ ′(s)/L [46].
The numerical diagonalization of the tilted generator Ws

needed for obtaining the SCGF has been performed for a
system of size L = 15, as larger sizes are numerically pro-
hibitive due to the exponential growth of the generator. We
illustrate the finite-size behavior of the activity density for
R = 3 in Fig. 2(a), where k(s)/L is seen to converge to a
size-independent curve for L > 10. A similar dependence on
L is observed for the whole range of the interaction parameter
R. The SCGF itself is shown in Fig. 2(b), also for L = 15,
which displays a smooth dependence on s for R < 2, and
becomes Poissonian for R = 0.5, when the system is virtually
noninteracting.

Dynamical phase transition: Mean-field analysis. To shed
further light on this dynamical behavior, we introduce a
variational free energy defined as F|V 〉(s) = −〈V |Ws |V 〉, for
normalized states |V 〉, whose minima correspond to dynamical

phases [46]. In our mean-field approach, we focus on the
subspace of (uncorrelated) states |V 〉 = ⊗

j |v〉j for |v〉j =√
p|↑〉j + √

1 − p|↓〉j . Since states are parametrized by the
density of excitations p, the free energy will be denoted as
F (p, s). Ws is symmetric, and the SCGF is approximated by
minus the minimum of the variational free energy, θmf(s) =
max|V 〉[〈V |Ws |V 〉] = − minp[F (p, s)], with

F (p, s)=−
L∑

j=1

(⊗
l 	=j

l〈v|
)

�̃j

( ⊗
m	=j

|v〉m
)

j 〈v|(e−sσ x
j − 1

)|v〉j

=−L�mf[2 e−s
√

p(1 − p) − 1]. (3)

This expression depends on the (de)excitation rates

�mf =
2∑

c1=0

2∑
c2=0

· · ·
2∑

cr=0

2
∑r

l=1 δcl ,1p
∑r

l=1 cl (1 − p)2r−∑r
l=1 cl

1 + R2α
(∑r

l=1
cl

lα

)2 ,

(4)

where l = 1, 2, . . . , r are the distances to the first, second, ...,
rth nearest neighbors. The coefficients cl denote occupation
numbers, i.e., cl = 0 if neither of the lth nearest neighbors
are excited, cl = 1 if one of them is, and cl = 2 if both are.
Strictly speaking, one should consider the limit r → ∞ in the
various summations, but in practice truncating the sum to a
value somewhat larger than R should suffice, given the 1/lα

decay. (In what follows, we set r = 7 for α = 6 and R � 3, as
the results do not change appreciably for larger r .) The factor
2

∑r
l=1 δcl ,1 (δcl ,1 = 1 if cl = 1, and is zero otherwise) accounts

for the degeneracy of the cl = 1 case (cl = 1 if the left neighbor
is excited, but also if the right one is).

The extrema of F (p, s) with respect to the excitation
density p are found numerically. For R � 1.25 there is only
one (real) solution, corresponding to a minimum, while for
R > 1.25 there are two minima and one maximum. In the main
panel of Fig. 3(a) we show −F (p, s) for R = 3 evaluated at
each of these extrema as a function of s (continuous lines),
and the SCGF θmf(s) (black dashed line). In the inset, the
smaller minimum ofF (p, s) for s < 0 is seen to become larger
than the other one for s > 0, which results in the nonanalytic
behavior of θmf(s) (i.e., the absolute minimum) at s = 0, where
the two minima are equally deep. Furthermore, we see a
discontinuity in the density of excitations, which goes from
p ≈ 0.5 for s < 0 to p ≈ 1 for s > 0, with a metastable region
for s � 0 that ends in a spinodal point where the local minimum
merges with the maximum. This establishes the existence of
a first-order dynamical phase transition at s = 0 which was
suggested by the numerical results of Fig. 1.

Phase diagram. We next focus on the dependence of the free
energy on the blockade length R which is shown in Fig. 3(b).
These data show that the glassy phase is entered beyond R = 2.
For larger values of R two minima are present at s = 0,
indicating the coexistence of active and inactive regions, while
for smaller values of R there is just a single global minimum.
In the latter regime the dynamics is largely uncorrelated (see
Fig. 1, upper panel), and the statistics of the activity become
effectively Poissonian for R < 1. For 1.25 � R � 2 a second
local minimum develops that becomes as deep as the first
one for slightly positive s. As a result, the transition appears
slightly away from the unbiased dynamics at s = 0, signaling
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FIG. 3. Mean-field analysis of the dynamical phase transition. (a) (Negative) variational free energy −F (p, s ) for R = 3 evaluated at
the stationary points including two maxima (red and green lines) and one minimum (blue line), and (normalized) SCGF θmf(s )/L (dashed
black line). Inset: Variational free energy F (p, s ) as a function of p in the neighborhood of s = 0. (Red, blue, and green disks highlight the
correspondence between points in the main panel and the inset.) (b) Variational free energy F (p, s = 0) for values of R around the critical value
for a transition at s = 0. (c) Activity kmf(s )/L as function of the tilting field s and R. (d) Activity kmf(s )/L as a function of the (rescaled) decay
rate κ̃ and s for R = 3. The solid white line indicates the position of the phase transition where both phases coexist, which ends at a critical
point κ̃c ≈ 2.8 × 10−4. Beyond this point, a smooth crossover is observed. Inset: Activity density of the full dynamics k(s )/L in a system of
L = 12 atoms for the same range of s and κ̃ .

the presence of fat tails in the probability distribution of the
activity due to the strong fluctuations encountered for positive
values of s. For larger R the transition moves towards s = 0,
and saturates at R ≈ 2, as shown by the white solid line of
Fig. 3(c), where the activity kmf(s)/L as a function of s for a
range of R is displayed. The inflection points of the finite-size
k(s)/L curves of Fig. 1 are included for comparison (see the
red dashed line), showing a good qualitative agreement with
the mean-field results.

In the experimental study of Rydberg gases one inevitably
faces radiative decay (|↑〉 → |↓〉). Theoretically, decay is
accounted for by a set of jump operators J = √

κ σ−
j , where

σ−
j = |↓〉j 〈↑ |, acting on each site j = 1, . . . , L, for a given

atomic decay rate κ [47]. Figure 3(d) shows that a nonzero
(rescaled) decay rate κ̃ = γ κ/(4�2) moves the phase tran-
sition line slightly from s = 0 towards the s > 0 region,
indicating again strong dynamical fluctuations in such a region
both in the mean-field dynamics (main panel) and in the full
dynamics for L = 12 (inset). Note that the variational mean-
field analysis requires the inclusion of the process |↓〉 → |↑〉
along with decay in order to preserve the symmetry of the
dynamical generator (see Ref. [46] for a detailed discussion).
Both the exact numerics and the mean-field analysis show that
the dynamical phase transition between regions of high and
low activity k is smoothed out beyond a critical decay rate,
corresponding to κ̃c ≈ 2.8 × 10−4 in the mean-field dynamics
and to a larger value in the full dynamics. For a discussion of
dynamical critical points and the observability of inactive dy-
namics for phase transitions occurring at s > 0, see Ref. [48].
In an experiment, one would have to apply a sufficiently large
Rabi frequency so that κ̃ remains below the critical value in
order to clearly see the effect of the transition. For example, a
moderate increase of the Rabi frequency of less than one order
of magnitude would bring the system of rubidium atoms of
Ref. [5] into the desired regime. If the decay rate exceeds the
critical value, however, the transition between high activity and
low activity becomes a smooth crossover, and the observability
of inactive space-time regions in the trajectory depends in a
nontrivial manner on how close one is to the critical point
(as this is expected to influence the width of the free-energy
minimum, which determines the size of the fluctuations).

Characterization of the dynamical phases. We now set out to
describe the nature of the phases involved in the transition more
quantitatively. To this end, we focus on the dynamics of finite-
size systems without decay (κ̃ = 0). We first study the time av-
erage of the density of excitations n = 1

t

∫ t

0 dτ ( 1
L

∑L
j=1 nj (τ ))

as a function of the tilting field s. Here, the density of
site j is given by nj (τ ) = 〈−|nj |C(τ )〉, where C(τ ) is the
configuration at time τ and |−〉 = ∑

C ′ |C ′〉. The average of
the time-integrated observable is equivalent to a static average
〈n〉s = 〈Vs | 1

L

∑L
j=1 nj |Vs〉, where |Vs〉 is the eigenvector as-

sociated with the largest eigenvalue θ (s) of the tilted generator
in Eq. (2) [46]. This static average can be generalized to
two-point (or multipoint) observables, such as 〈ninj 〉s . For the
unbiased dynamics, |Vs=0〉 = ⊗

j 1/
√

2 (|↑〉j + |↓〉j ), and
thus 〈n〉s=0 = 1/2, for any value of R, as corresponds to a
completely mixed stationary state, ρst = 2−L

⊗
j 1j . [6].

The average density of excitations 〈n〉s for a range of values
of R shown in Fig. 4(a) gives us the structural counterpart of
the dynamical picture in Figs. 1 and 3(c). A high density of
excitations corresponds to a low-activity dynamics, and vice
versa. In the glassy regime, for R � 2, the phase transition
at s = 0 separates an active phase with a very low density of
excitations for s < 0 from an inactive phase with a high density
of excitations for s > 0, with the overall density decreasing
for larger blockade radius R. Beyond the critical value, for

FIG. 4. Density of excitations and spatial correlations for a system
of L = 15 atoms. (a) Average density of excitations 〈n〉s as a function
of s for R = 0.5, 1, 2, 3, 4, and 5. (b) Normalized correlations Cs (i ) in
the active phase (s = −0.1), for the unbiased dynamics (s = 0) and
in the inactive phase (s = 0.1, see inset), for R = 3 and R = 5.
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R = 1 the dependence of the density with s is smooth and mild,
while for even smaller R (i.e., when the atoms are essentially
uncoupled) 〈n〉s = 1/2 holds far from s = 0.

To gain further insight into the structure of the two
phases that coexist in the glassy regime, we next consider
the (normalized) spatial correlations of the excitation den-
sity Cs (i) = (〈nin0〉s − 〈n〉2

s )/(〈n〉s − 〈n〉2
s ), where n0 is the

number operator of the site taken as a reference (due to
translational invariance it can be any). These correlations,
which characterize the spatial distribution of excitations, are
shown in Fig. 4(b) for a system of size L = 15, with R =
3 and 5 and tilting field values around s = 0. For the the
unbiased dynamics (s = 0) the correlations are trivially given
by the Kronecker delta C(i) = δi,0 [6]. In the active phase
(s = −0.1), however, there is a clear connection between the
size of the anticorrelated region and the blockade length R:
Excitations tend to appear beyond the blockade radius, so
as to maximize the activity [15]. In the inactive phase (see
the inset for s = 0.1), the overall activity is reduced by the
disappearance of anticorrelations between nearest neighbors.
This makes it possible to find contiguous blocks of excitations
in the dynamics, as those shown in the inactive space-time
regions of the R = 3 trajectory in Fig. 1 (lower panel).

Outlook. We have established the existence of a dy-
namical first-order phase transition at the level of trajec-

tories in dissipative Rydberg gases, in analogy with clas-
sical glass formers [18,49,50]. In this framework, the ar-
rested space-time regions observed in a background of more
highly active dynamics in the simulated trajectories are the
natural manifestation of a coexistence between an inac-
tive and an active phase. The transition is shown to per-
sist in the presence of atomic decay, and should therefore
be observable in cold-atom experiments that continuously
monitor the evolution of the atomic density, e.g., via light
scattering [51].
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