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Complete identification of nonclassicality of Gaussian states via intensity moments
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We present an experimental method for complete identification of the nonclassicality of Gaussian states in
the whole phase space. Our method relies on nonclassicality witnesses written in terms of measured integrated
intensity moments up to the third order, provided that appropriate local coherent displacements are applied to the
state under consideration. The introduced approach, thus, only requires linear detectors for measuring intensities
of optical fields, that is, very convenient and powerful from the experimental point of view. Additionally, we
demonstrate that the proposed technique not only allows to completely identify the nonclassicality of the Gaussian
states, but also to quantify it.
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Nonclassicality of light plays a crucial role in the field of
quantum optics. The discovery of the nonclassical properties
of light has led to the establishment of new branches of
quantum physics, e.g., to quantum information theory [1]. One
of the most known forms of the nonclassicality of light is
the entanglement where different modes of quantum fields
exhibit quantum correlations which have no analog in the
classical optics [2–4]. The entangled states of light are now
an indispensable source for quantum telecommunications and
quantum computations [1,5].

The dimension of the Hilbert space of quantum systems
can be either finite or infinite, as such, there are two most
distinguished classes of the quantum states, namely, discrete
variable and continuous variable (CV) states, respectively. A
lot of quantum protocols are now based on CV systems [6–9].
Moreover, Gaussian states, which are the subclass of CV
states, possess the qualities of mathematical and experimental
handiness since the infinite Hilbert space for such states can be
represented by a finite-dimensional covariance matrix (CM).
Additionally, the Gaussian states are easy to generate in a
laboratory, e.g., they are the common output in the quantum
parametric nonlinear processes [10].

The global nonclassicality of the Gaussian states of light
can be expressed as by the entanglement between optical
modes and so by the local nonclassicalities in the form of field
squeezing [11–16]. It is worth noting that for discrete variable
quantum systems one can also quantify the global nonclassi-
cality in terms of local coherence and entanglement [17,18].

An important question thus arises, namely, how can one
fairly certify the nonclassicality of the Gaussian states in the
experiment? One of the solutions, although experimentally
complicated, can be a homodyne tomography [19,20], which
enables one to reconstruct the state in the phase space [21,22]
and, thus, to identify the state’s nonclassicality by knowing
the form of the reconstructed quasidistributing function. On
the other hand, one would like to identify the nonclassicality
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without source and time-demanding reconstruction tech-
niques. Apparently, a direct measurement of the intensity
moments of optical fields can be utilized using easily access-
able quadratric detectors or intensified CCD cameras which
allow for detecting nonclassicality of the weak and mesoscopic
fields [23–26]. Recently, anomalous moments of the optical
fields have been measured to identify the quantumness of
light [27]. Also photon-number-resolving detectors yield a
photocount histogram from which one can deduce the presence
of the nonclassical correlations of the measured state with or
without coherently displaced fields [28–40]. On the other hand
by relying on the directly observed photocount statistics of the
studied state one can lose the phase information of the system
since it may turn out that the nonclassicality of the state resides
only in the phase domain [41] or intensity measurements are
simply unable to reveal the nonclassicality [42]. In parallel, by
applying the dephased coherent displacement to the quantum
field and using classical photodiodes one can retrieve intensity
moments of higher orders from which the quantum properties
of the given quantum state can be deduced, that is, the essence
of an unbalanced homodying technique [43].

In this Rapid Communication, we show that by applying
only local displacements to the Gaussian states one can
always identify the global nonclassicality of the state under
consideration, i.e., its local squeezing and entanglement, by
measuring only integrated intensity moments up to the second
order. Moreover, for a single- or two-mode squeezed light, the
proposed method allows not only to identify its nonclassicality,
but also even to quantify it. Our approach requires only
linear detectors since one has to measure coherently displaced
fields, therefore one avoids the use of sophisticated detectors
operating at the single-photon-level regime. Additionally, the
presented method, as in the case of the unbalanced homodyne
detection, is independent on quantum efficiencies of the detec-
tors, compared to the balanced homodyne technique. In short,
we present a convenient experimental tool in the extraction of
the nonclassical correlations of, in general, the mixed Gaussian
states in the whole phase space. Furthermore, by utilizing the
fact that the nonclassicality of the multimode Gaussian states
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can be expressed by means of single-mode auto- and two-mode
cross correlations and making use of the known multiport
interferometric techniques [44] we show that our approach can
be extended to the multimode case.

Gaussian states and integrated intensity moments. Any n-
mode Gaussian state ρ̂ can completely be characterized by its
first and second statistical moments, i.e., by the average values
of the operator vector X̂ = (x̂1, p̂1, . . . , x̂n, p̂n)T and by the
covariance matrix σ̂ with elements σjk = 1

2 〈X̂j X̂k + X̂kX̂j 〉 −
〈X̂j 〉〈X̂k〉, respectively, where the field quadratures x̂l and p̂l

of the lth mode are related to the annihilation and creation
operators âl and â

†
l as x̂l = 1/

√
2(âl + â

†
l ), p̂l = −i/

√
2(âl −

â
†
l ). The characteristic function,

χρ̂ (�) = exp
(− 1

2�T �σ�T � − i�T �〈X̂〉), (1)

of state ρ̂ in phase space is of Gaussian form where the vector
� = (x1, p1, . . . , xn, pn)T ∈ R2n, � = ⊗n

k=1 ωk , and ωk =
( 0 1−1 0). Moreover from the commutation relation [x̂j , p̂k] =
iδjk it follows:

σ + i

2
� � 0. (2)

The inequality in Eq. (2) expresses the positivity of state ρ̂.
Introducing a new complex vector β = ��, where � =⊗n
k=1 θk and θk = 1√

2
(1 −i
1 i ), one can arrive at the normal

characteristic function CN (β ) = χρ̂ (�−1β ) exp ( 1
2β†β ), or

explicitly,

CN (β ) = exp
(− 1

2β†�AN�T β + β†��
)
, (3)

where [AN ]jk = 〈:�Â
†
j�Âk:〉 = 〈:Â†

j Âk:〉 − 〈Â†
j 〉〈Âk〉 are

the elements of the normal covariance matrix and Â =
(â†

1, â1, . . . , â
†
n, ân)T is a vector of boson operators. The sym-

bol : : accounts for normal ordering of operators, i.e., all cre-
ation operators â† are put to the left with respect to annihilation
operators â. The complex vector � = (ξ1, ξ

∗
1 , . . . , ξn, ξ

∗
n )T ∈

C2n is in general a vector of displaced coherent fields.
The normal generating function for the n-mode Gaussian

state is given as

GN (λ) = 1

πn

∫
CN (β )

n∏
j=1

(λj )−1 exp

(
−|βj |2

λj

)
d2βj , (4)

where λ = (λ1, . . . , λn) ∈ Rn is a real vector.
Combining now Eqs. (3) and (4) we acquire

GN (λ) = 1√
det A′

N
∏n

j=1 λj

exp

(
−1

2
�† A′

N
−1�

)
, (5)

with A′
N = AN + λ−1I2n, where I2n is an identity ma-

trix of dimension 2n and we denote the matrix λ−1 =
diag(1/λ1, 1/λ1, . . . , 1/λn, 1/λn).

The integrated intensity moments 〈Wk1
1 · · · Wkn

n 〉 are ob-
tained along the formula,

〈
W

k1
1 · · · Wkn

n

〉 = (−1)k1+···+kn
∂k1+···+knGN (λ)

∂λ
k1
1 · · · ∂λ

kn
n

∣∣∣∣
λ1=···=λn=0

.

(6)
Nonclassicality criteria based on integrated intensity mo-

ments. The very form of the CM of the n-mode Gaussian state

suggests that all the nonclassicality properties are encoded
into single-mode squeezing of each mode and entanglement
between two arbitrary modes of the state. Indeed, looking at
the normal CM,

AN =

⎛
⎜⎜⎜⎜⎝

A1 A12 · · · A1n

A†
12 A2 · · · ...
...

...
. . .

...
A†

1n · · · · · · An

⎞
⎟⎟⎟⎟⎠, (7)

where Ak and Aj l are block 2 × 2 matrices,

Ak =
(

Bk Ck

C∗
k Bk

)
,

Bk = 〈:�â
†
k�âk:〉,

Ck = 〈
:�â2

k :
〉
,

(8)

Aj l =
(

D̄∗
j l Djl

D∗
j l D̄j l

)
,

Djl = 〈:�âj�âl :〉,
D̄jl = 〈:�â

†
j�âl :〉, (9)

describing the quantum autocorrelation of mode k and cross
correlations between modes j and l, respectively, one can see
that the single- and two-mode correlations explicitly determine
the n-mode Gaussian state. Indeed, by means of appropri-
ate unitary operations one can always reduce the n-mode
nonclassical Gaussian state to the separable n-mode locally
squeezed states or, as in the case of the pure Gaussian states, to
the tensor product of n

2 (n = 2k, k ∈ Z) two-mode squeezed
states [45,46]. Below we show that such single-mode and
two-mode nonclassicality correlations of multimode Gaussian
states can be retrieved by integrated intensity moments up to
the second order.

The single-mode nonclassicality witness (NW) expressed
in terms of integrated intensity moments can be written as the
following [47]:

Rk = 〈Wk〉
〈
W 3

k

〉 − 〈
W 2

k

〉2
< 0, k = 1, . . . , n. (10)

Whenever Rk < 0 a mode k exhibits nonclassicality in the form
of squeezing.

To quantify the nonclassicality of two modes the following
NW can be used [38]:

Mjl = 〈
W 2

j

〉〈
W 2

l

〉 − 〈WjWl〉2 < 0. (11)

Whenever Mjl < 0 the two-mode Gaussian state cannot be
both locally classical and separable.

It is important to note that the NWs in Eqs. (10) and (11)
can be used for the detection of nonclassicality for any kind
of state of light, i.e., even for non-Gaussian states since the
negativity of these NWs refers to nonclassical properties of the
quasidistribution Glauber-SudarshanP function [4,21,38]. But
they become optimal for complete nonclassicality detection
only for Gaussian states.

Now, we would like to show that NWs Rk and Mjl can
be used as genuine nonclassicality identifiers for single- and
two-mode Gaussian states, provided that appropriate local
unitary operations are applied to the corresponding modes.
Moreover, we will demonstrate that the NW Mjl is useful even
for verification of the nonclassicality of the single-mode states.

Theorem 1. A local nonclassicality of the single-mode
Gaussian state ρk can be revealed and quantified by the

021803-2



COMPLETE IDENTIFICATION OF NONCLASSICALITY OF … PHYSICAL REVIEW A 98, 021803(R) (2018)

nonclassicality witness Rk by means of the appropriate co-
herent displacement operator of the given mode.

Proof. By applying a coherent displacement operator
D̂(ξ ′

k ) = eâ
†
kξ

′
k−âkξ

′∗
k to the single-mode Gaussian state ρ̂k , i.e.,

ρ̂k → ρ̂ ′
k = D̂(ξ ′

k )ρ̂kD̂(ξ ′
k )† such that the coherent shifting

vector � in the normal characteristic function CN [ρ̂ ′
k] takes

the form � → �′ = (|ξ |eiαk , |ξ |e−iαk ), one then can rewrite
the NW Rk for state ρ̂ ′

k in the polynomial form

Rk = ax3 + bx2 + cx + d, (12)

where x = |ξ |2 and a, b, c, and d are functions of Bk,Ck ,
which are given in Eq. (8) and of phase αk . The condition
at which Rk may acquire negative values can automatically
be satisfied whenever a = 2(Bk + Re[Cke

−2iαk ]) < 0 since in
that case one can always find such x ∈ [0,∞) for which
Rk < 0. The complex parameter Ck can be presented as Ck =
|Ck|eiφk , and by setting αk = 1/2(φk − π ) one arrives at

a ≡ Bk − |Ck|. (13)

The expression in Eq. (13) is nothing else but the condi-
tion of the Gaussian single-mode nonclassicality when neg-
ative [16,48]. Moreover, the negative values of a in Eq. (13)
are a monotone of Lee’s nonclassicality depth τ , which is a
good nonclassicality monotone for the Gaussian states [16,49].
Therefore, if state ρ̂k is nonclassical, one can always make NW
Rk not only detect its nonclassicality, but also quantify it. This
completes the proof of the theorem.

When the free coefficient is

d = 2B4
k + 5|Ck|2B2

k − |Ck|4 < 0,

in Eq. (12), then Rk becomes negative even with �′ = 0. In that
case the coherent displacement can be used for the enhance-
ment of the nonclassicality detection since lim|ξk |→∞ Rk =
−∞. If initially d > 0 then by choosing such |ξ | > |ξ |cr, one
eventually can access the negative values of Rk . The critical
values |ξ |cr are found as one of the real positive roots of the
NW Rk ,

|ξ |cr = [−1/3a(b + ηhF + �0/η
hF )]1/2, h = 0–2, (14)

where

η = −1 + i
√

3

2
, F =

3

√√√√�1 ±
√

�2
1 − 4�2

0

2
,

and �0 = b2 − 3ac, �1 = 2b3 − 9abc + 27a2d.
Lemma 1. The NW Mjl in Eq. (11) is invariant with respect

to the local phase-shifting operations Ŝ = Ŝj (φj ) ⊗ Ŝl (φl )
applied to modes j and l of the two-mode Gaussian state ρ̂j l .

Proof. The local phase-shifting operations Ŝ = Ŝj (φj ) ⊗
Ŝl (φl ) applied to the two-mode Gaussian state ρ̂j l transform
the corresponding boson operators of the modes as âk →
âke

iφk , where k = j, l. By putting the latter into Eq. (11)
and utilizing the following expression for integrated intensity
moments 〈Wm

j Wn
l 〉 = 〈â†m

j â
†n
l âm

j ân
l 〉, one makes sure that NW

Mjl remains unchanged under such transformations.
Theorem 2. The nonclassicality of the two-mode Gaussian

state ρ̂j l expressed solely in the form of the entanglement can
be completely detected by the nonclassicality witness Mjl

provided that appropriate local coherent displacements are
applied to the state.

Proof. With the appropriate combination of the local
phase-shifting Ŝ = Ŝj ⊗ Ŝl and coherent displacements D̂ =
D̂j (ξ ′

j )D̂l (ξ ′
l ), where subscripts j (l) denote an operator acting

on the j th (l)th mode of the entangled two-mode Gaussian state
ρ̂j l , one can transform state ρ̂j l → ρ̂ ′

j l ≡ D̂Ŝρ̂j l Ŝ
†D̂† such

that the normal covariance matrix A′
N = Ŝj l AN Ŝ

†
j l attains real

nonzero elements Bj , Bl, D̄jl , and Djl with Cj = Cl = 0 by
default (for nonzero Cj and Cl the proof is straightforward),
and the coherent shifting vector � → �′ in the normal
characteristic function CN [ρ̂ ′

j l] becomes of the form �′ =
(|ξ |eiαj , |ξ |e−iαj , |ξ |eiαl , |ξ |e−iαl ), i.e., with equal amplitudes
but different phases. The form of the matrix A′

N is such that it
corresponds to the standard form of the symmetrical covariance
matrix σ st,

σ st =

⎛
⎜⎜⎜⎝

qj 0 qjl 0

0 qj 0 q ′
j l

qjl 0 ql 0

0 q ′
j l 0 ql

⎞
⎟⎟⎟⎠, (15)

i.e., the applied phase-shifting operation Ŝ does not affect the
global nonclassicality of the state [50]. The relations between
the elements of σ st and A′

N are given as the following:

Bk = qk − 1

2
, k = j, l,

Djl = qjl − q ′
j l

2
, D̄jl = qjl + q ′

j l

2
. (16)

The NW Mjl in Eq. (11) for state ρ̂ ′
j l with the normal

characteristic function CN [ρ̂ ′
j l] then can be presented as a

polynomial Mjl = Mjl (x) with x = |ξ |2, which has the same
form as in Eq. (12), where a, b, c, and d, now are real
functions of αj , αl and Bj , Bl, D̄jl , and Djl . A sufficient
condition for which Mjl (x) can acquire negative values for
nonclassical state ρ̂j l is when the coefficient a is negative, i.e.,

a ≡ Bj + Bl − 2Djl cos(αj + αl ) + 2D̄jl cos(αj − αl ) < 0.

(17)
If one puts αq = (2kq + 1)π/4, kq ∈ Z, q = j, l into
Eq. (17) the coefficient a becomes equivalent to the condition
for inseparability of the state. Indeed, in that case Eq. (17)
along with Eq. (16) can be rewritten as

〈(�û)2〉 + 〈(�v̂)2〉 < 1, (18)

where û = (|h|x̂j + x̂l/h)/
√

2, v̂ = (|h|p̂j − p̂l/h)/
√

2,
and h = ±1. Equation (18) is the inseparability condition
written for fields’ quadratures and was first derived in Ref. [50].
Now, by applying the inverse phase-shifting operations Ŝ−1 to
the modified state ρ̂ ′

j l in order to come back to the initial form
of the covariance matrix AN and by making use of Lemma
1, one concludes that for any entangled two-mode Gaussian
state ρ̂j l there are always such local coherent displacements
for which the NW Mjl is able to detect the entanglement of
the state. This completes the proof of the theorem.

If some coherent displacement operations are applied to the
state, i.e., ρ̂ ′

j l = D̂ρ̂jlD̂
†, meaning that only the vector � →

�′ is modified in the normal characteristic function CN [ρ̂ ′
j l]
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and as before �′ = (|ξ |eiαj , |ξ |e−iαj , |ξ |eiαl , |ξ |e−iαl ), then
the coefficient a in Mjl (x = |ξ |2) takes the following form:

a ≡ Bj + Bl + Re[Cje
−2iαj ] + Re[Cle

−2iαl ]

−2 Re[D̄jle
i(αj −αl )] − 2 Re[Djle

−i(αj +αl )]. (19)

One can immediately see that in that case it is possible to
retrieve the nonclassicality of the state by means of Mjl , which
is expressed by the entanglement if choosing the right phases
of the displaced coherent fields.

For instance, for two-mode squeezed vacuum states or
so-called twin beam states which exhibit entanglement, the
Eq. (19) can be reduced to

a ≡ Bj + Bl − 2|Djl|, (20)

since for such states Cj = Cl = D̄jl = 0 and where we define
arg(Djl ) = αj + αl , arg stands for the argument of a complex
number. Equation (20) represents the entanglement condition
for twin beam states when negative [51]. Additionally, the
negative values of the coefficient a in Eq. (20) are a monotone
of the entanglement negativity, which is, by itself, a good
entanglement monotone for two-mode Gaussian states [52].
Thus, for twin beams the NW Mjl can also be used as an
entanglement quantifier.

Most importantly, the NW Mjl can detect, apart from the
entanglement, also the local squeezing. For example, for the
two-mode state ρ̂j l which is both locally nonclassical and
entangled then by suitably chosen αj and αl one can obtain

the condition of the nonclassicality of such a state. Namely,
for αj = φj − π (n2 − n1 + 1/2) and αl = φl + π (n1 + n2 +
1/2), where φj (φl ) is the phase of the boson operator âj (âl )
of the mode j (l) and n1, n2 ∈ Z, Eq. (19) attains the form

a ≡ Bj − |Cj | + Bl − |Cl| − 2(|Djl| − |D̄jl|). (21)

Equation (21) is especially easy to read for pure Gaussian states
since the first four terms in Eq. (21) are responsible as before for
the local nonclassicality, the differences in the last two terms in
the parentheses are responsible for the entanglement [16,48],
and thus a < 0 for such states.

Moreover, the form of the coefficient a in Eq. (19) suggests
that the NW Mjl allows for detecting the nonclassicality of the
single-mode state. For example, to detect the nonclassicality
of the single-mode j one needs to replace mode l just with the
coherent field ξl = |ξ |eiαl , where αl can be arbitrary since in
that case Eq. (19) reduces to Eq. (13).

We would also like to note that the coherent displacements
of the Gaussian states generated in the spontaneous parametric
processes could be encompassed by means of the stimulated
emission of the corresponding parametric process. As such, by
means of an appropriate choice of the initial phase and intensity
of the stimulating coherent fields one can completely reveal the
nonclassicality of the given Gaussian state [53].
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and M. Bondani, Spatial properties of twin-beam correlations at
low- to high-intensity transition, Opt. Express 22, 13374 (2014).

[27] B. Kühn, W. Vogel, M. Mraz, S. Köhnke, and B. Hage, Anoma-
lous Quantum Correlations of Squeezed Light, Phys. Rev. Lett.
118, 153601 (2017).

[28] S. Wallentowitz and W. Vogel, Unbalanced homodyning for
quantum state measurements, Phys. Rev. A 53, 4528 (1996).

[29] K. Banaszek, C. Radzewicz, K. Wódkiewicz, and J. S. Krasiński,
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