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Transmission stabilization in soliton-based optical-waveguide systems by frequency-dependent
linear gain-loss and the Raman self-frequency shift
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We study transmission stabilization against radiation emission and enhancement of transmission quality in
soliton-based nonlinear optical waveguides with weak linear gain-loss, cubic loss, and delayed Raman response.
We show by numerical simulations with perturbed nonlinear Schrödinger propagation models that transmission
quality in waveguides with frequency-independent linear gain and cubic loss is not improved by the presence
of delayed Raman response due to the lack of an efficient mechanism for suppression of radiation emission. In
contrast, we find that the presence of delayed Raman response leads to significant enhancement of transmission
quality in waveguides with frequency-dependent linear gain-loss and cubic loss. Enhancement of transmission
quality in the latter waveguides is enabled by the separation of the soliton’s spectrum from the radiation’s
spectrum due to the Raman-induced self-frequency shift and by efficient suppression of radiation emission due
to the frequency-dependent linear gain-loss. Further numerical simulations demonstrate that the enhancement of
transmission quality in waveguides with frequency-dependent linear gain-loss, cubic loss, and delayed Raman
response is similar to transmission quality enhancement in waveguides with linear gain, cubic loss, and guiding
filters with a varying central frequency. Thus, our study demonstrates a general mechanism for stabilizing soliton
transmission, which is based on the interplay between frequency-dependent linear gain-loss and perturbation-
induced shifting of the soliton frequency.
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I. INTRODUCTION

Transmission of solitons in nonlinear optical-waveguide
systems has been the subject of intensive research in the
last several decades due to the stability and shape-preserving
properties of the solitons [1–4]. In addition, since Kerr non-
linearity does not cause any pulse distortion in single-soliton
propagation, soliton-based transmission can be used to realize
higher transmission rates and larger error-free transmission
distances compared with other transmission methods [2,4–7].
This is true, for example, for transmission in optical fibers.
Indeed, in Ref. [8], error-free optical fiber transmission of
a single sequence of optical solitons at a bit rate of 10
Gb/s over 106 km was experimentally demonstrated by us-
ing synchronous modulation. In another experiment, error-
free transmission of seven soliton sequences at 10 Gb/s per
sequence over transoceanic distances was realized, using
dispersion-tapered optical fibers and guiding filters with a
varying central frequency [9]. Even larger transmission rates
were experimentally demonstrated with dispersion-managed
solitons. In particular, in Ref. [7], transmission of 25 sequences
of dispersion-managed solitons at 40 Gb/s per sequence over
1500 km was achieved. Furthermore, transmission of 109
dispersion-managed soliton sequences at 10 Gb/s per sequence
over 2×104 km was demonstrated in Ref. [10].

In this paper, we study transmission stabilization of conven-
tional optical solitons, that is, of solitons of the cubic nonlinear
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Schrödinger (NLS) equation without dispersion management.
Our reasons for considering conventional optical solitons are
the following. First, as stated in the first paragraph, because of
the stability and shape-preserving properties of the solitons,
soliton-based transmission is advantageous compared with
other transmission methods. Second, due to the integrability of
the unperturbed cubic NLS equation, derivation of the equa-
tions for dynamics of the soliton parameters in the presence
of perturbations can be done in a rigorous manner. Third,
the simpler properties of conventional solitons compared with
dispersion-managed solitons make them more suitable for us-
age in optical networks and in other optical systems, where sim-
plicity and scalability are important. Fourth, even though the
details of pulse dynamics in other transmission systems might
be different, analysis of transmission stabilization of conven-
tional optical solitons can still provide a rough idea on how to
realize transmission stabilization in other waveguide setups.

In several earlier works, we developed a general method
for stabilizing the dynamics of optical soliton amplitudes
in multisequence nonlinear optical waveguide systems with
weak nonlinear dissipation [11–18]. The method is based on
showing that amplitude dynamics induced by the dissipation in
N -sequence optical waveguide systems can be approximately
described by N -dimensional Lotka-Volterra (LV) models.
Stability analysis of the equilibrium states of the LV models
can then be used for realizing stable amplitude dynamics
along ultralong distances. However, due to the instability
of multisequence soliton-based transmission against resonant
and nonresonant emission of radiation, the distances along
which stable amplitude dynamics was observed in numerical
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simulations with the perturbed NLS equation were initially
limited to a few hundred dispersion lengths [12,13]. Further
analysis showed that a major mechanism for transmission
destabilization in these systems is associated with resonant
emission of radiation during intersequence soliton collisions,
where the emitted radiation undergoes unstable growth and
develops into radiative sidebands [16,17,19]. Significant in-
crease in the stable propagation distances was achieved by
the introduction of frequency-dependent linear gain-loss in N -
waveguide couplers [16–19]. It was shown in these works that
the presence of frequency-dependent linear gain-loss leads to
efficient suppression of the instability due to resonant radiation
emission. The limiting cause for transmission instability in N -
waveguide couplers with frequency-dependent linear gain-loss
was associated with nonresonant radiation emission due to the
effects of the dissipation on single-soliton propagation [16,18].
Therefore, the latter process is a serious obstacle for further en-
hancement of transmission stability in nonlinear optical waveg-
uide systems, where conventional optical solitons are used.

In two of the recent works, where stable long-distance
multisequence transmission with conventional solitons was
demonstrated, the effects of delayed Raman response were
taken into account in addition to the effects of frequency-
dependent linear gain-loss [16,17]. The stable transmission
distances achieved in these studies were larger by two orders
of magnitude compared with the distances obtained in earlier
studies, where the effects of frequency-dependent linear gain-
loss and delayed Raman response were not taken into account
[12,13]. It is known that the most important effect of delayed
Raman response on single-soliton propagation in nonlinear
optical waveguides is a continuous downshift of the soliton’s
frequency, which is called the Raman self-frequency shift
[20–22]. In view of the findings in Refs. [16,17], it is important
to investigate whether the combination of frequency-dependent
linear gain-loss and one of the effects associated with delayed
Raman response, such as the Raman self-frequency shift,
can indeed lead to significant enhancement of transmission
stability in soliton-based optical waveguide systems. If such
transmission stabilization is possible, it is important to charac-
terize the mechanism leading to the stabilization.

In this paper, we take on these important tasks by studying
propagation of a single soliton in nonlinear optical waveguides
with weak linear gain-loss, cubic loss, and delayed Raman
response. We characterize transmission quality and stability by
calculating the transmission quality integral, which measures
the deviation of the pulse shape obtained in numerical simula-
tions with perturbed NLS equations from the shape expected
by the perturbation theory for the NLS soliton. In addition, we
compare the dynamics of the soliton’s amplitude and frequency
obtained in the simulations with the dynamics expected by
the perturbation theory. We first study soliton propagation
in the absence of delayed Raman response. Our numerical
simulations with the perturbed NLS equations show that trans-
mission quality in waveguides with frequency-independent
linear gain and cubic loss is comparable to transmission quality
in waveguides with frequency-dependent linear gain-loss and
cubic loss. We then include the effects of delayed Raman re-
sponse in the perturbed NLS model. Our numerical simulations
show that in waveguides with frequency-independent linear
gain, cubic loss, and delayed Raman response, the soliton’s

spectrum becomes separated from the radiation’s spectrum
due to the Raman-induced self-frequency shift experienced
by the soliton. However, in this case transmission quality
is not improved compared with transmission quality in the
absence of delayed Raman response due to the lack of an
efficient mechanism for suppression of radiation emission.
Furthermore, for waveguides with frequency-dependent linear
gain-loss, cubic loss, and delayed Raman response, we observe
significant enhancement of transmission quality and stability
compared with transmission quality and stability in the absence
of delayed Raman response. The enhancement of transmission
quality and stability in the latter waveguides is enabled by
the separation of the soliton’s spectrum from the radiation’s
spectrum due to the Raman self-frequency shift and by the ef-
ficient suppression of radiation emission due to the frequency-
dependent linear gain-loss. Additionally, we show by fur-
ther numerical simulations that enhancement of transmission
quality in waveguides with frequency-dependent linear gain-
loss, cubic loss, and delayed Raman response is similar to
transmission quality enhancement in waveguides with weak
linear gain, cubic loss, and guiding filters with a varying central
frequency. More specifically, we demonstrate that the variation
of the central filtering frequency leads to separation of the
soliton’s spectrum from the radiation’s spectrum, while the
presence of the guiding filters leads to efficient suppression
of radiation emission. Thus, our study demonstrates a general
mechanism for stabilizing soliton transmission, which is based
on the interplay between frequency-dependent linear gain-loss
and perturbation-induced shifting of the soliton frequency.

We choose to study pulse propagation in optical waveguides
with linear gain or loss and cubic loss as a major example for
waveguides, in which linear and nonlinear dissipation plays
an important role in pulse dynamics. The waveguide’s cubic
loss can arise due to two-photon absorption (2PA) or gain-loss
saturation [23–26]. Pulse propagation in the presence of 2PA or
cubic loss has been studied in many previous works [12,27–36].
The subject received further attention in recent years due to
the importance of 2PA in silicon nanowaveguides, which are
expected to play a key role in many applications in opto-
electronic devices [24,25,37,38]. These applications include
modulators [39,40], switches [41,42], regeneration [43], pulse
compression [44], logical gates [45,46], and supercontinuum
generation [47]. In many of the applications it is desired to
achieve a steady state, in which the pulse propagates along the
waveguide with a constant amplitude. This can be realized by
providing linear gain via Raman amplification [48–52]. How-
ever, in this case soliton propagation might become unstable
since the presence of linear gain can lead to an unstable growth
of small amplitude waves that are associated with radiation. It
is therefore important to find ways to suppress this radiative in-
stability. In this paper we show that the radiative instability can
be suppressed by the interplay between frequency-dependent
linear gain-loss and the Raman self-frequency shift.

The rest of the paper is organized as follows. In Sec. II,
we study transmission stabilization in waveguides with linear
gain or loss and cubic loss, considering frequency-independent
linear gain in Sec. II A and frequency-dependent linear gain-
loss in Sec. II B. In Sec. III, we investigate transmission stabi-
lization in waveguides with linear gain or loss, cubic loss, and
delyaed Raman response. We consider frequency-independent
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linear gain in Sec. III A and frequency-dependent linear gain-
loss in Sec. III B. In Sec. IV, we study transmission stabilization
in waveguides with linear gain, cubic loss, and guiding optical
filters, considering a constant central filtering frequency in
Sec. IV A and a varying central filtering frequency in Sec. IV B.
Our conclusions are summarized in Sec. V. In Appendix A, we
present a brief summary of the adiabatic perturbation theory
for the NLS soliton. In Appendix B, we derive the equation
for dynamics of the soliton’s amplitude in the presence of
frequency-dependent linear gain-loss, while in Appendix C,
we describe the calculation of the transmission quality integral.

II. PULSE DYNAMICS IN WAVEGUIDES WITH LINEAR
GAIN-LOSS AND CUBIC LOSS

A. Introduction

Let us give a brief summary of the results of our analytic and
numerical investigation of soliton propgation in waveguides
with frequency-independent linear gain and cubic loss. The
value of the frequency-independent linear gain coefficient is
chosen such that stable soliton transmission with a constant
amplitude can be realized. More accurately, the linear gain
coefficient is chosen such that according to the adiabatic
perturbation theory for the NLS soliton, the soliton’s amplitude
value would tend to a constant predetermined value with
increasing distance. However, the adiabatic perturbation theory
neglects radiation emission effects. The latter effects might
become important at large distances, and this might lead to
pulse shape distortion and to the breakdown of the perturbation
theory predictions. We therefore check the predictions of the
adiabatic perturbation theory by numerical simulations with
the perturbed NLS model. Our numerical simulations show that
the soliton develops a radiative tail at relatively short distances,
and that the radiative tail grows as the soliton continues to
propagate along the waveguide. The growth of the radiative
tail leads to significant reduction in transmission quality, as
measured by the transmission quality integral.

Further insight into transmission quality degradation is
gained by analyzing the shape of the Fourier transform of
the pulse, i.e., the graph of the absolute value of the Fourier
transform of the optical field vs frequency. We find that the
growth of the radiative tail is manifested by a growth in the
deviation of the numerically obtained shape of the Fourier
transform of the pulse from the shape predicted by the adiabatic
perturbation theory. This deviation appears as fast oscillations
in the numerically obtained curve of the shape of the Fourier
transform, which are most pronounced at small frequencies.
Despite of the growth of the radiative tail and the reduction
in transmission quality, we observe good agreement between
the results of numerical simulations and the predictions of
the adiabatic perturbation theory for dynamics of the soliton’s
amplitude. We attribute this good agreement to the fact that
radiation emission affects the soliton’s amplitude only in the
second order of the small perturbation parameter, the cubic
loss coefficient (see, e.g., Refs. [53,54]).

B. Waveguides with frequency-dependent
linear gain-loss and cubic loss

As explained in Sec. II A, transmission quality in a waveg-
uide with frequency-independent linear gain and cubic loss is

degraded at relatively short distances due to radiation emission.
It is therefore important to look for waveguide setups, in
which radiation emission might be suppressed. A possible way
for achieving this goal is by employing frequency-dependent
linear gain-loss, such that the weak effects of cubic loss are
balanced by weak linear gain in a frequency interval centered
around the soliton frequency, while radiation emission effects
are mitigated by relatively strong linear loss outside this
frequency interval [16–19]. Indeed, it was shown in several
recent works that the implementation of such frequency-
dependent linear gain-loss can lead to significant enhancement
of transmission stability in multisequence soliton-based optical
waveguide systems [16–19]. We therefore turn to investigate
soliton propagation in nonlinear optical waveguides in the
presence of frequency-dependent linear gain-loss and weak
cubic loss. The propagation is described by the following
perturbed NLS equation [17,18]

i∂zψ + ∂2
t ψ + 2|ψ |2ψ = iF−1(ĝ(ω)ψ̂ )/2 − iε3|ψ |2ψ, (1)

where ψ is proportional to the envelope of the electric field,
z is propagation distance, t is time, ω is frequency, and ε3 is
the cubic loss coefficient, which satisfies 0 < ε3 � 1 [55]. In
addition, ĝ(ω) is the frequency-dependent linear gain-loss, ψ̂ is
the Fourier transform of ψ with respect to time, and F−1 is the
inverse Fourier transform with respect to time. The second and
third terms on the left-hand side of Eq. (1) are due to second-
order dispersion and Kerr nonlinearity. The first and second
terms on the right-hand side of Eq. (1) are due to frequency-
dependent linear gain-loss and cubic loss. In this paper, we
study transmission stabilization for fundamental solitons of
the unperturbed NLS equation. The envelope of the electric
field for these solitons is given by

ψs (t, z)=η exp(iχ )/ cosh(x), (2)

where x = η(t − y + 2βz), χ = α − β(t − y) + (η2 − β2)z,
andη,β,y, andα are the soliton amplitude, frequency, position,
and phase.

The form of ĝ(ω) is chosen such that radiation emission
effects are mitigated, while the value of the soliton’s amplitude
approaches a constant predetermined value η0 with increasing
propagation distance. In particular, we choose the form [19]

ĝ(ω) = −gL + 1
2 (g0 + gL)[tanh{ρ[ω + β(0) + W/2]}

− tanh{ρ[ω + β(0) − W/2]}], (3)

where g0 is the linear gain coefficient, β(0) is the initial soliton
frequency, and gL is an O(1) positive constant. The constants
g0, W , and ρ satisfy 0 < g0 � 1, W � 1, and ρ � 1. In the
limit ρ � 1, the linear gain-loss ĝ(ω) can be approximated by
a step function, which is equal to g0 inside a frequency interval
of width W centered about −β(0), and to −gL elsewhere:

ĝ(ω) �

⎧⎪⎨
⎪⎩

g0 if −β(0)−W/2<ω<−β(0)+W/2,
(g0−gL)/2 if ω = −β(0) − W/2

or ω = −β(0) + W/2,

−gL elsewhere.
(4)

The potential advantages of using the frequency-dependent
linear gain-loss function (3) can be explained with the help of
the approximate expression (4). The weak linear gain g0 in the
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frequency interval (−β(0) − W/2,−β(0) + W/2) balances
the effects of cubic loss, such that the soliton amplitude tends
to η0 with increasing z. The relatively strong linear loss gL

leads to suppression of emission of radiation with frequencies
outside of the interval (−β(0) − W/2,−β(0) + W/2). The
flat gain in the interval (−β(0) − W/2,−β(0) + W/2) can
be realized by flat-gain amplifiers [56], and the strong loss
outside of this interval can be achieved by filters [56] or by
waveguide impurities [1].

The equations for the dynamics of the soliton’s amplitude
and frequency are obtained by using the adiabatic perturbation
theory for the NLS soliton, which is described for example
in Refs. [3,53,54,57] and in Appendix A. In Appendix B, we
use this perturbation theory to show that the equations for the
amplitude and frequency dynamics are

dη

dz
= [−gL + (g0 + gL) tanh(V ) − 4ε3η

2/3]η, (5)

where V = πW/(4η), and dβ/dz = 0, respectively. In this
study, we are interested in realizing stable soliton transmission
with a constant amplitude η0 > 0. We therefore require that
η = η0 > 0 is a stable equilibrium point of Eq. (5). This
requirement yields

g0 = gL

[
1

tanh(V0)
− 1

]
+ 4ε3η

2
0

3 tanh(V0)
, (6)

where V0 = πW/(4η0). Substituting Eq. (6) into Eq. (5), we
obtain

dη

dz
= η

{
gL

[
tanh(V )

tanh (V0)
− 1

]
+ 4

3
ε3

[
η2

0
tanh(V )

tanh (V0)
− η2

]}
.

(7)

In Appendix B, we show that the only equilibrium points of
Eq. (7) with η � 0 are η = η0 and η = 0. In addition, we show
that η = η0 is a stable equilibrium point, while η = 0 is an
unstable equilibrium point.

Comparison with amplitude dynamics in waveguides with
linear gain and cubic loss. It can be shown by the adiabatic per-
turbation theory that the equations for amplitude and frequency
dynamics for soliton propagation in a nonlinear optical waveg-
uide with frequency-independent linear gain and cubic loss are

dη

dz
= 4

3
ε3η

(
η2

0 − η2) (8)

and dβ/dz = 0, respectively. The solution of Eq. (8) for a
soliton with an initial amplitude η(0) is

η(z) = η0

[
1 +

(
η2

0

η2(0)
− 1

)
exp

(−8η2
0ε3z

/
3
)]− 1

2

. (9)

Equation (8) has two equilibrium points with non-negative
amplitude values at η = η0 and at 0, where η = η0 is stable
and η = 0 is unstable. Thus, the replacement of frequency-
independent linear gain by frequency-dependent linear gain-
loss does not change the number, locations, and stability
properties of the equilibrium points. We also note that in the
typical transmission setup that we consider in this work, η0 is of
order 1, η is of order 1 or smaller, and W � 1 [58]. Therefore,
in this case both V0 and V satisfy V0 � 1 and V � 1, and one
can obtain an approximate form of Eq. (7) by expanding its

right-hand side in a Taylor series with respect to e−2V0 and e−2V .
Keeping terms up to first order in the expansion, we obtain

dη

dz
=

[
2gL(e−2V0 − e−2V ) + 4

3
ε3

(
η2

0 − η2
)

+8

3
ε3η

2
0(e−2V0 − e−2V )

]
η. (10)

Comparing Eq. (10) with Eq. (8) we see that in the typical
transmission setup, the correction terms that appear in the
equation for amplitude dynamics due to the introduction of
frequency-dependent linear gain-loss are exponentially small
in both V0 and V .

Numerical simulations. The prediction for stable dynamics
of the soliton amplitude that was obtained in the previous
paragraph was based on an adiabatic perturbation description,
which neglects the effects of radiation emission. However,
radiation emission effects can become significant at large
propagation distances and this can lead to pulse shape dis-
tortion and to the breakdown of the adiabatic perturbation
description of Eq. (7). This is especially true in waveguides
with linear gain since the presence of linear gain leads to
unstable growth of small amplitude waves that are associated
with radiation. It is therefore important to check the predictions
of the adiabatic perturbation theory by numerical simulations
with the perturbed NLS model (1) with the linear gain-loss (3).

Equation (1) is numerically solved on a domain
[tmin, tmax] = [−1600, 1600] using the split-step method with
periodic boundary conditions [1,59]. The initial condition
is in the form of a single NLS soliton ψs with amplitude
η(0), frequency β(0) = 0, position y(0) = 0, and phase
α(0) = 0. For concreteness, we present here the results of
numerical simulations with ε3 = 0.01 and η(0) = 0.8. In
addition, the values of the parameters W , ρ, and gL of the
frequency-dependent linear gain-loss ĝ(ω) are similar to the
values used in Refs. [16–19] in studies of multisequence
soliton-based transmission: W = 10, ρ = 10, and gL = 0.5.
These values were found to lead to enhanced stability of soliton
propagation in multisequence transmission systems [16–19].
We emphasize, however, that similar results are obtained for
other physical parameter values. To avoid dealing with effects
due to radiation leaving the computational domain at one
boundary and reentering it at the other boundary, we employ
damping near the domain boundaries. The same method
for suppressing reentry of radiation into the computational
domain was successfully used in many earlier studies of
pulse propagation in nonlinear optical waveguides (see, e.g.,
Refs. [35,60,61]). Physically, the damping at the boundaries
can be realized by employing filters at the waveguide ends
[1,2]. Thus, the numerical simulations in the current section
correspond to transmission in an open optical waveguide.

Transmission quality at a distance z is measured from the
results of the numerical simulations by calculating the trans-
mission quality integral I (z) in Eq. (C4) in Appendix C. This
integral measures the deviation of the numerically obtained
pulse shape |ψ (num)(t, z)| from the soliton’s shape expected
by the adiabatic perturbation theory |ψ (th)(t, z)|, which is
given by Eq. (C1). Thus, I (z) measures both distortion in
the pulse shape due to radiation emission and deviations of
the numerically obtained values of the soliton’s parameters
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FIG. 1. The pulse shape |ψ (t, z)| at zq = 432 [(a)–(c)] and at zf = 750 [(d), (e)] for soliton propagation in an open optical waveguide with
weak frequency-dependent linear gain-loss and cubic loss. The cubic loss coefficient is ε3 = 0.01, the initial soliton amplitude is η(0) = 0.8,
and the parameters of the linear gain-loss ĝ(ω) in Eq. (3) are W = 10, ρ = 10, and gL = 0.5. The solid blue curve corresponds to the result
obtained by numerical simulations with Eqs. (1) and (3), while the red stars correspond to the prediction of the perturbation theory, obtained
with Eqs. (C1) and (7).

from the values predicted by the adiabatic perturbation theory.
Transmission quality is further quantified by measuring the
transmission quality distance zq , which is the distance at which
the value of I (z) first exceeds 0.075. To characterize pulse
shape degradation at larger distances, we run the simulation
up to a final propagation distance zf at which the value of
I (z) first exceeds 0.655. In the numerical simulation with the
physical parameter values specified in the preceding paragraph,
we find zq = 432 and zf = 750. We note that these values
of zq and zf are the same as the values obtained in numer-
ical simulations for soliton propagation in waveguides with
frequency-independent linear gain and cubic loss.

The pulse shape |ψ (t, z)| obtained in the simulations at
z = zq and at z = zf is shown in Fig. 1. Also shown is the
prediction of the adiabatic perturbation theory, obtained with
Eqs. (C1) and (7). As seen in Figs. 1(a) and 1(b), the pulse shape
obtained by the simulations at z = zq is close to the analytic
prediction. However, the comparison of the analytic prediction
with the numerical result for small |ψ (t, zq )| values in Fig. 1(c)
reveals that an appreciable radiative tail exists already at z = zq .

As the soliton continues to propagate along the waveguide,
the radiative tail continues to grow [see Figs. 1(d) and 1(e)].
The growth of the radiative tail is also manifested in Fig. 2,

0 200 400 600 750
z

0
0.075

0.2

0.4

0.6

0.8

I

FIG. 2. The z dependence of the transmission quality integral I (z)
obtained by numerical simulations with Eqs. (1) and (3) for the same
optical waveguide setup considered in Fig. 1.
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which shows the values of the integral I (z) obtained in the
simulations. As seen in this figure, the value of I (z) increases
from 0.075 at zq = 432 to 0.6557 at zf = 750. We point out
that pulse shape degradation observed in Fig. 1 is very similar
to pulse shape degradation observed for soliton propagation in
waveguides with frequency-independent linear gain and cubic
loss. As a result, the values of I (z) obtained in the two waveg-
uide systems are also very close. Therefore, the replacement
of frequency-independent linear gain by frequency-dependent
linear gain-loss does not lead to enhancement of transmission
quality.

The growth of the radiative tail can be further characterized
by the shape of the Fourier transform of the pulse |ψ̂ (ω, z)|.
Figure 3 shows the numerically obtained |ψ̂ (ω, z)| at z = zq

and at z = zf along with the prediction of the adiabatic
perturbation theory, obtained with Eqs. (C3) and (7). As seen in
Figs. 3(a) and 3(b), the deviation of the numerical result from
the analytic prediction is noticeable already at z = zq . This
deviation appears as fast oscillations in the numerical curve of
|ψ̂ (ω, z)| vs ω, which are most pronounced near ω = 0, i.e.,
at relatively small frequencies. Since the deviation appears as
distortion in the shape of the Fourier transform of the pulse, it
is associated with the radiative tail. Furthermore, we observe
that the deviation of the numerical result from the analytic pre-
diction continues to grow as the pulse continues to propagate
along the waveguide and is of order 1 at z = zf [see Fig. 3(c)].
We note that the numerically obtained graphs of |ψ̂ (ω, zq )|
and |ψ̂ (ω, zf )| vs ω are very similar to the graphs obtained
for waveguides with frequency-independent linear gain and
cubic loss. In particular, for both waveguide systems, the
graphs contain fast oscillations at small frequencies, which are
associated with the existence of a radiative tail. These findings
can be explained by noting the lack of observable separation
between the Fourier spectrum of the soliton and the Fourier
spectrum of the radiation in Fig. 3. As a result, the introduction
of the frequency-dependent linear gain-loss with W values
satisfying W � 1 does not lead to efficient mitigation of radi-
ation emission. Thus, transmission quality in waveguides with
frequency-dependent linear gain-loss and cubic loss is very
close to transmission quality in waveguides with frequency-
independent linear gain and cubic loss. We will demonstrate in
Secs. III B and IV B that the situation changes dramatically due
to the effects of delayed Raman response or due to the effects
of guiding optical filters with a varying central frequency.

Figure 4 shows the z dependence of the soliton’s ampli-
tude obtained in the simulations together with the analytic
prediction of Eq. (7). We observe good agreement between
the numerical and analytic results for 0 � z � 600, while for
600 < z � 750, the difference between the numerical result
and the analytic prediction becomes noticeable. Thus, the
dynamics of the soliton’s amplitude is still stable in the interval
0 � z � 750. Similar dynamics of the soliton’s amplitude is
observed for waveguides with frequency-independent linear
gain and cubic loss. The good agreement between the predic-
tion of the adiabatic perturbation theory and the numerical
result for η(z) can be attributed to the fact that radiation
emission affects the dynamics of η only in second order of
the small perturbation parameter ε3 (see, e.g., Refs. [53,54]).

We emphasize that the effects of radiation emission due
to weak perturbations can have much stronger impact on

FIG. 3. The Fourier transform of the pulse shape |ψ̂ (ω, z)| at
zq = 432 [(a), (b)] and at zf = 750 (c) for soliton propagation in
an open optical waveguide with weak frequency-dependent linear
gain-loss and cubic loss. The physical parameter values are the same
as in Fig. 1. The solid blue curve represents the result obtained by
numerical simulations with Eqs. (1) and (3), while the red stars
correspond to the prediction of the adiabatic perturbation theory,
obtained with Eqs. (C3) and (7).

soliton dynamics and stability compared with the impact
observed here for single-soliton propagation in an open optical
waveguide. More specifically, in the case of transmission of a
soliton sequence through an optical waveguide, the emitted
radiation leads to long-range interaction between the solitons,
which in turn leads to the breakup of the soliton pattern
[54]. Furthermore, in the case of transmission of multiple
soliton sequences through an optical waveguide, the radiation
emitted by the solitons in a given sequence can resonantly
interact with solitons from other sequences [16,17,19]. This
resonant interaction leads to severe pulse pattern distortion
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FIG. 4. The z dependence of the soliton amplitude η(z) for the
open waveguide setup considered in Figs. 1–3. The solid blue curve
represents the result obtained by numerical simulations with Eqs. (1)
and (3). The red stars represent the perturbation theory prediction
of Eq. (7).

and eventually to the destruction of the soliton sequences
[12,13,16,17,19]. Finally, in the case of a soliton propagating
in a closed waveguide loop, the accumulation of the emitted
radiation and its interaction with the soliton will also lead to
pulse shape distortion and to the destruction of the soliton. This
latter scenario will be discussed and demonstrated in Sec. III A.

III. PULSE DYNAMICS IN WAVEGUIDES WITH LINEAR
GAIN-LOSS, CUBIC LOSS, AND DELAYED

RAMAN RESPONSE

Introduction. As seen in Sec. II B, the replacement of
frequency-independent linear gain by frequency-dependent
linear gain-loss does not lead to significant enhancement
of transmission quality. On the other hand, numerical sim-
ulations of multisequence soliton-based transmission show
that transmission stability is significantly enhanced when the
effects of delayed Raman response and frequency-dependent
linear gain-loss are both taken into account [16,17]. It is
therefore important to investigate whether the presence of
delayed Raman response can improve transmission quality
in the single-soliton propagation problem considered in this
paper. We now turn to address this question.

A. Waveguides with frequency-independent linear gain,
cubic loss, and delayed Raman response

We start by considering the impact of delayed Raman
response on the propagation of a single soliton in nonlinear
optical waveguides with weak frequency-independent linear
gain and cubic loss. The propagation is described by the
following perturbed NLS equation [24,25]

i∂zψ + ∂2
t ψ + 2|ψ |2ψ

= ig0ψ/2 − iε3|ψ |2ψ + εRψ∂t |ψ |2, (11)

where the Raman coefficient εR satisfies 0 < εR � 1 [62,63].
The third term on the right-hand side of Eq. (11) describes the
effects of delayed Raman response.

A calculation based on the adiabatic perturbation theory
shows that the main effect of delayed Raman response on
single-soliton propagation is a frequency shift, whose rate is

given by [20–22]

dβ

dz
= − 8

15
εRη4. (12)

The soliton amplitude is not affected by delayed Raman
response in O(εR ) [20–22]. Therefore, the dynamics of the
soliton amplitude is still given by Eqs. (8) and (9). Substituting
η(z) from Eq. (9) into Eq. (12) and integrating with respect to
z, we obtain

β(z) = β(0) − εRη2
0

5ε3

×
{

ln

[
η2

0 − η2(0) + η2(0) exp
(
8ε3η

2
0z

/
3
)

η2
0

]
+η2(0)

η2
0

− η2(0)

η2(0) + [
η2

0 − η2(0)
]

exp
(−8ε3η

2
0z

/
3
)
}

. (13)

The soliton position and phase are affected by the perturbations
only via the dependence of η and β on z.

Numerical simulations. Equation (11) is numerically solved
on a domain [tmin, tmax] = [−400, 400] with periodic boundary
conditions. The initial condition is in the form of a single
NLS soliton with amplitudeη(0), frequencyβ(0) = 0, position
y(0) = 0, and phase α(0) = 0. As a typical example, we
present here the results of the simulations with ε3 = 0.01,
εR = 0.04, and η(0) = 0.8. We point out that similar results
are obtained for other physical parameter values. Due to the
presence of delayed Raman response and the relatively large
propagation distance, the soliton experiences a very large
position shift. For example, for εR = 0.04, η(0) = 1, and z̃ =
750, we find using the adiabatic perturbation theory that the
soliton position shift at z̃ = 750 is y(z̃) = 8εRη4(0)z̃2/15 =
12000. Carrying out numerical simulations for transmission in
an open optical waveguide setup, i.e., in a setup in which the
soliton does not reach the computational domain’s boundaries,
is prohibitively time consuming since one has to employ
a computational domain with a size exceeding 12000. We
therefore choose to work with a numerical simulations setup, in
which the soliton passes through the computational domain’s
boundaries multiple times during the simulation. In such setup,
we do not use damping at the boundaries since such damping
leads to the soliton’s destruction. Note that the numerical
simulations setup used in the current section corresponds to
soliton propagation in a closed optical waveguide loop. This
setup is very relevant for applications since many long-distance
transmission experiments are carried out in closed waveguide
loops (see, e.g., Refs. [2,5–10] and references therein). The
values of the transmission quality distance and the final propa-
gation distance obtained in the simulations were zq = 378 and
zf = 785.

Figure 5 shows the pulse shape |ψ (t, z)| at z = zq and at
zf , obtained in the simulations together with the prediction of
the adiabatic perturbation theory, obtained with Eqs. (C1) and
(9). As seen in Figs. 5(a)–5(c), the numerically obtained pulse
shape at z = zq is close to the analytic prediction, although,
a noticeable radiative tail exists at this distance. We observe
that the radiative tail is highly oscillatory and is spread over
the entire computational domain at z = zq . The oscillatory
nature of the radiative tail is attributed to the presence of
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FIG. 5. The pulse shape |ψ (t, z)| at zq = 378 [(a)–(c)] and at zf = 785 [(d), (e)] for soliton propagation in a closed optical waveguide loop
with weak frequency-independent linear gain, cubic loss, and delayed Raman response. The cubic loss coefficient is ε3 = 0.01, the Raman
coefficient is εR = 0.04, and the initial soliton amplitude is η(0) = 0.8. The solid blue curve corresponds to the result obtained by numerical
simulations with Eq. (11), while the red stars correspond to the perturbation theory prediction of Eqs. (C1) and (9).

delayed Raman response. The spread of radiation over the
entire computational domain is due to additional emission of
radiation induced by the presence of delayed Raman response,
the closed waveguide loop setup, which leads to accumulation
of radiation, and the smaller size of the computational time
domain compared with the one used in the simulations in
Sec. II. We also observe that the radiative tail continues to
grow as the soliton continues to propagate along the waveguide
[see Figs. 5(d) and 5(e)]. As a result, the value of the transmis-
sion quality integral I (z) increases from 0.075 at zq = 378 to
0.6565 at zf = 785 (see Fig. 6).

Further insight into transmission quality degradation and
pulse dynamics is gained from the shape of the Fourier
spectrum |ψ̂ (ω, z)|. Figure 7 shows the numerically obtained
|ψ̂ (ω, z)| at z = zq and at zf together with the prediction of
the adiabatic perturbation theory, obtained with Eqs. (C3), (9),
and (13). It is clear that the Fourier spectrum of the optical field
for waveguides with frequency-independent linear gain, cubic
loss, and delayed Raman response is very different from the
Fourier spectrum observed in Sec. II for soliton propagation
in the absence of delayed Raman response. More specifically,

the soliton’s Fourier spectrum in the current waveguide setup
is centered about the nonzero z-dependent soliton’s frequency
β(z) and is shifted relative to the radiation’s spectrum, which
is centered near ω = 0. The separation between the soliton’s

FIG. 6. The z dependence of the transmission quality integral I (z)
obtained by numerical simulations with Eq. (11) for the same optical
waveguide setup considered in Fig. 5.
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FIG. 7. The Fourier transform of the pulse shape |ψ̂ (ω, z)| at zq = 378 [(a)–(c)] and at zf = 785 (d) for soliton propagation in a closed
optical waveguide loop with weak frequency-independent linear gain, cubic loss, and delayed Raman response. The physical parameter values
are the same as in Fig. 5. The solid blue curve represents the result obtained by numerical simulations with Eq. (11) and the red stars correspond
to the prediction of the adiabatic perturbation theory, obtained with Eqs. (C3), (9), and (13).

spectrum and the radiation’s spectrum, which is a result of
the Raman self-frequency shift experienced by the soliton, is
already very clear at z = zq [see Figs. 7(a) and 7(b)]. It contin-
ues to grow with increasing z due to the increase in |β(z)| [see
Fig. 7(d)]. As a result of the separation between the two spectra,
the soliton part of the numerically obtained graph of |ψ̂ (ω, z)|
does not contain fast oscillations and is very close to the
prediction of the adiabatic perturbation theory [see Fig. 7(c)].
In contrast, in the waveguides considered in Sec. II, the Fourier
spectrum of the entire optical field (soliton + radiation) is
centered about ω = 0. That is, there is no significant separation
between the soliton and the radiation spectra. Therefore, for
the waveguides considered in Sec. II, the deviation of the
numerically obtained Fourier spectrum from the spectrum
expected for an NLS soliton is significant already at z = zq .

The z dependence of the soliton’s amplitude and frequency
obtained in the simulations is shown in Figs. 8(a) and 8(b).
Also shown are the adiabatic perturbation theory predictions
for η(z) and β(z), which are given by Eqs. (9) and (13),
respectively. In both graphs we observe good agreement
between the numerical and analytic results for 0 � z � 500,
whereas for 500 < z � 785, the difference between the two
results becomes significant. Based on this comparison, we
conclude that the dynamics of soliton amplitude and frequency
becomes unstable for distances larger than 500. We notice that
the deviation of the numerical result from the analytic result
for η(z) in the current waveguide setup is larger compared with
the deviation found for soliton propagation in the absence of
delayed Raman response in Sec. II. We attribute this larger
deviation to the presence of a larger radiative tail [compare
Fig. 5(e) with Fig. 1(e)]. The radiative tail in the current
waveguide setup is larger compared with the radiative tail in

the waveguide setups of Sec. II due to additional emission of
radiation induced by the presence of delayed Raman response,
the closed waveguide loop setup, which leads to accumulation
of radiation, and the smaller size of the computational time
domain used in the simulations.

B. Waveguides with frequency-dependent linear gain-loss,
cubic loss, and delayed Raman response

We saw in Sec. III A that the presence of delayed Raman
response in optical waveguides with frequency-independent
linear gain and cubic loss leads to strong separation of the
soliton’s Fourier spectrum from the radiation’s Fourier spec-
trum. Thus, we expect that the replacement of the frequency-
independent linear gain by frequency-dependent linear gain-
loss of a form similar to the one in Eq. (3) will lead to
efficient suppression of radiation emission and to significant
enhancement of transmission quality. We therefore turn to
investigate soliton propagation in nonlinear optical waveguides
in the presence of weak frequency-dependent linear gain-loss,
cubic loss, and delayed Raman response. The propagation is
described by the following perturbed NLS equation [16,17]:

i∂zψ + ∂2
t ψ + 2|ψ |2ψ

= iF−1(ĝ(ω, z)ψ̂ )/2 − iε3|ψ |2ψ + εRψ∂t |ψ |2. (14)

The form of the frequency- and distance-dependent linear
gain-loss ĝ(ω, z) is similar to the one in Eq. (3), apart from
a replacement of the initial soliton frequency β(0) by the
z-dependent soliton frequency β(z). Thus, ĝ(ω, z) is given by

ĝ(ω, z) = −gL + 1
2 (g0 + gL)[tanh{ρ[ω + β(z) + W/2]}

− tanh{ρ[ω + β(z) − W/2]}]. (15)
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FIG. 8. The z dependence of the soliton amplitude η(z) (a) and
frequency β(z) (b) for the closed optical waveguide loop setup
considered in Figs. 5–7. The solid blue curves represent the results
obtained by numerical simulations with Eq. (11). The red stars
correspond to the perturbation theory predictions of Eq. (9) in (a)
and of Eq. (13) in (b).

A similar form was used in Refs. [16,17] in studies of
multisequence soliton-based transmission in the presence of
delayed Raman response and different transmission stabilizing
mechanisms based on frequency-dependent gain-loss. In the
limit ρ � 1, ĝ(ω, z) can be approximated by the following
step function:

ĝ(ω, z)�

⎧⎪⎨
⎪⎩

g0 if −β(z)−W/2<ω<−β(z)+W/2,
(g0−gL)/2 if ω = −β(z)−W/2

or ω = −β(z)+W/2,

−gL elsewhere.
(16)

We observe that the weak linear gain g0 in the frequency
interval (−β(z) − W/2,−β(z) + W/2) balances the effects
of cubic loss, such that the soliton amplitude approaches
the equilibrium value η0 with increasing z. Additionally,
the relatively strong linear loss gL leads to suppression of
emission of radiation with frequencies outside of the interval
(−β(z) − W/2,−β(z) + W/2). Thus, due to the relatively
large separation between the soliton’s spectrum and the ra-
diation’s spectrum expected for the current waveguide setup,
the introduction of the frequency-dependent linear gain-loss
ĝ(ω, z) of Eq. (15) is expected to lead to efficient suppres-
sion of radiation emission and to significant enhancement of
transmission quality.

Since the soliton amplitude is not affected by delayed
Raman response in O(εR ), the dynamics of the amplitude is
still described by Eq. (7). In addition, the dynamics of the
soliton frequency is given by Eq. (12). The soliton position and
phase are affected by the perturbations only via the dependence
of η and β on z.

Numerical simulations. To check whether the interplay
between frequency-dependent linear gain-loss and delayed
Raman response leads to enhanced transmission quality, we
perform numerical simulations with Eqs. (14) and (15). The
equations are numerically integrated on a domain [tmin, tmax] =
[−400, 400] with periodic boundary conditions. The initial
condition is in the form of a single NLS soliton with am-
plitude η(0), frequency β(0) = 0, position y(0) = 0, and
phase α(0) = 0. To enable comparison with the results of
the numerical simulations in Secs. II and III A, we use the
same parameter values that were used in those sections. That
is, we carry out the simulations with ε3 = 0.01, εR = 0.04,
η(0) = 0.8, W = 10, ρ = 10, and gL = 0.5. We emphasize,
however, that similar results are obtained for other physical
parameter values. Similar to the simulations in Sec. III A,
the soliton passes multiple times through the computational
domain’s boundaries during the simulation, i.e., the simulation
describes soliton propagation in a closed waveguide loop. To
avoid soliton destruction, we do not employ damping at the
boundaries. The simulation is run up to a predetermined final
propagation distance zf = 2000, at which the value of the
transmission quality integral is still smaller than 0.075.

Figure 9 shows the pulse shape |ψ (t, z)| at z = zf , as
obtained in the simulations. The prediction of the adiabatic
perturbation theory, obtained with Eqs. (C1) and (7), is also
shown. As seen in Figs. 9(a) and 9(b), the numerically obtained
pulse shape at z = zf is very close to the analytic prediction
and no significant radiative tail is observed. Moreover, as
seen in Fig. 9(c), the deviation of the numerical result for
|ψ (t, zf )| from the theoretical one is smaller than 10−6 for
all t values. Thus, the interplay between frequency-dependent
linear gain-loss and delayed Raman response does lead to
significant enhancement of transmission quality compared
with the waveguide setups considered in Secs. II and III A. The
enhancement of transmission quality is also demonstrated in
Fig. 10 that shows the numerically obtained I (z) curve and the
average 〈I (z)〉, which is defined by 〈I (z)〉 ≡ ∫ zf

0 dz′I (z′)/zf .
As seen in this figure, the value of I (z) remains smaller than
0.032 throughout the propagation and 〈I (z)〉 = 0.0156.

The enhanced transmission quality can be explained with
the help of the Fourier transform of the pulse |ψ̂ (ω, z)|.
Figure 11 shows the numerically obtained Fourier transform
|ψ̂ (ω, z)| at z = zf together with the prediction of the adiabatic
perturbation theory, obtained with Eqs. (C3), (7), and (12). We
observe very good agreement between the two results. More
specifically, in both curves, the Fourier spectrum of the soliton
is strongly downshifted and is centered about the frequency
ωm = −β(zf ) = 42.0. Additionally, the numerically obtained
curve of |ψ̂ (ω, zf )| does not contain any fast oscillations in the
main peak such as the oscillations seen in Fig. 3 (in Sec. II B) for
soliton propagation in the absence of delayed Raman response.
Furthermore, the numerically obtained curve of |ψ̂ (ω, zf )|
does not contain any significant “radiation peaks” such as
the one seen in Fig. 7 (in Sec. III A) for waveguides with
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FIG. 9. The pulse shape |ψ (t, zf )|, where zf = 2000, for soliton
propagation in a closed optical waveguide loop with weak frequency-
dependent linear gain-loss, cubic loss, and delayed Raman response.
The cubic loss coefficient is ε3 = 0.01, the Raman coefficient is
εR = 0.04, the initial soliton amplitude is η(0) = 0.8, and the pa-
rameters of the linear gain-loss ĝ(ω, z) in Eq. (15) are W = 10,
ρ = 10, and gL = 0.5. The solid blue curve corresponds to the result
obtained by numerical simulations with Eqs. (14) and (15). The red
stars correspond to the prediction of the adiabatic perturbation theory,
obtained with Eqs. (C1) and (7).

frequency-independent linear gain, cubic loss, and delayed Ra-
man response. Based on these observations, we conclude that
the presence of delayed Raman response leads to separation
of the soliton’s spectrum from the radiation’s spectrum via
the soliton self-frequency shift, while the frequency-dependent
linear gain-loss leads to efficient suppression of radiation
emission. As a result, transmission quality is significantly
enhanced in waveguides with frequency-dependent linear gain-
loss, cubic loss, and delayed Raman response compared with
the waveguide setups considered in Secs. II and III A.

FIG. 10. The z dependence of the transmission quality integral
I (z) obtained by numerical simulations with Eqs. (14) and (15) for
the same optical waveguide setup considered in Fig. 9. The solid blue
curve represents I (z) and the dashed red horizontal line corresponds
to 〈I (z)〉.

The enhancement of transmission quality in waveguides
with frequency-dependent linear gain-loss, cubic loss, and
delayed Raman response is also manifested in the dynam-
ics of the soliton’s amplitude and frequency. Figures 12(a)
and 12(b) show the z dependence of the soliton’s amplitude
and frequency obtained in the simulations. Also shown are the

FIG. 11. The Fourier transform of the pulse shape |ψ̂ (ω, z)| at
zf = 2000 for soliton propagation in a closed optical waveguide
loop with weak frequency-dependent linear gain-loss, cubic loss,
and delayed Raman response. The physical parameter values are
the same as in Fig. 9. The solid blue curve represents the result
obtained by numerical simulations with Eqs. (14) and (15). The red
stars correspond to the prediction of the adiabatic perturbation theory,
obtained with Eqs. (C3), (7), and (12).
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FIG. 12. The z dependence of the soliton amplitude η(z) (a)
and frequency β(z) (b) for the closed optical waveguide loop setup
considered in Figs. 9–11. The solid blue curves represent the results
obtained by numerical simulations with Eqs. (14) and (15). The red
stars correspond to the predictions of the adiabatic perturbation theory,
obtained with Eq. (7) in (a) and with Eqs. (12) and (7) in (b).

predictions of the adiabatic perturbation theory, obtained with
Eqs. (7) and (12). We observe that the numerically obtained
soliton amplitude tends to the equilibrium value η0 = 1 at short
distances and stays close to this value throughout the prop-
agation, in excellent agreement with the perturbation theory
prediction. Furthermore, the value of the soliton frequency ob-
tained in the simulations remains close to the z-dependent value
predicted by the adiabatic perturbation theory throughout the
propagation. Thus, the efficient suppression of radiation emis-
sion in waveguides with frequency-dependent linear gain-loss,
cubic loss, and delayed Raman response enables observation of
stable amplitude and frequency dynamics along significantly
larger distances compared with the distances obtained with the
closed optical waveguide loop setup considered in Sec. III A.
We also point out that the waveguide setups considered in the
current subsection can be used for inducing large frequency
shifts, which are not accompanied by pulse distortion, in
soliton-based optical waveguide transmission systems.

IV. PULSE DYNAMICS IN WAVEGUIDES WITH LINEAR
GAIN, CUBIC LOSS, AND GUIDING FILTERS

A. Introduction

The enhancement of transmission quality and stability in
waveguides with frequency-dependent linear gain-loss and de-
layed Raman response, which was demonstrated in Sec. III B,
is somewhat similar to transmission stability enhancement in
waveguides with linear gain and guiding filters with a varying

central frequency. Indeed, in the latter waveguides, the guiding
filters play a role similar to that of the frequency-dependent
linear gain-loss, i.e., their presence leads to suppression of
radiation emission with frequencies that are significantly dif-
ferent from the soliton’s frequency. In addition, the variation
of the central frequency of the guiding filters with propagation
distance plays a role similar to that of the Raman self-
frequency shift, that is, it leads to the separation of the soliton’s
Fourier spectrum from the radiation’s Fourier spectrum. For
this reason it is useful to compare the dynamics of optical
solitons in the two waveguide systems. We therefore turn to
study soliton propagation in optical waveguide loops with
frequency-independent linear gain, cubic loss, and optical
guiding filters. In this section, we briefly describe the results
obtained for propagation in the presence of guiding filters
with a constant central frequency. In Sec. IV B, we provide a
detailed description of the results obtained for propagation in
the presence of guiding filters with a varying central frequency.
We point out that stabilization of soliton-based transmission
in optical fibers by guiding filters with a varying central fre-
quency was theoretically and experimentally demonstrated in
Refs. [2,5,6,9,64]. Since these studies focused on optical fiber
transmission, the effects of cubic loss were neglected. In this
section, we extend the theoretical treatment of Refs. [2,5,64]
and take into account the effects of cubic loss in addition to
the effects of linear gain and guiding filters.

Let us briefly describe our results for soliton propagation
in waveguide loops with frequency-independent linear gain,
cubic loss, and guiding filters with a constant central frequency.
According to the adiabatic perturbation theory, stable soliton
propagation with constant amplitude η = η0 and frequency
β = ωp, where ωp is the filtering frequency, is possible.
However, stability analysis for small amplitude wave solutions
of the linearized propagation model shows that these solutions
are unstable at a frequency interval with a small width around
the soliton’s equilibrium frequency ωp. The same analysis
also indicates that suppression of radiation emission by the
guiding filters is more efficient at frequencies that are far
from ωp. Numerical simulations with the full perturbed NLS
model show that the soliton develops a radiative tail at short
propagation distances and that the radiative tail is larger than
the one observed in Sec. II for waveguides with linear gain
or loss and cubic loss and with no guiding filters. As a result,
transmission quality in waveguide loops with weak frequency-
independent linear gain, cubic loss, and guiding filers with a
constant central frequency is significantly reduced compared
with the waveguide setups considered in Sec. II. The reduction
in transmission quality is also manifested in the dynamics of
the soliton’s amplitude and frequency. Indeed, the numerically
obtained curves of η(z) and β(z) deviate significantly from
the curves predicted by the adiabatic perturbation theory at
relatively short distances.

The reduction of transmission quality in waveguides with
filters with a constant central frequency can be explained by
analyzing the shape of the Fourier transform of the pulse. The
emergence and growth of the radiative tail are manifested by
a growing deviation of the numerically obtained shape of the
Fourier transform of the pulse from the shape predicted by the
adiabatic perturbation theory. This deviation appears as fast
oscillations in the numerically obtained curve of the shape,
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which are most pronounced at the instability interval around ωp

of small amplitude wave solutions of the linearized propagation
model. Moreover, there is no significant separation between
the soliton’s Fourier spectrum and the radiation’s Fourier
spectrum and, as a result, suppression of radiation by the
filters is inefficient. The instability of small amplitude waves at
frequencies near the equilibrium soliton’s frequency ωp and the
lack of separation between the soliton’s and radiation’s Fourier
spectra are the key factors leading to the reduced transmission
quality in waveguides with frequency-independent linear gain,
cubic loss, and guiding filters with a constant central frequency.

B. Waveguides with linear gain, cubic loss, and guiding filters
with a varying central frequency

The drawbacks of the waveguide setup discussed in
Sec. IV A can be circumvented by using guiding filters with a
varying central frequency ωp(z), which is a monotonous func-
tion of z. In this case at large distances, the soliton’s spectrum
is centered around a z-dependent frequency β̃0 + ωp(z), while
the radiation’s spectrum is centered near the constant frequency
β̃0. Since ωp(z) is a monotonous function of z, at sufficiently
large z |ωp(z)| � 1, and therefore the radiation’s spectrum is
well separated from the soliton’s spectrum. As a result, in this
case suppression of radiation emission by the guiding filters
becomes very efficient at intermediate and large distances.

We therefore turn to study soliton propagation in the pres-
ence of weak linear gain, weak cubic loss, and guiding filters
with a varying central frequency. Following the treatment in
Refs. [2,5,64], we assume that the response function of the
guiding filters can be approximated by a Gaussian with a
maximum that is equal to 1 and that is located at the frequency
ωp(z). Under this assumption, the propagation is described by
the following perturbed NLS equation [2,5,64]:

i∂zψ + ∂2
t ψ + 2|ψ |2ψ

= ig0ψ/2 − iε3|ψ |2ψ − iεω(i∂t − ωp )2ψ, (17)

where εω is the second-order filtering coefficient, which sat-
isfies 0 < εω � 1, and ωp is z dependent [65]. Equation (17)
can also be written as

i∂zψ + ∂2
t ψ + 2|ψ |2ψ = i

(
g0

/
2 − εωω2

p

)
ψ − iε3|ψ |2ψ

− 2εωωp∂tψ + iεω∂2
t ψ. (18)

Using the adiabatic perturbation theory, we find that the
dynamics of the soliton’s amplitude and frequency is given by

dη

dz
= η{g0 − 2εω[η2/3 + (β − ωp )2] − 4ε3η

2/3} (19)

and

dβ

dz
= −4εω(β − ωp )η2/3. (20)

Similar to the treatment in Refs. [2,5,64], we assume that
ωp changes linearly with z, that is, ωp = ω′

pz, where ω′
p ≡

dωp/dz = C1, and C1 is a constant. We define a new frequency
β̃ by β̃(z) = β(z) − ωp(z). The new system of equations for
the dynamics of η and β̃ is

dη

dz
= η[g0 − 2εω(η2/3 + β̃2) − 4ε3η

2/3] (21)

and

dβ̃

dz
= −C1 − 4εωβ̃η2/3. (22)

We are interested in realizing stable transmission with constant
amplitude η = η0 > 0 and frequency β̃ = β̃0 	= 0. We there-
fore require that (η0, β̃0) is an equilibrium point of Eqs. (21)
and (22). We obtain g0 = 2εωη2

0/3 + 2εωβ̃2
0 + 4ε3η

2
0/3 and

β̃0 = −3ω′
p/(4εωη2

0 ). Thus, Eq. (21) takes the form

dη

dz
= 2η

[
2ε3

(
η2

0 − η2
)/

3 + εω

(
η2

0 − η2
)/

3 + εω

(
β̃2

0 − β̃2
)]

.

(23)

Dynamics of the soliton’s amplitude and frequency is therefore
described by Eqs. (22) and (23). Linear stability analysis shows
that (η0, β̃0) is a stable equilibrium point of the system (22) and
(23) (a stable node), provided that ω′

p satisfies the condition

|ω′
p| <

(
8

27

)1/2

εω

(
1 + 2ε3

εω

)1/2

η3
0. (24)

Numerical simulations. Equation (18) is numerically inte-
grated on a domain [tmin, tmax] = [−400, 400] with periodic
boundary conditions. The initial condition is in the form of an
NLS soliton with amplitudeη(0), frequencyβ(0) = 0, position
y(0) = 0, and phase α(0) = 0. To enable comparison with the
results of the numerical simulations for the waveguide setup
considered in Sec. IV A, we use parameter values that are
similar to the ones used in this section. In particular, we carry
out the simulations with ε3 = 0.01, εω = 0.04, ωp(0) = 0,
and η(0) = 0.8. We realize efficient separation between the
soliton’s spectrum and the radiation’s spectrum by choosing
ω′

p = 0.0218, which is close to the largest value allowed by
inequality (24). We emphasize, however, that similar results are
obtained for other values of the physical parameters. Similar to
the simulations in Secs. III and IV A, the soliton passes multiple
times through the computational domain’s boundaries during
the simulation and therefore the simulation describes soliton
propagation in a closed waveguide loop. To avoid soliton
destruction, we do not employ damping at the boundaries. The
simulation is run up to a final propagation distance zf = 2000,
at which the value of the transmission quality integral I (z) is
still smaller than 0.075.

Figure 13 shows the pulse shape |ψ (t, z)| at z = zf , as
obtained in the simulations. Also shown is the prediction of the
adiabatic perturbation theory, obtained with Eqs. (C1), (22),
and (23). As seen in Figs. 13(a) and 13(b), the numerically
obtained pulse shape at z = zf is very close to the analytic
prediction and no significant radiative tail is observed. Further-
more, as seen in Fig. 13(c), the deviation of the numerical result
for |ψ (t, zf )| from the theoretical one is smaller than 10−9

for all t values. Therefore, the introduction of guiding filters
with a central frequency that changes linearly with propagation
distance leads to significant enhancement of transmission
quality compared with the waveguide setups considered in
Secs. II, III A, and IV A. The enhancement of transmission
quality is also demonstrated in Fig. 14, which shows the z

dependence of the transmission quality integral I obtained in
the simulations along with the average 〈I (z)〉. As seen in this
figure, the value of I (z) is smaller than 0.05 throughout the
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FIG. 13. The pulse shape |ψ (t, zf )|, where zf = 2000, for soliton
propagation in a closed optical waveguide loop with weak frequency-
independent linear gain, cubic loss, and guiding filters with a varying
central frequency. The physical parameter values are ε3 = 0.01,
εω = 0.04, ωp (0) = 0, ω′

p = 0.0218, η(0) = 0.8, and β(0) = 0. The
solid blue curve represents the result obtained by numerical simula-
tions with Eq. (18), while the red stars correspond to the prediction
of the perturbation theory, obtained with Eqs. (C1), (22), and (23).

propagation and is smaller than 0.02 for 96 � z � 2000. In
addition, 〈I (z)〉 = 0.00887.

Further insight into the enhanced transmission quality can
be gained from the Fourier transform of the pulse |ψ̂ (ω, z)|.
Figure 15 shows the numerically obtained Fourier transform
|ψ̂ (ω, z)| at z = zf together with the prediction of the adiabatic
perturbation theory, obtained with Eqs. (C3), (22), and (23).
The agreement between the two results is excellent. In particu-
lar, the Fourier transform |ψ̂ (ω, zf )| obtained in the simulation
does not contain any fast oscillations in the main peak such
as the oscillations seen in Fig. 3 in Sec. II B. Additionally,
|ψ̂ (ω, zf )| does not contain any peaks associated with radi-
ation emission such as the one seen in Fig. 7 in Sec. III A.

FIG. 14. The z dependence of the transmission quality integral
I (z) obtained by numerical simulations with Eq. (18) for the same
optical waveguide setup considered in Fig. 13. The solid blue curve
represents I (z) and the dashed red horizontal line corresponds to
〈I (z)〉.

Based on these findings and based on the comparison with the
results obtained in Sec. IV A, we deduce that the introduction
of a varying central frequency of the guiding filters leads to
significant enhancement of transmission quality. Similar to
the situation in waveguides with delayed Raman response, the
monotonous increase of the central filtering frequency ωp leads
to separation of the soliton’s spectrum from the radiation’s

FIG. 15. The Fourier transform of the pulse shape |ψ̂ (ω, z)| at
zf = 2000 for soliton propagation in a closed optical waveguide loop
with weak frequency-independent linear gain, cubic loss, and guiding
filters with a varying central frequency. The physical parameter values
are the same as in Fig. 13. The solid blue curve represents the
result obtained by numerical simulations with Eq. (18). The red stars
correspond to the prediction of the adiabatic perturbation theory,
obtained with Eqs. (C3), (22), and (23).
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FIG. 16. The z dependence of the soliton amplitude η(z) (a)
and frequency β(z) (b) for the closed optical waveguide loop setup
considered in Figs. 13–15. The solid blue curves represent the results
obtained by numerical simulations with Eq. (18). The red stars
correspond to the predictions of the adiabatic perturbation theory,
obtained with Eqs. (22) and (23).

spectrum. The separation of the two spectra enables efficient
suppression of radiation emission with frequencies that are
significantly different from the soliton’s frequency due to the
presence of the guiding filters.

Figures 16(a) and 16(b) show the z dependence of the
soliton’s amplitude and frequency obtained in numerical sim-
ulations with Eq. (18). Also shown are the predictions of the
adiabatic perturbation theory, obtained with Eqs. (22) and (23).
It is seen that the numerically obtained soliton amplitude tends
to the equilibrium value η0 = 1 at short distances and stays
close to this value throughout the propagation, in excellent
agreement with the perturbation theory prediction. Addition-
ally, the value of the soliton frequency obtained in the sim-
ulations remains close to the z-dependent value predicted by
the adiabatic perturbation theory throughout the propagation.
Based on these findings and on similar results obtained for
other values of the physical parameters, we conclude that the
efficient suppression of radiation emission in waveguides with
frequency-independent linear gain, cubic loss, and guiding
filters with a varying central frequency enables observation
of stable amplitude and frequency dynamics along signifi-
cantly larger distances compared with the distances obtained
with the closed optical waveguide loop setups considered in
Secs. III A and IV A. In this sense, stabilization of amplitude
and frequency dynamics in waveguides with guiding filters
with a varying central frequency is similar to the stabilization

observed in Fig. 12, for waveguides with frequency-dependent
linear gain-loss, cubic loss, and delayed Raman response.

V. CONCLUSIONS

We studied transmission stabilization against radiation
emission for single-soliton propagation in nonlinear optical
waveguides with weak linear gain-loss, cubic loss, and delayed
Raman response. The value of the linear gain coefficient
for waveguides with frequency-independent linear gain was
chosen such that stable soliton transmission with a constant
amplitude can be realized. However, the presence of the linear
gain can lead to an unstable growth of small amplitude waves
(radiation) emitted by the soliton. We therefore looked for
ways for stabilizing the transmission by frequency-dependent
linear gain-loss and delayed Raman response. We charac-
terized transmission quality and stability by calculating the
transmission quality integral, which measures the deviation
of the pulse shape obtained in numerical simulations with
perturbed NLS equations from the shape expected by the
adiabatic perturbation theory for the NLS soliton. Additionally,
we characterized stability of amplitude and frequency dynam-
ics by comparing the numerically obtained z dependence of
the soliton’s amplitude and frequency with the z dependence
expected by the adiabatic perturbation theory.

We first studied soliton propagation in the absence of
delayed Raman response. Our numerical simulations with the
perturbed NLS propagation models showed that transmission
quality in waveguides with frequency-independent linear gain
and cubic loss is comparable to transmission quality in waveg-
uides with frequency-dependent linear gain-loss and cubic loss.
Furthermore, we found that in the absence of delayed Raman
response, the presence of frequency-dependent linear gain-loss
does not lead to enhancement of transmission quality due to
the lack of significant separation between the soliton’s Fourier
spectrum and the radiation’s Fourier spectrum.

We then included the effects of delayed Raman response
in the perturbed NLS model. Our numerical simulations
showed that in waveguides with frequency-independent linear
gain, cubic loss, and delayed Raman response, the soliton’s
spectrum becomes separated from the radiation’s spectrum due
to the Raman self-frequency shift experienced by the soliton.
However, in this case transmission quality was not improved
compared with transmission quality in the absence of delayed
Raman response due to the lack of an efficient mechanism
for suppression of radiation emission. For the same reason,
dynamics of the soliton’s amplitude and frequency became
unstable at intermediate propagation distances.

Drastic enhancement of transmission quality and stabil-
ity was demonstrated in waveguides with weak frequency-
dependent linear gain-loss, cubic loss, and delayed Raman
response. In this case, our numerical simulations showed that
the presence of delayed Raman response leads to separation of
the soliton’s spectrum from the radiation’s spectrum, while
the presence of frequency-dependent linear gain-loss with
relatively strong loss far from the soliton’s frequency leads to
efficient suppression of radiation emission. This enabled the
observation of distortion-free soliton propagation and stable
amplitude and frequency dynamics along significantly larger
distances compared with the distances obtained in the absence
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of delayed Raman response and compared with the distances
obtained in waveguides with frequency-independent linear
gain, cubic loss, and delayed Raman response. Further nu-
merical simulations showed that enhancement of transmission
quality in waveguides with weak frequency-dependent linear
gain-loss, cubic loss, and delayed Raman response is similar
to transmission quality enhancement in waveguides with weak
frequency-independent linear gain, cubic loss, and guiding
filters with a varying central frequency. More specifically,
the simulations demonstrated that the variation of the central
filtering frequency leads to separation of the soliton’s spec-
trum from the radiation’s spectrum, while the presence of
the guiding filters leads to efficient suppression of radiation
emission. Thus, our study demonstrates a general mechanism
for stabilizing transmission of optical solitons, which is based
on the interplay between frequency-dependent linear gain-loss
and perturbation-induced shifting of the soliton frequency.
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APPENDIX A: ADIABATIC PERTURBATION THEORY
FOR THE FUNDAMENTAL NLS SOLITON

In this appendix we give a brief summary of the adiabatic
perturbation theory for the fundamental NLS soliton, which
was developed by Kaup [53,57,66]. The theory was used for
analyzing soliton dynamics in a variety of optical waveguide
systems (see, e.g., Refs. [3,54] and references therein).

To illustrate the approach, consider the perturbed NLS
equation

i∂zψ + ∂2
t ψ + 2|ψ |2ψ = εh(t, z), (A1)

where 0 < |ε| � 1. We look for a solution of Eq. (A1) in the
form

ψ (t, z) = ψs (t, z) + ψrad(t, z)

= η(z)
exp[iχ (t, z)]

cosh(x)
+ v(t, z) exp[iχ (t, z)], (A2)

where x = η(z)[t − y(z)], χ (t, z) = α(z) − β(z)[t − y(z)],
y(z)=y(0)−2

∫ z

0 dz′β(z′), and α(z) = α(0)+∫ z

0 dz′[η2(z′) +
β2(z′)]. The first term on the right-hand side of Eq. (A2)
is the soliton solution with slow varying parameters, while
the second term, which is of O(ε), is the radiation part. We
now substitute Eq. (A2) into Eq. (A1) and keep terms up to
O(ε). The resulting equation and its complex conjugate can
be written in the following vector form:

i

cosh(x)

(
1

−1

)
η

(
dα

dz
+ β

dy

dz
− η2 + β2

)

+ tanh(x)

cosh(x)

(
1

1

)
η2

(
dy

dz
+ 2β

)
− ix

cosh(x)

(
1

−1

)
dβ

dz

− [x tanh(x) − 1]

cosh(x)

(
1

1

)
dη

dz
+ ∂z

(
v

v∗

)
− iη2L

(
v

v∗

)

− 2β∂t

(
v

v∗

)
= −iε

(
h(t, z)e−iχ

−h∗(t, z)eiχ

)
. (A3)

The linear operator L in Eq. (A3) is defined by

L = (
∂2
x − 1

)
σ3σ3σ3 + 2

cosh2(x)
(2σ3σ3σ3 + iσ2σ2σ2), (A4)

where σjσjσj with 1 � j � 3 are the Pauli spin matrices.
The complete set of orthogonal eigenfunctions of L was

found in Refs. [53,57,66]. It includes four localized eigenfunc-
tions, which appear in the first four terms on the left-hand side
of Eq. (A3):

f0(x) = 1

cosh(x)

(
1

−1

)
, f1(x) = tanh(x)

cosh(x)

(
1

1

)
,

f2(x) = x

cosh(x)

(
1

−1

)
, f3(x) = x tanh(x) − 1

cosh(x)

(
1

1

)
. (A5)

The eigenfunctions f0(x) and f1(x) have a zero eigenvalue,
while f2(x) and f3(x) satisfy Lf2 = −2f1 and Lf3 = −2f0

[53,57,66]. The left localized eigenfunctions of L, which are
given by f T

mσ3σ3σ3 for 0 � m � 3, satisfy the following relations
[53,57,66]: ∫ +∞

−∞
dx f T

2 (x)σ3σ3σ3f1(x) = 2,

∫ +∞

−∞
dx f T

0 (x)σ3σ3σ3f3(x) = −2. (A6)

In addition, the set of eigenfunctions of L contains an infinite
set of unlocalized eigenfunctions, which are characterized by
a continuous index q, where −∞ < q < ∞. We obtain the
dynamic equations for the four soliton parameters by project-
ing both sides of Eq. (A3) on the four left localized eigen-
functions of L. In particular, the equations for amplitude and
frequency dynamics are obtained by projecting both sides of
Eq. (A3) on the left eigenfunctions f T

0 (x)σ3σ3σ3 = sech(x)(1, 1)
and f T

1 (x)σ3σ3σ3 = sech(x) tanh(x)(1,−1), respectively.

APPENDIX B: AMPLITUDE DYNAMICS IN THE
PRESENCE OF FREQUENCY-DEPENDENT

LINEAR GAIN-LOSS

In this appendix we derive Eq. (5) for the dynamics of the
soliton’s amplitude in waveguides with frequency-dependent
linear gain-loss and cubic loss. The calculation of the effects
of cubic loss on amplitude dynamics is straightforward and
has been presented in earlier works (see, e.g., Refs. [12,29]).
We therefore concentrate mainly on calculating the effects of
frequency-dependent linear gain-loss on amplitude dynamics.

We introduce the following notations for the two pertur-
bation terms on the right-hand side of Eq. (1): h1(t, z) =
iF−1(ĝ(ω)ψ̂ )/2 and h2(t, z) = −iε3|ψ |2ψ , and assume that
ĝ(ω) can be approximated by Eq. (4). In the leading order
of the perturbation theory, we approximate ψ and ψ̂ by the
soliton parts ψs and ψ̂s , which are given by Eqs. (A2) and (C2),
respectively. Therefore [67],

h1(t, z) � iF−1(ĝ(ω)ψ̂s )/2 (B1)

and

h2(t, z) � −iε3|ψs |2ψs. (B2)
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We first calculate the contribution of h1(t, z) to the right-
hand side of Eq. (5). Using the convolution theorem, we obtain

F−1(ĝ(ω)ψ̂s ) = (2π )−1/2
∫ ∞

−∞
ds g(s)ψs (t − s, z). (B3)

Calculation of the inverse Fourier transform of ĝ(ω) yields

g(t ) = −(2π )1/2gLδ(t )

+
(

2

π

)1/2

(g0 + gL) exp[−iβ(0)t] sin(Wt/2)/t,

(B4)

where δ(t ) is the Dirac delta function. Substituting Eq. (B4)
into Eq. (B3) while using the expression for ψs (t, z) in
Eq. (A2), we obtain the following equation for the leading-
order approximation for −ih1(t, z):

−ih1(t, z) � −gLηeiχ

2 cosh(x)

+ (g0 + gL)

2π
ηeiχ

∫ ∞

−∞
ds

sin(Ws/2)

s cosh(x − ηs)
. (B5)

From Eq. (B5) it follows that

−i

(
h1(t, z)e−iχ

−h∗
1(t, z)eiχ

)
� −gLη

2 cosh(x)

(
1

1

)

+ (g0 + gL)

2π
η

(
1

1

) ∫ ∞

−∞
ds

sin(Ws/2)

s cosh(x − ηs)
. (B6)

A straightforward calculation for the contribution of the cubic
loss term yields

−i

(
h2(t, z)e−iχ

−h∗
2(t, z)eiχ

)
� − ε3η

3

cosh3(x)

(
1

1

)
. (B7)

Substituting Eqs. (B6) and (B7) into Eq. (A3) and projecting
both sides of the resulting equation on the left eigenfunction
f T

0 (x)σ3σ3σ3 = sech(x)(1, 1) of the linear operator L, we obtain

dη

dz
= [−gL + (g0 + gL)J̃ (η; W )/(2π ) − 4ε3η

2/3]η. (B8)

The function J̃ (η; W ) in Eq. (B8) is given by

J̃ (η; W ) =
∫ ∞

−∞
ds

sin(Ws/2)

s

∫ ∞

−∞

dx

cosh(x) cosh(x − ηs)

= 2π sgn(η) tanh

(
πW

4η

)
(B9)

for η 	= 0, where W > 0 is used [67]. Substituting Eq. (B9)
into Eq. (B8) and using the notation V = πW/(4η), we obtain
[68]

dη

dz
= [−gL + (g0 + gL)sgn(η) tanh(V ) − 4ε3η

2/3]η. (B10)

Since in the physical problem η � 0, we arrive at

dη

dz
= [−gL + (g0 + gL) tanh(V ) − 4ε3η

2/3]η, (B11)

which is Eq. (5). The equation for frequency dynamics is
obtained by substituting Eqs. (B6) and (B7) into Eq. (A3)

and projecting both sides of the resulting equation on the
left eigenfunction f T

1 (x)σ3σ3σ3 = sech(x) tanh(x)(1,−1). This
calculation yields the equation dβ/dz = 0.

We now discuss stability properties of the equilibrium
points η = η0 and η = 0 of Eq. (7). Stability of the equilibrium
pointη = 0 is established in a more convenient manner with the
help of Eq. (B10). We therefore use Eq. (B10) in the following
analysis. Substituting Eq. (6) for g0 into Eq. (B10), we obtain

dη

dz
= η

{
gL

[
sgn(η) tanh(V )

tanh (V0)
− 1

]

+ 4

3
ε3

[
η2

0
sgn(η) tanh(V )

tanh (V0)
− η2

]}
. (B12)

Denote the right-hand side of Eq. (B12) by H (η). It is
straightforward to show that H (η) < 0 for η > η0, H (η) > 0
for 0 < η < η0, and H (η) < 0 for −η0 < η < 0. It follows
that there are no additional equilibrium points with η > 0, and
that η = η0 is a stable equilibrium point, while η = 0 is an
unstable equilibrium point. Thus, the number, locations, and
stability properties of the equilibrium points of Eqs. (7) and (8)
are the same.

APPENDIX C: CALCULATION OF THE TRANSMISSION
QUALITY INTEGRAL I (z)

In this appendix we present the method used for calculating
the transmission quality integral I (z) and the transmission
quality distance zq from the results of the numerical simu-
lations. In addition, we present the theoretical predictions for
the soliton’s shape and its Fourier transform, which were used
in the analysis of transmission quality.

The theoretical prediction for the soliton’s shape and the cal-
culation of I (z) are based on the adiabatic perturbation theory
for the NLS soliton (see Refs. [3,53,54,57] and Appendix A).
According to the theory, the total optical field can be written
as a sum of the soliton part ψs and the radiation part ψrad,
where the soliton part is given by the expression for the soliton
solution to the unperturbed NLS equation with slowly varying
parameters [see Eq. (A2)]. We therefore take ψs (t, z) as the
theoretical prediction for the soliton part, i.e., ψ (th)(t, z) ≡
ψs (t, z) = η(z)sech(x) exp(iχ ), where x and χ were defined
in Appendix A. Therefore, the theoretical prediction for the
soliton’s shape is given by

|ψ (th)(t, z)| = η(z)sech{η(z)[t − y(z)]}, (C1)

where η(z) and y(z) can be calculated by solving the equations
fordη/dz anddy/dz, which are obtained within the framework
of the adiabatic perturbation theory. We point out that the
value of y(z) is not changed by linear gain-loss and by cubic
loss. In addition, the value of y(z) is affected by the Raman
perturbation in first order in εR only via the z dependence of the
soliton’s frequency. Therefore, in this paper, we calculate the
value of η(z) in Eq. (C1) by solving the perturbation theory’s
equation for dη/dz, while the value of y(z) is measured from
the results of the numerical simulations. The Fourier transform
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of ψs (t, z) with respect to time is

ψ̂s (ω, z) =
(

π

2

)1/2 exp[iα(z) − iωy(z)]

cosh {π [ω + β(z)]/(2η(z))} . (C2)

Thus, the theoretical prediction for the Fourier transform of
the soliton’s shape is given by

|ψ̂ (th)(ω, z)| =
(

π

2

)1/2

sech{π [ω + β(z)]/(2η(z))}, (C3)

where η(z) and β(z) are calculated by solving the equations
for dη/dz and dβ/dz that are obtained with the adiabatic
perturbation theory.

The transmission quality integral I (z) measures the devi-
ation of the pulse shape obtained in the numerical simula-
tions |ψ (num)(t, z)| from the soliton’s shape predicted by the
adiabatic perturbation theory |ψ (th)(t, z)|. We use the same
definition of I (z) that was used in Ref. [16] for characterizing
transmission stability in multisequence soliton-based optical
waveguide systems. Thus, I (z) is defined by the relation

I (z) = Ĩ (dif)(z)/Ĩ (z), (C4)

where Ĩ (dif)(z) and Ĩ (z) are defined by

Ĩ (dif)(z) =
{∫ tmax

tmin

dt [|ψ (th)(t, z)| − |ψ (num)(t, z)|]2

}1/2

(C5)

and

Ĩ (z) =
[∫ tmax

tmin

dt |ψ (th)(t, z)|2
]1/2

. (C6)

From this definition it is clear that I (z) measures both distortion
in the pulse shape due to radiation emission and deviations of
the numerically obtained values of the soliton’s parameters
from the values predicted by the adiabatic perturbation theory.
The transmission quality distance zq is defined as the distance
at which the value of I (z) first exceeds a constant value C.
In this paper we used C = 0.075. We emphasize, however,
that the values of the transmission quality distance obtained
by using this definition are not very sensitive to the value of
the constant C. That is, we found that small changes in the
value of C lead to small changes in the measured zq values.
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