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We quantify the impact of spatiotemporally correlated Gaussian quantum noise on frequency estimation by
Ramsey interferometry. While correlations in a classical noise environment can be exploited to reduce uncertainty
relative to the uncorrelated case, we show that quantum noise environments with frequency asymmetric spectra
generally introduce additional sources of uncertainty due to uncontrolled entanglement of the sensing system
mediated by the bath. For the representative case of collective noise from bosonic sources, and experimentally
relevant collective spin observables, we find that the uncertainty can increase exponentially with the number of
probes. As a concrete application, we show that correlated quantum noise due to a lattice vibrational mode can
preclude superclassical precision scaling in current amplitude sensing experiments with trapped ions.
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A chief aim in quantum metrology is to demonstrate
an advantage over classical approaches in the scaling of
the precision to which a physical parameter may be esti-
mated as a function of the number N of probes being used
(qubits in the simplest case) [1]. The use of entangled states
yields asymptotic precision bounds which surpass the optimal
N−1/2 scaling achievable classically [the standard quantum
limit (SQL)], with the ultimate N−1 precision bound set by
the Heisenberg limit. Such superclassical scalings can benefit
tasks as diverse as frequency estimation [2], magnetometry
[3], thermometry [4], and force and amplitude sensing [5,6].
Prominent applications include gravitational-wave detection
[7] and high-precision timekeeping with atomic clocks [8],
with a growing role being envisioned in biology [9].

Realizing the full potential of quantum metrology demands
that the impact of realistic noise sources be quantitatively ac-
counted for. While no superclassical scaling is permitted under
noise that is temporally uncorrelated and acts independently
on each probe [10], noise correlations can be beneficial in
restoring metrological gain. For spatially uncorrelated noise,
temporal correlations may be exploited to achieve a super-
classical (Zeno-like) scaling at short detection times [11,12].
For temporally uncorrelated noise, spatial correlations may
enable superclassical scaling via a decoherence-free subspace
encoding [13,14], or they can be leveraged to filter noise from
signal in quantum error-corrected sensing [15]. Even in the
presence of simultaneous spatial and temporal correlations,
as arising if the probes couple to a common environment
with a colored spectrum, memory effects can be used to
retain enhanced sensitivity over longer times, as long as the
environment is modeled as classical [16].

The occurrence of nontrivial temporal correlations has been
verified across a variety of systems through quantum noise
spectroscopy experiments [17–23]; in typical metrological
settings, spatial noise correlations also tend to naturally emerge
due to probe proximity [13,24]. Further, recent experiments
have directly probed nonclassical noise environments [25].
The latter are distinguished by noncommuting degrees of
freedom which translate, in the frequency domain, to spectra

that are asymmetric with respect to zero frequency [26,27].
Crucially, qubits coupled to a common, quantum environment
can become entangled in an uncontrolled way, leading to an
additional source of uncertainty in parameter estimation that
has not been accounted for, to the best of our knowledge. Such
noise-induced entanglement is especially relevant to quantum
metrology with spin-squeezed states generated by coupling
qubits to common bosonic modes [28,29], as this opens the
door to correlated quantum noise due to vibrational [30] or
photonic sources [31].

In this Rapid Communication, we provide a unified ap-
proach to Ramsey metrology protocols under correlated quan-
tum noise, by building on a transfer filter-function formalism
[32] recently employed for control and spectral estimation
of Gaussian quantum noise in multiqubit systems [27,33].
We contrast the precision limits achievable with N qubits
initialized in a classical coherent spin state (CSS) and an
experimentally accessible entangled one-axis twisted spin-
squeezed state (OATS) [28,34,35]. In the paradigmatic case of
a collective spin-boson model, we find that the simultaneous
presence of spatial and temporal correlations introduces a
contribution to the uncertainty that grows exponentially with
N , makes the precision scaling worse than SQL for a CSS, and
prevents the SQL from being surpassed by use of a nonclassical
OATS. We further discuss a source of correlated quantum noise
that has thus far been neglected in quantum-limited amplitude
sensing with trapped ions [6]. We argue that the resulting
uncertainty can become dominant and preclude the realization
of a superclassical scaling in this context.

Noisy Ramsey interferometry: Setting. We consider N

qubit probes, with associated Pauli matrices {σα
n }, α ∈

{x, y, z}, n = 1, . . . , N , each longitudinally coupled to a
quantum bath through a bath operator Bn. In the interaction
picture with respect to the free bath Hamiltonian, HB, we
consider a joint Hamiltonian of the form

HSB(t ) = h̄

2

N∑
n=1

[y0(t )b + y(t )Bn(t )] σ z
n , (1)
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where b is the angular frequency we wish to estimate,
Bn(t ) ≡ eiHBt/h̄Bne

−iHBt/h̄, and we allow for the possibility
of open-loop control modulation via time-dependent func-
tions y0(t ), y(t ). We assume that the initial joint state is
factorized, ρSB(0) ≡ ρ0 ⊗ ρB, and that the noise process de-
scribed by {Bn(t )} is stationary and Gaussian with zero mean
relative to ρB [33]. Noise correlations are captured by the
two-point correlation functions, Cnm(t ) ≡ 〈Bn(t )Bm(0)〉B =
TrB[Bn(t )Bm(0)ρB], with the limiting cases of temporally
or, respectively, spatially uncorrelated noise corresponding
to Cnm(t ) = cnmδ(t ) and Cnm(t ) = δnmfn(t ). Coupling to a
classical bath is recovered by letting {Bn(t )} be commut-
ing random variables, [Bn(t ), Bm(0)]− ≡ 0, ∀m, n, t . In the
frequency domain, the Fourier transform of Cnm(t ) yields
the noise spectra, Snm(ω). If Snm(ω) ≡ 1

2 [S+
nm(ω) + S−

nm(ω)],
then S±

nm(ω) ≡ ∫ ∞
−∞ dt e−iωt 〈[Bn(t ), Bm(0)]±〉

B
= Snm(ω) ±

Smn(−ω) define the “classical” (+) and “quantum” (−) spec-
tra, respectively [27]. By definition, quantum spectra vanish
whenever noise is classical.

Starting from an arbitrary initial state ρ0 that is not
stationary under HSB(t ), the resulting phase evolution can be

detected through ν independent measurements of the collective
spin Jy ≡ ∑

n σ
y
n /2 (in units of h̄). In particular, (i)

ρ0 = ρ+x̂ ≡ |+〉〈+|⊗N for an initial CSS, with |±〉n being ±1
eigenstates of σx

n ; and (ii) ρ0 = ρsq ≡ Usqρ+x̂U
†
sq for an initial

OATS, with Usq ≡ e−iβJx e−iθJ 2
z /2, and β and θ being rotation

and twisting angles, respectively [34,36]. To quantify the
precision in estimating b, we use the standard deviation [37]

�b(t ) ≡ ν−1/2�Jy (t )

|∂〈Jy (t )〉/∂b| , �J 2
y (t ) ≡ 〈

J 2
y (t )

〉 − 〈Jy (t )〉2. (2)

In a noiseless scenario [Bn(t ) ≡ 0, ∀n, t], Ramsey
interferometry yields an optimal uncertainty at the SQL,
�b ∝ N−1/2, with an initial CSS [37], whereas an initial
OATS with minimal uncertainty along y [see Fig. 1(d)] yields
the superclassical scaling �b ∝ N−5/6 [34].

Noisy Ramsey interferometry: Results. Since HSB(t ) in
Eq. (1) generates pure-dephasing dynamics, we may evaluate
〈σy

n (t )〉 and 〈σy
n σ

y
m(t )〉 by invoking the exact result in terms

of generalized cumulants of bath operators established in
Ref. [27]. Summing over all qubits and tracing out the bath,
we then obtain, for arbitrary ρ0 [38],

〈Jy (t )〉 =
∑

n

e−χnn(t )/2 TrS

[
e−i�n(t )ρ0

σ
y
n

2

]
,

〈
J 2

y (t )
〉 = N

4
+

∑
n,m
=n

e−[χnn(t )+χmm(t )]/2 TrS

[
e−i�nm(t )ρ0

σ
y
n σ

y
m

4

]
, (3)

�n(t ) = ϕ(t )σ z
n +

∑
, 
=n

�n(t )σ z
nσ z

 , �nm(t ) = ϕ(t )
(
σ z

n + σ z
m

) − iχnm(t )σ z
nσ z

m +
∑

, 
=nm

[
�n(t )σ z

nσ z
 + �m(t )σ z

mσ z


]
. (4)

Above, we have introduced ϕ(t ) ≡ b
∫ t

0 ds y0(s), and effective
propagators exp[−i�n(t )], exp[−i�nm(t )] that depend on
two sets of real quantities: the decay parameters, χnm(t ), de-
scribing loss of coherence, and the phase parameters, �nm(t ),
which characterize entanglement and squeezing mediated by
the quantum bath. Explicitly,

χnm(t ) ≡ 1

2π
Re

∫ ∞

0
dω F+(ω, t ) S+

nm(ω), (5)

�nm(t ) ≡ 1

2π
Im

∫ ∞

0
dω F−(ω, t ) S−

nm(ω), (6)

where F+(ω, t ) ≡ | ∫ t

0 ds y(s)e−iωs |2 and F−(ω, t ) ≡∫ t

0 ds y(s)
∫ s

0 du y(u)e−iω(u−s) are first- and second-order
filter functions describing the action of y(t ) in the frequency
domain. Clearly, �nm(t ) ≡ 0 if noise is classical.

For illustration, we assume henceforth a collective noise
regime, Bn(t ) ≡ B(t ) ∀n, t , by deferring a more complete
analysis to a separate investigation [39]. Thus, χnm(t ) ≡
χ (t ), �nm(t ) ≡ �(t ). A nonzero phase parameter �(t ) 
= 0
is then distinctive of quantum noise that is both spatially and
temporally correlated [40].

(i) Initial CSS. Since such an initial state is separable, we can
evaluate 〈Jy (t )〉 and 〈J 2

y (t )〉 exactly. Substituting into Eq. (2),
and minimizing the resulting uncertainty with respect to b by
taking ϕ = kπ, k ∈ N, we find [38]

�b(t )2 = (N + 1)eχ (t ) − (N − 1)e−χ (t ) cosN−2 2�(t )

2Nν
[ ∫ t

0 ds y0(s)
]2

cos2N−2 �(t )
. (7)

Note that �b is periodic with respect to �, in the sense
that �b(� + π ) = �b(�). In addition, Eq. (7) implies the
inequality �b � �b0, where �b0 ≡ �b|�=0. Therefore, for
an initial CSS, a finite � can only increase uncertainty in the
frequency estimation scheme considered here.

(ii) Initial OATS. As ρ0 = Usqρ+x̂U
†
sq is entangled, an exact

approach is no longer viable. However, Usq and the effective
propagators can be separated into a term that acts on qubits n

and m in the sums of Eq. (3) and an operator acting on all other
qubits. The former is evaluated and traced over exactly; the
remaining expectation values are evaluated using a cumulant
expansion over the system (rather than the bath), truncated
to the second order [38]. Neglecting higher-order terms is
appropriate for θ,�(t ) � 1, leading to nearly Gaussian states.
Although unwieldy, the resulting expressions will be used to
obtain analytic scalings of �b(t ) with N for N � 1.

Spin-boson model. To make our results quantitative, an
explicit choice of noise spectra is needed. We first consider a
collective spin-boson model, namely, HB = h̄

∑
k �ka

†
kak and

B(t ) = 2
∑

k (gka
†
ke

i�k t + H.c.), where ak, gk , and �k are the
annihilation operator, coupling strength, and angular frequency
of bosonic mode k, respectively. To ease comparison with
Refs. [11,41], we consider a continuum of bosonic modes
with spectral density I (�) ≡ αω1−s

c �se−�/ωc , where α is
dimensionless, ωc is the cutoff frequency, and we take s � 0.
Assuming that the bath is initially in its vacuum state, χ (t )
and �(t ) are readily obtained from Eqs. (5) and (6). From
this, we calculate �b(t ) for an initial CSS using Eq. (7) with
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FIG. 1. Detection-time dependence of the sensitivity �b(t )
√

T of parameter estimation in a collective spin-boson model, in units of ω1/2
c ,

with ωc being the upper angular frequency cutoff. (a) Initial CSS, short-time behavior. Solid (red) line: sensitivity with �(t ) 
= 0 resulting from
the spin-boson model. Dashed (blue) line: sensitivity �b0(t )

√
T for �(t ) = 0. Parameters: α = 1, s = 3, N = 100. (b) Initial CSS, long-time

behavior. Parameters unchanged. Shaded area: short times. (c) Initial OATS. Solid (red) line: exact numerical calculation with �(t ) 
= 0 from
the spin-boson model. Dotted (black) line: cumulant expansion over the system (see text). Dashed (blue) line: Exact calculation with �(t ) = 0.
Insets: Q functions for the system state at times t1, t2, and t3 labeled in the main plot. Parameters: α = 1, s = 3, N = 1000. (d) Q function
corresponding to an initial OATS with minimal variance along y for N = 1000.

y0(t ) ≡ 1 = y(t ) ∀ t (free evolution), and taking ν = T/t ,
where T is the fixed total available time.

In Fig. 1(a), the uncertainty is compared with �b0(t ). For
long times, a finite � can result in a significantly increased
uncertainty. For short times, ωct � 1, we have χ (t ) � (χ0t )2

and �(t ) � (�0t )3, with χ0 = ωc[α�(s + 1)]1/2 and �0 =
−ωc[α�(s + 2)/6]1/3, where �(x) is the gamma function.
Upon substituting in Eq. (7), we find the detection time t =
topt that minimizes �b(t ). For N � 1, topt = χ−1

0 N−1/2 and
�bopt = (2χ0/T )1/2N−1/4. This analytic scaling is interme-
diate between the SQL (�bopt ∝ N−1/2) and the saturation
at large N (�bopt ∝ const) found in Ref. [13] for collective
Markovian noise, and coincides with the scaling obtained
numerically in Ref. [42] with a specific classical model of
temporally correlated collective noise.

Although �(t ) only gives corrections of order O(1/N )
to �b(t ) near t = topt, the width of the minimum in �b(t )
with respect to t (set by �b(t ) � 2�bopt) is suppressed as
N−1/2. Experimental constraints set a minimum resolution
time tres > 0; thus, even assuming perfect knowledge of the
noise parameters α, s, ωc that enter χ0, it becomes harder to
experimentally minimize �b(t ) as N increases and the dip in
uncertainty shown in Fig. 1(a) narrows. For t ≡ topt + tres, with
tres fixed, �b(t ) grows exponentially with N due to the term
∝cos2N−2 �(t ) in the denominator of Eq. (7). This massive
increase of uncertainty due to quantum noise is apparent in
Fig. 1(b), where �b(t ) is seen to easily exceed �b0(t ) by
orders of magnitude. Incidentally, the dips in �b(t ) at long
times are due to the periodicity of �b(t ) with � [�(t ) ∝ t for
ωct � 1], and become sharper as N increases.

In Fig. 1(c), we plot �b(t ) for an initial OATS with β

and θ minimizing the initial uncertainty �Jy (0) [34]. We
compare the results from an exact numerical calculation of
�b(t ) (solid red line) [38], with those obtained from the
truncated cumulant expansion over the system described earlier
(dotted black line). Agreement between the two curves is

excellent around topt, and was found to improve monotonically
as N increases for 1 < N < 1000. For ωct � 1 and N � 1,
the cumulant expansion gives topt � (4/3)1/6χ−1

0 N−5/6 and
�bopt � (4/3)1/12(2χ0/T )1/2N−5/12. The optimal uncertainty
is thus decreased by a factor ∝N1/6 compared to an initial
CSS, but is still worse than the SQL (∝N−1/2). As shown by
the insets of Fig. 1(c), the sharp peaks in �b(t ) occurring at
long times coincide with the Q function of the system spiraling
around the z axis of the Bloch sphere, thus increasing �Jy

while strongly suppressing 〈Jy〉. In this regime, the collective-
spin state is strongly non-Gaussian, and the overall uncertainty
becomes much larger than for � = 0 (dashed blue line).

Trapped-ion crystals. To further exemplify the adverse
effects of�(t ), we consider the experimental setting of Ref. [6].
Here, N ∼ 100 ions are arranged into a two-dimensional lattice
in a Penning trap, with the electron spin in the 2S1/2 ground state
of each 9Be+ ion encoding a qubit. Two laser beams incident on
the lattice and detuned from each other by angular frequency
μ form a traveling wave, with zero-to-peak potential U and
wave vector δk, which couples the ions to the vibrational modes
through an optical dipole force [28]. This coupling is exploited
to sense the amplitude Zc of classical center-of-mass (COM)
lattice motion due to a weak microwave drive applied on a
trap electrode at angular frequency ωrf. The authors estimate
a single-measurement imprecision of 74 pm, and suggest to
further reduce this uncertainty by using spin-squeezed states
[28] or by driving with ωrf = μ near resonance with the angular
frequency ωz of the COM mode. We show that quantum noise
from this mode, unaccounted for in Ref. [6], hinders these
precision improvements.

Neglecting spontaneous emission, we assume that ωrf = μ

is near resonance with the COM mode, with D ≡ ωz − μ �
ωz, μ, but far-detuned from all other modes. Dropping
terms oscillating at frequencies ωz + μ, 2μ � UδkZc/h̄,
and μ � U/h̄, the Hamiltonian of Eq. (1) then applies, with
b = UδkZc/h̄ and B(t ) = 2g (a†eiωzt + H.c.) [6,38]. Here, a†
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FIG. 2. Uncertainty in amplitude sensing with trapped ions for
initial CSS vs OATS with maximal squeezing along y. (a) Dependence
on D for N = 100 ions. (b) Dependence on N for D/2π = 2 kHz.
Solid (blue) lines: analytical estimate for the initial CSS. Black
dots: exact numerical optimization for the CSS. Dashed red line:
uncertainty calculated in Ref. [6] for the initial CSS. Black triangles:
numerical optimization of the uncertainty from a cumulant expansion
for the initial OATS. Dashed (black) line: initial OATS for � = 0
within the same approach. Parameters: ωz/2π = 1.57 MHz, Uδk =
40×10−24 N, M = 1.50×10−26 kg (from Ref. [6]), and n = 12.8
resulting from a temperature of 1 mK [30].

creates a phonon in the COM mode and h̄g =
Uδk

√
h̄/2MNωz, with M the mass of a single ion. In

addition, control of the COM mode displacement gives rise
to time-dependent modulation via y0(t ) = 1 − cos Dt and
y(t ) = cos μt . Assuming that the COM mode is initially
thermal, with average phonon number n, and neglecting,
again, terms oscillating at fast frequencies ωz + μ and 2μ,
Eqs. (5) and (6) yield χ (t ) � 8(g/D)2(n + 1

2 ) sin2(Dt/2) and
�(t ) � 2g2ωzt (1 − sinc Dt )/(μ2 − ω2

z ).
Substituting the expressions of y0(t ), χ (t ), and �(t ) into

Eq. (7) gives �b(t ) for an initial CSS. Within the regime
described above, we find numerically that topt occurs for
Dtopt � 1. For such long times, �(t ) grows linearly with t ,
while χ (t ) oscillates and remains bounded by χ (t ) � 8(g/D)2

(n + 1/2) � �(t ), so that �(t ) provides the dominant source
of uncertainty. We then approximate χ (t ) � 0 and expand the
numerator and denominator of Eq. (7) at sixth and zeroth order
in �(t ), respectively, neglecting terms oscillating at D. To
compare with Ref. [6], we optimize the single-shot detection
time, considering a fixed ν, and find the optimal uncertainty
�Zc � Uδk/[2

√
ν Mωz|D|N1/2]. This uncertainty is plotted

in Fig. 2 (solid blue lines), and shown to agree with an exact

numerical optimization of Eq. (7) (black dots) for sufficiently
large D and N . Figure 2(a) clearly shows that driving near
resonance with ωz causes �Zc to be orders of magnitude
larger than estimated [6] by neglecting correlated quantum
noise (dashed red line).

Finally, we evaluate the uncertainty in amplitude sensing
with an initial OATS. Taking initial values of β and θ that
minimize initial uncertainty along y, we numerically optimize
topt, using again a truncated cumulant expansion over the
system. The black triangles in Fig. 2 show that rather than
improving precision, this initial OATS leads to an uncertainty
that is larger and suppressed more slowly with N than for
an initial CSS (a numerical fit gives �b ∝ N−1/6). Thus, not
only does this correlated quantum noise prevent the realization
of the superclassical scaling �b ∝ N−5/6 that would arise
for � = 0 [dashed black line in Fig. 2(b)]; but, in fact, the
collective-spin state becomes “antisqueezed” along the y axis,
making the scaling even worse than the SQL.

Discussion. Interestingly, for collective noise as we consider
here, the reduced state of the system can be written as ρS(t ) =
U� (t )[ρS(t )|�=0]U †

� (t ), with U� (t ) ≡ exp[−i�(t )J 2
z ] [39].

The quantum Fisher information being invariant under unitary
transformations that do not depend on b [43], there always
exists an optimal measurement that cancels the effect of �(t )
in principle. However, not only is this measurement highly
nonlocal in general, but it requires precise knowledge of �(t ).
This makes it far more challenging from an implementation
standpoint.

In summary, we showed that spatiotemporally correlated
quantum noise with frequency asymmetric spectra can gener-
ate unwanted entanglement of the sensing system that hinders
superclassical precision scaling in Ramsey interferometry.
Besides amplitude sensing with trapped ions, such noise
sources arise naturally in a variety of other platforms—notably,
superconducting qubits [25,31], nitrogen-vacancy centers [44],
or spin qubits in semiconductors [45], in which qubit coupling
to a common microwave cavity yields correlated photon shot
noise. Our result is also directly relevant to ultrasensitive
magnetometry and atomic clocks, as both fields are mov-
ing toward larger ensembles of entangled probes to reduce
uncertainty below the shot-noise limit [3,8]. This highlights
the need for accurate characterization of quantum noise [27],
which may allow for counteracting unwanted entanglement
through appropriate initialization, measurement, or dynamical
control [33].
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and V. Vuletić, ibid. 104, 073604 (2010).

[9] M. A. Taylor and W. P. Bowen, Phys. Rep. 615, 1 (2016).
[10] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B.

Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997); B. M.
Escher, R. L. de Matos Filho, and L. Davidovich, Nat. Phys. 7,
406 (2011); R. Demkowicz-Dobrzański, J. Kolodyński, and M.
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