
PHYSICAL REVIEW A 98, 020702(R) (2018)
Rapid Communications

Unitarity-limited behavior of three-body collisions in a p-wave interacting Fermi gas
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We experimentally investigate the unitarity-limited behavior of the three-body loss near a p-wave Feshbach
resonance in a single-component Fermi gas of 6Li atoms. At the unitarity limit, the three-body loss coefficient L3

exhibits universality in the sense that it is independent of the interaction strength and follows the predicted
temperature scaling law of L3 ∝ T −2. When decreasing the interaction strength from the unitarity regime,
the three-body loss coefficient as a function of the interaction strength and temperature can be described by
the theory based on the association of an excited resonant quasibound state and its relaxation into a deep stable
dimer by collision with a third atom in the framework of the standard Breit-Wigner theoretical approach. The
results reported here are important to understand the properties of a resonant p-wave Fermi gas in the prospect
of quantum few- and many-body physics.
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In a system of particles with strong interactions, universal
features often emerge. A prime example of such a system
is s-wave unitary Fermi or Bose gases, where a tunable
interaction parameter known as the scattering length diverges.
Such a unitary gas exhibits universal properties that are
independent of scattering length and depend only on the
atomic density and temperature [1–5]. Furthermore, ultracold
atomic gases at the unitarity limit attract interest from the
context of few-body physics because unitary Bose gases
have been confirmed to show the universal feature that the
three-body loss coefficient depends only on the temperature
[6,7]. The significant advancement in Bose gases with s-wave
interactions has inspired studies toward fermionic gases
with p-wave interactions [8–16]. The universal features of
few-body collisions in the atoms with p-wave interactions
have been theoretically studied [17–29].

Interactions among ultracold atoms across the p-wave
Feshbach resonance are characterized by the scattering volume
V , the collision energy E, and the effective range ke [30–32].
The scattering volume as a function of the external magnetic
field is parametrized as V = Vbg[1 − �B/(B − B0)], where
Vbg, �B, B, and B0 are the background scattering volume,
resonance width, external magnetic field, and resonance posi-
tion, respectively. The effective range can be safely assumed to
be constant due to its very weak dependence on the magnetic
field [24,32]. There are two distinct regimes of resonant p-
wave Fermi gases, with weak and strong interactions [22,33].
A recent measurement of three-body loss coefficient near the
p-wave Feshbach resonance in the lowest internal state of 6Li
atoms confirmed the predicted scaling law of the three-body
collision coefficient L3 ∝ V 8/3 [34]. This scaling solely holds
in the weakly interacting regime, where scattering volume is
small, and the temperature is low. The deviation in the behavior
of the three-body loss coefficient from the weakly interacting
regime has been observed in 6Li atoms [14]. Since the first

quantitative study of the three-body loss coefficient at the
strongly-interacting regime [14], further systematic investiga-
tion of the three-body loss coefficient has been awaited to fully
understand the unitarity-limited behavior of three-body loss at
the p-wave strongly-interacting regime, which has appealing
interest in the context of few-body physics [19,20,23].

In this Rapid Communication, we report on the observa-
tion of the unitarity-limited behavior of the three-body loss
coefficient in the vicinity of a p-wave Feshbach resonance in
a spin-polarized Fermi gas of 6Li atoms. We experimentally
show that at sufficiently large negative scattering volume
or small magnetic field detuning from the resonance, the
three-body loss coefficient reaches the limit imposed by the
unitarity. We confirmed that at the unitarity limit, the three-
body loss coefficient L3 is not dependent on the interaction
parameters and shows the temperature dependence of L3 ∝
T −2 as predicted theoretically [19,20]. We construct a simple
theoretical model by taking into account the formation of a
resonance quasibound state and its vibrational quenching by
inelastic collision with other atoms based on the Breit-Wigner
theoretical approach. Our theoretical approach successfully
explains the magnetic-field and the temperature dependence
of a three-body loss coefficient in a nonunitarity regime with
strong interactions.

Our experiment begins by trapping 6Li atoms in the
lowest hyperfine ground state |1〉 ≡ |F = 1/2,mF = 1/2〉,
using a single beam optical dipole trap, as described in
detail elsewhere [32,34]. After trapping of the atoms in the
single beam optical dipole trap, evaporative cooling was
performed at 300 G. The magnetic field was ramped to
the vicinity of the |1〉 − |1〉 p-wave Feshbach resonance
located at B0 = 159.17(5) G [35], which is consistent
with the previous measurements B th

0 = 159.15 G [14,15].
The error in the magnetic field B is mainly arising from
the magnetic fluctuation due to the noise in the current
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FIG. 1. (a) A plot of a remaining number of atoms after holding
20 ms at various magnetic field detunings B − B0 at an atomic
temperature of 1.5 μK. The sharp edge corresponds to the resonance
position B0 indicated by zero point. The solid curve is obtained using
Eq. (8) in the solution of rate equation (1) as explained in text.
(b) Typical time evolution of the number of atoms near resonance.
Solid curve is a fitting to the solution of Eq. (1) to extract three-body
loss constant L3. The inset shows the temperature evolution over
hold times. Vertical error bars represent statistical errors due to atom
number fluctuations.

to create the magnetic field. We stabilize the current
running in the coils to suppress the fluctuation down to 5×10−5

which corresponds to a magnetic field fluctuation of 8 mG [32].
The magnetic field was initially tuned far above the p-wave

Feshbach resonance B0. Then, we abruptly ramped down
the magnetic field to jump across the resonance toward the
Bose-Einstein condensation side to avoid adiabatic creation
of Feshbach molecules [35]. Then, we quickly ramped the
magnetic field to the various magnetic-field detunings B − B0

and held the atoms in the trap to measure the loss of the atomic
number. As an example, Fig. 1(a) shows the number of atoms
for a hold time of 20 ms at various magnetic-field detunings.
Here, the temperature of the atoms is T ∼ 1.5 μK, and each
data point is the average of three repeated measurements. The
sharp edge of the loss feature in the lower magnetic-field side
corresponds to the resonance position B0 [32]. We treat the
doublet structure of the p-wave Feshbach resonance due to the
spin-dipole interaction [30] as being completely overlapped
with each other because the splitting of the two resonances in
6Li is quite small compared with the resonance width. The solid
curve in Fig. 1(a) shows the result of our theoretical description

obtained using Eq. (8) in the solution of rate equation (1), as
discussed in a later part of the text.

To measure the three-body loss coefficient L3, we moni-
tored the hold-time dependence of the number of atoms N at a
fixed temperature T and detuning from the Feshbach resonance
B − B0. The number of atoms decay according to the rate
equation

Ṅ

N
= −L3〈n2〉, (1)

where 〈n2〉 = (1/N )
∫

n(�x)3d �x is the mean square density
determined from the atomic density profile obtained via ab-
sorption imaging. To simplify the analysis, we always keep the
atomic temperature greater or equal to the Fermi temperature
such that the density profile of atoms is assumed to be a
Gaussian. We limited the atomic loss up to 30%–35% of
the initial number of atoms, and the temperature change
during the hold time is less than 10% as indicated in the
inset of Fig. 1(b). Therefore, we extracted the three-body
loss coefficient L3 from the solution of Eq. (1) assuming a
constant temperature approximation shown by the solid curve
in Fig. 1(b). In our experiment, the one-body loss rate can be
safely neglected because the one-body decay time of the atoms
due to background-gas collision is 80 s and has negligible
influence on the determination of L3.
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FIG. 2. Three-body loss rate coefficient L3 as a function of
magnetic-field detunings at two different temperatures of 2.1 (filled
orange circles) and 4.5 μK (filled black diamonds). Vertical error
bars show statistical errors due to the atom number fluctuations while
horizontal error bars show 8 mG fluctuation of the magnetic field.
When increasing the interaction, L3 rapidly increases toward the
resonance and hits the limit imposed by unitarity indicated by vertical
dotted lines. The vertical dotted lines correspond to the universal
value of kT /kres ≈ 1 (see text). L3 then stays almost constant close
to the Feshbach resonance, as clearly evident in the inset, which
indicates unitarity-limited behavior. The dashed curves show the
theoretical results of Eq. (8) by taking into account the imaginary
part of the scattering volume Vi as a single free parameter. In the
weakly interacting regime, the solid green curve indicates the scaling
law of L3 ∝ V 8/3.
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FIG. 3. The temperature dependence of L3 for three different
detunings: B − B0 = 15 (orange circles), 30 (green diamonds), and
44 mG (blue squares). Each data point is the average of five repeated
measurements under the same conditions. The error bars indicate the
statistical error of 1 σ standard deviation. Data at B − B0 = 15 mG
satisfied the universal unitary condition kT /kres � 1 over the entire
parameter range of the figure and followed the universal scaling law
described by L3 ∝ T −2, as indicated by the orange dashed line. Data
at 30 and 44 mG begin to deviate from the unitarity regime at the
critical temperature region corresponding to the universal value of
kT /kres ≈ 1 depicted by the vertical shaded band for each data set. The
solid curves in the respective colors show the fitting result reproduced
by Eq. (2) in unitarity regime and by Eq. (8) in the nonunitarity regime.

Figure 2 shows L3 as a function of magnetic-field detuning
on the negative-scattering-volume side of the resonance at
temperatures of 2.1 (filled circles) and 4.5 μK (black di-
amonds). At a sufficiently far-off resonance regime, where
interactions are weak, we marked the scaling of L3 ∝ V 8/3

by the solid green line for the case of 4.5 μK, which was
the subject of previous studies [19,34]. The L3 increases by
orders of magnitude as the magnetic-field detuning decreases
and eventually reaches the maximum limit imposed by the
unitarity condition. In the unitarity limit, L3 shows no further
dependence on the magnetic-field detunings toward the reso-
nance which is clearly reflected by flat regions in the inset plot
of Fig. 2. These results of Fig. 2 show a clear contrast to the case
of an s-wave interacting unitary Bose gas, where the critical
point of the magnetic field at which L3 reaches the unitarity-
limited value is independent of the atomic temperature [7].
We observed that L3 starts to saturate toward the resonance
at the universal value of kT /kres � 1 as indicated by vertical
dotted lines in the respective color in Fig. 2. Here, kT =√

3mkBT/(2h̄2) and kres = 1/
√|V |ke,which are the thermal

momentum and the momentum parametrized by the scattering
volume V and the effective range ke, respectively [36].

Another feature evident from Fig. 2 is that the L3 plateau
at the unitarity regime is shifted to the lower value at the
higher temperature. Therefore, we measured the temperature
dependence of L3 near zero detuning regions. Figure 3 shows
the temperature dependence of L3 at the unitarity-limited
regime for three magnetic-field detunings; B − B0 = 15

(orange circles), 30 (green diamonds), and 44 mG (blue
squares). In this measurement, the atomic temperature was
changed by controlling the degree of the evaporative cooling
and the recompression condition of the dipole trap. Each data
point is the average of five repeated measurements under the
same experimental conditions. The error bars indicate 1 σ

standard deviation. In Fig. 3, all the data points for B − B0 =
15 mG satisfy the condition of the unitarity limit, kT /kres � 1.
At the unitarity limit, L3 is expected to obey the following
scaling law for the temperature [19,20]:

Lmax
3 = λ

36
√

3π2h̄5

m3(kBT )2
. (2)

Here, λ � 1 is a nonuniversal dimensionless constant whose
unity value indicates the maximum upper bound of the three-
body loss constant. The value of λ is generally less than unity
and is species dependent [7,37]. We fitted the data of B − B0 =
15 mG with Eq. (2) keeping λ as free parameters. The red
dashed line shows the best fit result with λ = 0.09 ± 0.02,
which confirmed the prediction of L3 ∝ T −2.

The observed value of λ indicates that the flow of the
incoming hyper-radial wave into the scattering states of an
atom and a deep dimer occurs with a probability less than 1.
The extracted value of λ is different from those for Bose gases,
which are 0.9 for 7Li [6] and 0.3 for 39K [7]. As far as we know,
there is no prediction of the value λ for p-wave interacting 6Li
atoms.

In the same way, the data taken at B − B0 = 30 and
44 mG detuning show the scaling behavior at the relatively
high-temperature regime, and the data start to deviate from the
scaling behavior at low temperature. The vertical shaded bands
in Fig. 3 indicate the temperature region where kT /kres ≈ 1.
It is evident that the deviation of the data from the unitarity
scaling behavior occurs at kT /kres ≈ 1 indicates the system is
departing from the unitarity regime.

Next, we discuss the simplified theoretical interpretation
for the line shapes of the atomic loss near the unitarity regime.
Our scheme is based on the Breit-Wigner resonance scattering
theory utilized to describe the laser-induced photoassociation
trap loss [38] and the s-wave three-body losses [39,40]. We
assume that the two atoms with relative kinetic energy E

collide in the presence of a molecular bound state that is
resonant with the collision energy. The two colliding atoms
are then resonantly coupled to the quasibound state [i.e.,
Li + Li � Li2(e)]. The strength of the resonant coupling at
collision energy E exhibits a Wigner threshold form [10]

�e = 2
√

mE3/2

keh̄
. (3)

This threshold law also explains the lifetime of the quasibound
molecular state [41], the dissociation energy of Feshbach
molecules [42], and the dynamics of contact relations [33] on
the negative side of p-wave Feshbach resonances. The atoms in
the quasibound state undergo a relaxation into a deeply bound
dimer Li2(d) as a result of the collision with the third atom,
which is represented by the relaxation event

Li2(e) + Li −→ Li2(d) + Li + δε, (4)
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with excess energy δε added to the kinetic energy of the atom
and dimer.

To obtain the cross section for the resonance-enhanced
three-body recombination, we consider the effective range
expansion of the p-wave scattering phase shift δk as k3 cot δk =
−1/V − kek

2, where k is a relative wave vector and the
effective range ke defined in this way is positive. In order
to include the linewidth of the energy level associated with
the dimer relaxation channels (d) of Eq. (4), we added the
imaginary part Vi > 0 to the inverse of the scattering volume
in the effective range expansion [36,43,44]

k3 cot δk = − 1

V
− i

Vi
− kek

2. (5)

Using standard S-matrix element notation [45], we derived
the following expression for the cross section of resonance-
enhanced three-body recombination due to atom-dimer relax-
ation [38]

σp = 3π

k2

�e�d

(E − Eb )2 + (�e + �d )2/4
. (6)

In this expression, Eb = h̄2k2
res/m is the binding energy of

the resonant quasibound state. The expression of the energy
width �d = 2h̄2/(mkeVi ) can be derived from the simple
mathematics and �d describes the rate of Eq. (4). Therefore,
Vi quantifies the strength of relaxation of the dimer into the
deeply bound dimer states by collision with another atom. The
magnetic-field dependence of Vi has been discussed [36] and
it is predicted to be weak dependence on the magnetic field.
In the magnetic-field range that we consider in this work,
we can reproduce the experimental results by setting Vi to
be independent of the magnetic field. The three-body rate
constant can be described as K3 = (φae/φaaa )vrelσp [46]. Here,
vrel = 2h̄k/m is the relative velocity and φae represents the
phase space of an atom and resonant bound state while φaaa

is the phase space of three atoms. From an N -particle phase
space integral, one can obtain φae/φaaa ≈ 96

√
3π/k3 [46,47].

As a result, we obtain the three-body rate constant in the form
of the Breit-Wigner expression given as

K3 = 144
√

3π2h̄5

m3E2

4�e�d

(E − Eb )2 + (�e + �d )2/4
. (7)

The measured value of the three-body loss coefficient L3

is the thermal average of l3 = 3K3/6 [19] for an atomic
ensemble. Therefore, we consider the thermal averaging over
the Maxwell-Boltzmann distribution [48,49].

L3 = 2√
π (kBT )3/2

∫ ∞

0
l3

√
Ee−E/kBT dE. (8)

We fit both the 2.1 and 4.5 μK data sets shown in Fig. 2
with Eq. (8) using Vbg�B = (−2.8 ± 0.3)×106a3

0 [35], ke ≈
(0.091 ± 0.01)a−1

0 , and Vi as the only free parameter. Here,
a0 is the Bohr radius. The van der Waals length scale of the
6Li atoms is lvdW ∼ 30a0 [50], which can also be used to set
the scaling in terms lvdW. Here, we can safely consider ke =
−h̄2/(mVbg�Bδμ) because of the large scattering volume
limit and narrowness of the resonance [51,52], where δμ =
kB(113 ± 7) μK/G is the relative magnetic moment between
the molecular state and the atomic state [53]. The dashed

line curves in Fig. 2 show the best-fit result with Vi = (6.5 ±
1.5)×10−22 m3. These theoretical curves explain the data in
the intermediate region between the unitarity-limited regime
and the weakly interacting regime.

Next, we fit the data shown in Fig. 3 with the combined
curves of Eq. (8) in the nonunitary regime and Eq. (2) in the
unitary regime. We take the critical temperature that divides
the unitary and nonunitary regimes and the amplitude factors in
both regimes as fitting parameters. The data agree well with the
theoretical curves shown by the solid green and blue curves for
B − B0 = 30 and B − B0 = 44 mG, respectively. The fitting
errors of the critical temperature are shown with the width of
the shaded bands in Fig. 3. The temperatures corresponding to
the condition of kT /kres ≈ 1 are consistent within the range of
the fitting errors. Similarly, Eq. (8) is used in the solution of
the rate equation (1) with the fixed trapping conditions [40],
and a theoretical curve is drawn for the number of atoms
as the function of magnetic-field detunings. The solid blue
curve shows the resultant theoretical curve in Fig. 1, which is
reasonably consistent with the experimental data.

The obtained value of the imaginary scattering volume
Vi corresponds to the relaxation width of �d ∼ kB×0.15 μK
which is higher than the width of the resonant bound state
�e ∼ kB×0.01 μK and �e ∼ kB×0.04 μK calculated from
Eq. (3) at T = 2.1 μK and T = 4.5 μK, respectively. This
means that the timescale of the relaxation described by Eq. (4)
is shorter than the timescale of the association of the shallow
Feshbach dimers scaled by �−1

e . Therefore, the loss rate is
dominantly set by the slow coupling of two atoms into the
resonant quasibound state via barrier tunneling which is a
two-body process at the current experimental conditions. Fur-
thermore, kBT � (�e + �d ) indicates the thermal broadening
of the line shape of atomic losses as observed in the data of
Fig. 2.

In summary, we experimentally investigated the
unitarity-limited behavior of the three-body atomic loss
near the p-wave Feshbach resonance in a single-component
Fermi gas of 6Li atoms. We confirmed the universal scaling
law of L3 ∝ T −2 at the unitarity limit, and we also confirmed
that kT /kres � 1 described the condition for the unitarity limit.
The magnetic-field and temperature dependence of L3 at the
large negative scattering volume nearby the unitarity-limited
regime shows good agreement with our theoretical description
using the Breit-Wigner theoretical approach, which is based on
the association of the resonant-bound state and its relaxation
into a deep stable state by collision with another atom. Our
approach directly relates the imaginary part of the inverse
scattering volume to the relaxation lifetime of the Feshbach
molecular bound state into deeply bound dimer states. Our
result provides a promising direction to explore the few-
and many-body physics at narrow unitarity regime using
radio-frequency spectroscopy to minimize the effect of severe
losses [33].
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