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We consider the reduced dynamics in a bipartite quantum system (consisting of a central system and an
intermediate environment) coupled to a heat bath at finite temperature. To describe this situation, in the simplest
possible—yet physically meaningful—way, we introduce the “depolarizing heat bath” as a minimal dissipation
model. We conjecture that, at sufficiently strong dissipation, any other dissipation model implemented in the
form of a Markovian quantum master equation will yield the same reduced dynamics of the central system
as the minimal model. To support this conjecture, we study a two-level system coupled to an oscillator mode.
For the coupling between the two parts, we consider the Jaynes-Cummings or a dephasing coupling, while the
coupling to the heat bath is modeled by the quantum optical or the Caldeira-Leggett master equation (neglecting
any direct coupling between central system and heat bath). We then provide ample numerical evidence for both
model independence and accuracy of the depolarizing heat bath model. Alongside our study, we investigate
different regimes, where the strong-coupling condition leads to coherence and/or population stabilization.
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I. INTRODUCTION

The concept of a generic, impartial heat bath plays an
important role in equilibrium statistical mechanics, where it
is used to keep the temperature of thermodynamic systems
(classical or quantum) well defined and constant, without
changing the (thermodynamic) properties of these systems
themselves. In the case of the canonical ensemble, for instance,
one assumes the system to be in contact with a much larger
second system (the environment), such that both systems
together form an isolated composite system, treatable as a
microcanonical ensemble. Then, in order to act as a proper
heat bath, the coupling between system and environment and
the environment itself should be such that (i) the dynamical
properties of the system remain unchanged and (ii) thermal re-
laxation still occurs [1]. As a consequence, only two quantities,
temperature and coupling strength, are sufficient to completely
specify the effect of that heat bath on the system.

The description of open quantum systems and their re-
laxation processes is usually more complicated. Even in the
simplest case, where a description in terms of a Marko-
vian quantum master equation is possible [2,3], the required
dissipation (Lindblad) terms will depend on the dynamics
of the system, the coupling operator(s), and the way these
interact with the degrees of freedom of the heat bath [4].
Moreover, at the end of the relaxation process, the system
returns to equilibrium states, which are thermal mixtures of
the eigenstates of some modified system Hamiltonian [4].
This implies changes in the thermodynamic properties of the
system, in contrast to the setting presented above.

In order to resolve this conflicting situation, we introduce
an intermediate system, which interacts with the heat bath as
postulated by an ideal thermal contact, while allowing any type
of interaction with the central system. Formally, this can be

done by selecting appropriately some of the degrees of freedom
of the environment, treating them as the intermediate system;
see, for instance, Refs. [5–8]. We then use the “depolarizing
heat bath” model for describing the effect of the external
heat bath on the intermediate system, which comes as close
as possible to the idea of an impartial thermal contact. Its
high-temperature limit has been derived in the context of
random matrix models for decoherence [9]. In the context
of quantum thermal machines [8,10,11], this model is known
as “reset model”; as such it has been introduced in [10] for
describing two-level systems coupled to thermal reservoirs.

We then consider dissipative bipartite systems, consist-
ing of a two-level system (qubit) and a harmonic-oscillator
mode, which plays the role of the intermediate system in the
setup mentioned above. We show that, for different types of
couplings (between qubit and oscillator mode) and different
dissipation models, the reduced dynamics of the qubit always
tends to that of the depolarizing heat bath, as the coupling to
the heat bath (measured by the dissipation rate) is increased.

As the bipartite system we consider a central two-level
system (qubit), coupled to a harmonic-oscillator mode as “in-
termediate system.” Qubit and oscillator are coupled either by
a Jaynes-Cummings (JC) or a dephasing (D) coupling. As heat
baths or dissipation models, we consider the quantum optical
(QO) and the Caldeira-Leggett (CL) master equation. The JC
coupling together with the QO master equation represents one
of the paradigmatic models in quantum optics, the dissipative
Jaynes-Cummings model [12–15]; see also the recent special
issue, Ref. [16]. The dephasing coupling case has experimental
relevance, for instance, as a simplified description of the
dynamics of defect centers taking into account the coupling to
lattice phonons [17]. The CL master equation finally is another
paradigmatic model for quantum dissipation, as it provides the
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quantum analog to the classical damped harmonic oscillator
in the underdamped regime [18,19], applicable for instance to
quantum Brownian motion.

The depolarizing heat bath master equation (or more pre-
cisely, its high-temperature limit) has been derived in the con-
text of random matrix models for decoherence [9], considering
the reduced dynamics of one system described by a random
matrix ensemble, in the presence of an environment, described
by a similar but statistically independent ensemble. It has then
been used to describe a dissipative bipartite system with the
near environment modeled by random matrix theory [20,21].
There, it was shown that the decoherence rate in the central
system may be inversely proportional to the dissipation rate in
the near environment. Related phenomena of coherence and/or
population stabilization have been observed in other dissipative
bipartite systems including the dissipative JC model: the first
reference is probably Ref. [22], but more explicit accounts
of the matter can be found in Ref. [23] and very recently in
Ref. [24]. Finally, the case of a deterministic quantum chaotic
spin system has been studied in [25].

The paper is organized as follows: In the next section,
Sec. II, the different models are introduced. They all have
the same structure: a quantum master equation for the mixed
quantum state of central system and near environment. In
Sec. III, we present numerical simulations for the different
models, focusing on the accuracy of our “depolarizing heat
bath” model, and the above-mentioned stabilization effect.
Finally, we present our conclusions in Sec. IV.

II. GENERAL MODEL

In this paper, we consider bipartite open quantum systems,
strongly coupled to an external heat bath. Typical examples
are (i) the dissipative Jaynes-Cummings (JC) model and
(ii) the Caldeira-Leggett (CL) model coupled to an internal
degree of freedom. We distinguish between the central system,
assumed to be a two-level system (qubit), and the much
larger near environment, here chosen as a harmonic-oscillator
mode with angular frequency we. We assume that only the
near environment is coupled to the heat bath. The evolution
of the bipartite system is modeled via a quantum master
equation, which consists of a Hamiltonian part describing
the dynamics of central system and near environment, and a
dissipative part, which describes the effect of the heat bath on
the near environment. The dissipative part has two main control
parameters, the temperature and the coupling strength.

Dividing the quantum master equation in original physical
units by h̄we and switching from physical time tph to the
dimensionless time t = wetph, we are left with a differential
equation of the following form:

�̇ = −i[Hx, �] − κ

2
D[�], (1)

where Hx denotes the Hamiltonian which would govern the
dynamics of central system and near environment, if they
were perfectly isolated, and D[�] denotes the dissipation term,
which would model the effect of the heat bath on the near
environment, in the absence of any central system. Here, we
introduced the parameter κ as a dimensionless dissipation rate,
i.e., κ = γ /we, where γ is the physical energy dissipation rate.

For the Hamiltonian Hx , the following two models will be
considered. (i) The Jaynes-Cummings model (x = JC),

HJC = �

2
σz + â†â + g(σ+ ⊗ â + σ− ⊗ â†), (2)

where we eliminated the zero-point energy term, since it has no
effect for the dynamics of the density matrix �. With the energy
difference in the two-level system being denoted by h̄wa, the
dimensionless parameter � becomes � = wa/we. Similarly,
the coupling parameter g is defined as g = �/(2we ), where �

is the Rabi frequency of the original JC model. Note that in
order to arrive at the JC model, a rotating wave approximation
must be applied, which is justified if the level spacing in the
qubit is equal or close to the boson energy of the harmonic
oscillator. In our case, this means for the relative detuning
δ = � − 1, it must hold that |δ| � 1.

(ii) The harmonic oscillator with dephasing coupling
(x = D) is defined analogously, using the same units for time
and energy as above:

HD = �

2
σz + â†â + g√

2
σz ⊗ (â + â†). (3)

A. Quantum optical and Caldeira-Leggett master equations

In this section, we introduce the quantum optical (QO)
master equation alongside the Caldeira-Leggett (CL) master
equation. For convenience, we use the term “quantum optical”
for the master equation of the dissipative Jaynes-Cummings
model, even though there exist of course many different types
of quantum optical master equations. The QO master equation
is meant to describe the coupling of a single cavity mode to
an ensemble of electromagnetic (photon) modes in thermal
equilibrium. The coupling is assumed to occur due to imperfect
mirrors in the cavity, often quantified by a finite quality factor
or equivalently a finite dissipation rate. For the QO master
equation, the dissipation term D[�] in Eq. (1) is replaced by

DQO[�] = (n̄ + 1)D0[�] + n̄(ââ†� − 2â†�â + �ââ†), (4)

D0[�] = â†â� − 2â�â† + �â†â. (5)

Here, DQO is the finite temperature and D0 the zero-
temperature heat bath (bare vacuum), and n̄ is the average
number of oscillator modes occupied at the given temperature.

The CL master equation [18] is meant to describe quantum
Brownian motion, i.e., a heavy but still quantum-mechanical
particle in an harmonic potential, subject to dissipation due
to frequent collisions with the particles of a finite-temperature
background gas. In this case, the model has a precise classical
analog, which is the damped harmonic oscillator, with damping
(or dissipation) rate γ . As in the quantum optical case,
κ = γ /we.

In the case of the CL model, the dissipation term is usually
written in terms of physical position and momentum operators,
while the temperature enters the expression via a diffusion
constant. However, for the sake of a consistent description, we
rewrite the CL dissipation term, using the same adimensional
quantities as in the QO case. The details can be found in
Appendix B with the result given in Eq. (B2) as reproduced

013852-2



MINIMAL DISSIPATION MODEL FOR BIPARTITE … PHYSICAL REVIEW A 98, 013852 (2018)

1

1.5

2

2.5

3

0 1 2 3 4 5

0

0.002

0.004

0.006

0.008

0 0.5 1 1.5 2 2.5 3 3.

6 7 8

5 4

n̄
(t

)

κt

n̄
(t

)
−

n
th

e
o
(t

)

κt

FIG. 1. Equilibration without qubit (g = 0) for κ = 0.1 and an
initial thermal state with n̄(0) = 3 (red solid line), for the quantum
optical (QO) dissipation model. The inset shows the difference
between the different dissipation models and the theoretical model
in Eq. (9): red solid line (hidden—see main text): DQO[�] (quantum
optical); green (light gray) line:DDH[�] (depolarizing heat bath); blue
(dark gray, oscillating) line: DCL[�] (Caldeira-Leggett).

here:

DCL[�] = 2i[x̂, {p̂, �}] + 2(2n̄ + 1)[x̂, [x̂, �]], (6)

where the dimensionless position and momentum operators
x̂ and p̂ are defined such that â = (x̂ + ip̂)/

√
2. As usual,

we denote the commutator (anticommutator) between two
operators A,B as [A,B] = AB − BA ({A,B} = AB + BA).

The CL dissipation model is derived in the limit of high tem-
perature and the resulting master equation is not of Lindblad
form. It may thus violate the positivity of the evolving density
matrix [26–28]. However, as long as the temperature is not
very small this problem has no significant effect on physical
quantities [29].

In both models, κ is the dissipation rate in units of the
angular frequency we of the oscillator mode. It describes the
rate of energy loss, when the initial state has higher thermal
energy than the respective heat bath; see Fig. 1.

B. Depolarizing heat bath

We are interested in relaxation processes, where only the
central system is taken out of equilibrium. Thus we assume that
the initial state of our bipartite system is a product state of an
arbitrary initial state �a(0) of the central system and a thermal
equilibrium state wT of the near environments, the temperature
T of which agrees with that of the heat bath (see Appendix A).
Without coupling to the central system, that state would then
be an equilibrium solution of the master equation. We then
concentrate on the reduced dynamics of the central system in
the regime of strong coupling between the intermediate system
and heat bath. In such a situation, we may assume that the
details of the dynamics in the intermediate system are less
important than the fact that the intermediate system has a strong
tendency to quickly return to the equilibrium state.

To describe this situation, we consider the simplest possible
quantum operation, which maps any mixed state directly to

the equilibrium state (we call this operation “depolarizing
channel”). This operation is turned into a dissipation term in the
master equation by using Milburn’s theory [30]. Physically, this
means that the depolarizing channel is applied to the system
with a certain rate, γP, which plays the role of the coupling pa-
rameter between near environment and heat bath. Comparing
the resulting master equation with that in Eq. (1), we find again
that κ = γP/we and finally the following dissipation term:

DDH[�] = 2(� − tre� ⊗ wT), (7)

where wT is the finite-temperature equilibrium state of the
near environment alone. Unfortunately, γP cannot be directly
compared to the energy dissipation rate γ , as defined in the
previous models. It is therefore not clear how to choose γP as
compared to γ such that the previous models really converge
to this DH model, at strong coupling. According to Fig. 1,
where we study directly the energy dissipation, it seems that γP

and γ should simply be equal. However, in subsequent studies
concentrating on the reduced dynamics of the central system,
it appears that γP should rather be equal to γ /2.

In order to appreciate the impartiality of the DH model,
consider the dynamics of the oscillator mode without coupling
to the qubit. In that case, the solution to the master equation (1)
with dissipation term DDH is of the form �a(t ) ⊗ �e(t ), with

d

dt
�̃e(t ) = −κ (�̃e(t ) − wT ), (8)

where �̃e(t ) describes the cavity state in the interaction picture.
According to this equation, all matrix elements of �̃e(t )
converge exponentially towards the matrix elements of the
thermal equilibrium state wT , with the same rate κ .

C. Evolution

We are mainly interested in the evolution of the qubit (the
central system), under the coupling to the cavity mode and the
external heat bath as a composite environment. We compute
the evolution by numerically solving the master equation (1)
with the help of a standard solver for ordinary differential
equations. Typically, we use about 20 up to 40 basis states
in the Hilbert space of the oscillator. Choosing an initial state
of the form �(0) = �a(0) ⊗ wT , we obtain the evolution of the
full bipartite system as �(t ). From this quantity, we compute
the state of the two-level system by taking a partial trace over
the oscillator mode.

III. NUMERICAL RESULTS

In what follows, we consider the evolution of the qubit under
different couplings (Jaynes-Cummings, dephasing) and dif-
ferent dissipation models (quantum-optical, Caldeira-Leggett,
and depolarizing heat bath) as introduced in Eqs. (4) and (7).
We concentrate on the strong-coupling regime, where we
expect the depolarizing heat bath (DH) model to be a good
substitute for any other model. Thus the main objective in
this section consists in finding numerical evidence that the
state evolution in all cases converges to the evolution under
the DH model, as κ/g → ∞. Note that we expect this to
be valid only if the initial state of the near environment is
equal (or at least sufficiently close) to the thermal equilibrium
state to be reached at the end of the relaxation process. We
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solve the master equation numerically as a system of linear
differential equations using the eigenstates of the harmonic-
oscillator mode as an orthonormal basis to expand all operators
involved. Unless stated otherwise, the basis is limited to
quantum numbers n � nmax = 40.

The second objective addresses the stabilization effect
found in some related models. (i) In a random matrix model
for dephasing coupling [20,21], we found the stabilization
effect only for g � 1 and κ/g � 1. On this basis, we could
for instance exclude the quantum Zeno effect as a possible
explanation for the effect. (ii) For the dissipative JC model
[22–24] (JC coupling between qubit and oscillator mode,
and quantum optical master equation), the only requirement
is κ/g � 1. To these cases, we will add a third: (iii) the
harmonic-oscillator mode with dephasing coupling to a qubit
and quantum optical dissipation, a model which is quite similar
to the one considered in Ref. [17]. As we will see below, in
this case the only requirement is κ � 1.

A. Dissipation rate

We would like to make sure that the dissipation rate,
controlled in the master equation (1) by the parameter κ , is the
same for all dissipation models considered. For that reason,
we analyze the equilibration of the oscillator mode without
coupling to the qubit. We choose the initial state to be a thermal
equilibrium state with n̄(0) = 3 and compute its evolution and
average energy n̄(t ) = 〈â†â〉�(t ) when the temperature of the
heat bath is such that n̄eq = 1.

The simplest theoretical expectation for n̄(t ) is an exponen-
tial decay towards the new equilibrium energy, i.e.,

ntheo(t ) = n̄eq + [n̄(0) − n̄eq]e−κt . (9)

This expectation is verified in Fig. 1. In the main panel, we show
the behavior of n̄(t ) for the quantum optical dissipation model
(red solid line); in the inset we show the difference between
all three dissipation models and the theoretical expectation,
Eq. (9). In that graph, the quantum optical (QO) and the
depolarizing heat bath (DH) cases are lying almost on top
of each other, so that only the green (light gray) curve can
be seen. The Caldeira-Leggett model (blue or dark gray line)
shows clear deviations of the order of 1%. The QO and DH
cases show a small deviation, noticeable at κt close to zero
only. We attribute this to the finite number of basis states (0 �
n � nmax = 40) we have been using for the simulations. The
differences in the CL result in the form of damped oscillations
probably are an artifact, related to the Caldeira-Leggett master
equation being valid at high temperatures only.

B. Jaynes-Cummings coupling at zero temperature

For zero and nonzero temperature, the only relevant energy
(frequency) scale is given by g. This is due to the fact that the
Jaynes-Cummings Hamiltonian in Eq. (2) can be decomposed
into two commuting parts, one of which is an observable for
the number of excitations in the system: Hext = σz/2 + â†â.
Therefore, if time-dependent quantities are plotted against
g t , the only independent parameters left are the detuning,
(�− 1)/g, and the relative coupling strength to the external
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FIG. 2. Excited-state population as a function of scaled time gt

for the dissipative JC model at zero temperature. Comparison between
the original quantum optical dissipation (lines) and the depolarizing
heat bath model (points). The color coding, line shapes, and point
shapes identify the different dissipation rates: κ/g = 1.0 (red solid
line, red circles), 2.0 (green dashed line, green squares), and 10.0
(blue dash-dotted line, blue triangles). For the DH model, all rates have
been reduced by one-half. The upper panel shows the large detuning
case, (� − 1)/g = 0.8; in the lower panel, (� − 1)/g = 0.1. For
large detuning, the difference between the QO and the DH dissipation
model is shown in the inset.

heat bath, κ/g. This is true for all dissipation models discussed
in this paper, as given in Eqs. (4)–(7).

Let us first consider the behavior of the excited-state popula-
tion; this is done in Fig. 2. There, we choose �a (0) = |0〉〈0| and
select two different values for the detuning, (� − 1)/g = 0.8
(upper panel) and 0.1 (lower panel), where the first case is iden-
tical to a case treated in Ref. [24] (Fig. 2 in that reference). We
compare the behavior of the excited-state population 〈0|�a|0〉
under the quantum optical (solid lines) and the depolarizing
heat bath (square points) dissipation model. For κ of the
order of g, 〈0|�a|0〉 shows rather strong oscillations, which
are reproduced qualitatively by the DH model, but quantitative
differences remain. Since the temperature was chosen to be
zero, the population always tends to zero at large times.

As expected, we find that both models lead to the same
behavior if the coupling to the heat bath is sufficiently strong.
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FIG. 3. Coherence for an eigenstate of σx as initial state under
exactly the same conditions as in Fig. 2. In this case, the QO model
(solid lines) and the DH model (points) yield exactly the same result.
The color coding, point shapes identify the different dissipation rates:
κ/g = 1.0 (red line, red circles), 2.0 (green line, green squares), and
10.0 (blue line, blue triangles).

Unexpectedly, however, in order to achieve that, we had to
reduce the dissipation rate for the DH model by a factor of
two as compared to the QO model. For the large detuning
case, we show the difference between the two dissipation
models in the inset of the upper panel, providing clear evidence
of the behavior just described. Finally, we find the expected
stabilization effect, without much differences between large
and small detuning.

Figure 3 shows the behavior of the coherence (absolute
value of the nondiagonal element of the qubit state), when
the initial state is an eigenstate of σx ,

�a(0) = 1

2

(
1 1
1 1

)
. (10)

In this case, the dynamics is exactly the same for both
dissipation models (this is no longer true, when the temperature
is different from zero). Again, we find a stabilization (slower
decay of the coherence), when the coupling to the heat bath is
increased.

To summarize, for zero-temperature and Jaynes-Cummings
coupling, the QO dynamics converges to the DH dynamics

for the populations (diagonal elements of the reduced qubit
state); for the coherence (nondiagonal elements) both models
yield exactly the same behavior. We also find the expected
stabilization effect at κ > g for both the diagonal as well as
the nondiagonal elements. In all cases, κ had to be divided by
two in the DH model in order to reach agreement at strong
coupling.

C. Jaynes-Cummings coupling at finite temperature

In this section, we compare all three dissipation models: the
quantum optical (QO), the depolarizing heat bath (DH), and the
Caldeira-Leggett model (CL). For the CL model, the angular
frequency we of the oscillator mode provides an additional
energy scale. Since the model is valid in the underdamped case
only (in terms of the classical damped harmonic oscillator), we
should not consider the CL model at dissipation rates beyond
κ = 1.

Thermal equilibrium in the central system. Besides the
comparison of the different dissipation models and the question
about the stabilization effect, we may ask whether the coupling
between qubit and cavity mode may be considered as a thermal
contact. In this case, we would expect that the final state of the
bipartite system is a product state with the cavity mode and the
qubit in thermal equilibrium states corresponding to the same
temperature T , established by the external heat bath.

Since we quantify the temperature in terms of the average
number of excited modes, n̄ = 〈â†â〉 at thermal equilibrium
(see Appendix A). Let us assume that the two-level atom
(qubit) reaches an equilibrium state, close to the thermal
equilibrium state. According to Eq. (A2), its adimensional
inverse temperature is given by

b = h̄we

kBT
= 2 atanh[(2n̄ + 1)−1]

⇒ 〈0|�eq
a |0〉 = 1 − tanh(�b/2)

2
. (11)

In Fig. 4, we analyze the same cases as in Fig. 2 but at
finite temperature, n̄ = 1. This allows us to include results
for the Caldeira-Leggett (CL) dissipation model, also. Note,
however, that we performed all calculations with g = 0.1, such
that for the CL model the permissible values for κ/g are limited
to κ/g � 10. To our surprise, the CL results are practically
indistinguishable from the QO results in this case, except for
the strongest dissipation, κ/g = 10, where we find a small
difference (see inset of the lower panel).

For clarity, Fig. 4 shows results for the small detuning case
(� − 1)/g = 0.1 only. This allows us to plot the curves for
κ/g = 1.0 in the upper panel and all others in the lower panel.
The results for large detuning, (� − 1)/g = 0.8 (not shown),
are very similar.

Qualitatively, we find a very similar behavior as in the
zero-temperature case: a decay to the equilibrium value and
superimposed oscillations, as long as the dissipation rate κ is
not too large. Again we observe a stabilization effect, when the
dissipation rate is increased. And, again, the QO and CL results
tend to converge to the DH results (at half the dissipation rate)
in the limit of strong dissipation.

In Fig. 4, the equilibrium state is no longer the ground
state |1〉, but a thermal mixture between excited and ground
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FIG. 4. Excited-state population as a function of scaled time gt

for all three dissipation models at small detuning (� − 1)/g = 0.1
and finite temperature, n̄ = 1.0. The horizontal black line shows the
thermal equilibrium value expected on the basis of Eq. (11). Lines
show results for the QO model, circles for the Caldeira-Leggett model,
and square points for the DH model. The color coding and the line
shapes identify the different dissipation rates: κ/g = 1.0 (red solid
line, red points; upper panel), 2.0 (green dashed line, green points;
lower panel), and 10.0 (blue dash-dotted line, blue points; lower
panel). Again, for the DH model, all rates have been reduced by
one-half. In the two insets, we plot the difference between the results
for the QO and CL models on the one hand and the DH model on the
other.

state. The solid black horizontal line shows the probability
of the qubit to be in the excited state, provided it is in a
thermal state, in thermal equilibrium with the cavity mode,
according to Eq. (11). The figure clearly provides evidence that
the JC coupling between qubit and oscillator mode acts indeed
as a thermal contact, which forces the qubit into a thermal
equilibrium state at the same temperature as the external heat
bath and oscillator mode.

To conclude this section about the Jaynes-Cummings model
at finite temperature, we consider again the behavior of the
coherence. In the two remaining figures to be shown, we
remove the CL dissipation case, since in the region where it is
valid (κ � 1) the results are practically indistinguishable from
the QO case.
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FIG. 5. Coherence for an eigenstate of σx as initial state at finite
temperature n̄ = 1.0. Solid lines show results for the QO model
and points those for the DH model. The color coding and point
shapes identify the different dissipation rates: κ/g = 1.0 (red line,
red circles), 10.0 (blue line, blue squares), 20 (yellow line, yellow
triangles), and 40 (black line, black diamonds). For the DH model, all
rates have been reduced by one-half. The upper (lower) panel shows
the case of large (� − 1)/g = 0.8 [small (� − 1)/g = 0.1] detuning.

Figure 5 shows the coherence for an eigenstate of σx

as initial state, as defined in Eq. (10). In distinction to the
zero-temperature case, the DH result is no longer equal to
the QO result, but they become equal as κ/g becomes large.
The stabilization effect works as efficiently as in the zero-
temperature case (Fig. 3). In Fig. 6, we show the differences
between the QO and DH results from Fig. 5. Again, we find the
expected convergence to the DH model for strong coupling.

D. Dephasing model at finite temperature

In this section, we replace the JC coupling between the qubit
and the cavity mode by the dephasing coupling, Eq. (3), where
the diagonal matrix elements of the qubit state remain constant.
Without the external heat bath, the coherence (nondiagonal
element of the atom state) measures the fidelity amplitude for
the Hamiltonian of the cavity mode, perturbed by the cavity
term of the dephasing coupling [31,32].

For random matrix models, the stabilization effect for the
coherence has been demonstrated in Refs. [20,21]. There, it
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FIG. 6. Differences between the curves of Fig. 5, using the color
coding from there: κ/g = 1.0 (red solid line), 10.0 (blue dashed line),
20 (yellow dash-dotted line), and 40 (black dash-dot-dotted line).

was found that the stabilization effect is efficient for small
dephasing couplings only; i.e., 2πg must be small as compared
to the level spacing in the near environment (perturbative
regime). In that case, the dissipation due to the heat bath
suppresses the decoherence, just as in the cases shown here.
For larger couplings g, the fidelity decays faster, eventually
faster than the Heisenberg time of the near environment. Then,
there is not enough time for the dynamics to “realize” that the
system is finite (discrete spectrum), which avoids any effect
when adding dissipation. This becomes understandable, if one
interprets the increase of the coupling as a way to enlarge the
near environment.

In Fig. 7, we show our results for the QO and the DH dis-
sipation model. Results for the CL model have been analyzed
also, but they are not shown as they agree very well with the QO
model (in the regime κ � 1, where the CL model is applicable).

As explained above, the level spacing in the intermediate
system determined by we is now important, providing an
additional energy scale. If the stabilization effect would work
similarly as in the random matrix cases, we would expect to
find the effect for small values of g and κ/g � 1. This is clearly
not the case, as can be seen in the upper panel, where g = 0.1.
Up to κ/g > 10 no stabilization effect can be observed, and
only between κ/g = 20 (yellow lines) and κ/g = 40 (black
line) may some stabilization effects seem to set in.
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FIG. 7. Coherence for an eigenstate of σx as the initial state for
the dephasing coupling between qubit and near environment. Solid
lines show results for the QO dissipation model and square points for
the DH model. The color coding identifies the different dissipation
rates: κ/g = 1.0 (red), 10.0 (blue), 20 (yellow), and 40 (black). For
the DH model, all rates have been reduced by one-half. Upper panel:
temperature n̄ = 1.0; dephasing coupling g = 0.1. Middle panel:
same temperature but larger coupling, g = 0.2. Lower panel: larger
coupling g = 0.2 and larger temperature n̄ = 3.0.

What is even more surprising is that for the larger values
of g (e.g., g = 0.2 as in the middle panel), the stabilization
effect seems to set in even earlier. There we find the turnover
between κ/g = 10 and κ/g = 20. This is confirmed in the
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lower panel, where the value for g is the same, but the
temperature was increased to n̄ = 3.0. In this case, the turnover
is again observed between κ/g = 10 and κ/g = 20. Note
though that the overall decoherence rate is increased due to
the higher temperature.

IV. CONCLUSIONS

We introduced the depolarizing heat bath (DH) as a minimal
dissipation model, which fulfills all the basic requirements of
a heat bath. We use this model to study the relaxation of a
central system, coupled via an intermediate system (the near
environment) to that heat bath. At strong dissipation, i.e., if
the dissipation rate is larger than the coupling between central
system and near environment, the DH model seems to become
universal in the following sense.

Consider a bipartite system, consisting of a central system
and a near environment, coupled to an outer heat bath. Assume
that its relaxation process is described by some quantum
Markovian master equation, with dissipation terms which in-
volve the near environment degree(s) of freedom only. Assume
further that we study the relaxation of the central system, when
the initial state is a product state with the near environment in
thermal equilibrium with the heat bath. Then we conjecture
that, in the strong-coupling case, the dynamics of the central
system can be described equally well with the help of the DH
dissipation model.

Previously, this has been shown for bipartite and tripartite
random matrix models [20,21] in the limit of infinite temper-
ature. Here, we give numerical evidence for a bipartite model
consisting of a two-level system and a harmonic-oscillator
mode, with Jaynes-Cummings or dephasing coupling, and
using two different fundamental dissipation models (the quan-
tum optical and the Caldeira-Leggett model) to describe the
coupling between the oscillator mode and a heat bath.

A bipartite quantum system appears naturally, in the pseu-
domode theory developed in [5], and generalizations to the
case of multiple modes [6,7], which lead to Markovian master
equations on the expense of enlarging that part of the system
which is described by Hamiltonian dynamics. We may thus
divide the system into two parts: the “central system,” which
contains those degrees of freedom we are interested in, and the
remaining (added) degrees of freedom we call the “intermedi-
ate system.” We found numerical evidence that such dissipative
bipartite systems may be described by a universal dissipation
model (the depolarizing heat bath), when the coupling to the
external heat bath (dissipation) is sufficiently strong.

In that limit the coupling to the heat bath may be considered
as an ideal thermal contact and thus a setup as described here
may be useful for the study of quantum thermal machines, as it
may provide an alternative method for defining or determining
thermodynamic quantities such as heat and work.
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APPENDIX A: THERMAL EQUILIBRIUM STATES
OF THE HARMONIC OSCILLATOR

As far as the temperature in the diffusion term is concerned,
note that, for the harmonic-oscillator state wT in thermal
equilibrium, it holds that

wT =
∞∑

n=0

�nn|n〉〈n|, �nn = e−bn

Z
, where

b = h̄we

kBT
, Z =

∞∑
n=0

e−bn = 1

1 − e−b
. (A1)

Therefore,

n̄ = 1

Z

∞∑
n=0

n e−bn = −∂bZ

Z
= −∂b ln(Z) = ∂b ln(1 − e−b )

= e−b

1 − e−b
= e−b/2

eb/2 − e−b/2
= coth(b/2) − 1

2

⇒ coth

(
h̄w

2kBT

)
= 2n̄ + 1. (A2)

APPENDIX B: CALDEIRA-LEGGETT MODEL
IN ORIGINAL VARIABLES

The original CL model [4,18] has the following master
equation (we use the notation of Ref. [33]):

ih̄∂τ � = h̄we [a†a, �] + γ [X̂, {P̂ , �}]
− 2iγ

mekBT

h̄
[X̂, [X̂, �]],

where τ denotes the original time in physical units. Replacing
the physical position and momentum operators by adimen-
sional ones, i.e., X̂ = √

h̄/(mewe)x̂ and P̂ = √
h̄mewep̂, we

find

i∂τ � = we[a†a, �] + γ [x̂, {p̂, �}] − iγ
2kBT

h̄we
[x̂, [x̂, �]].

In order to deal gracefully with the low-temperature regime,
we follow the original work [18], and consider the ratio
2kBT/(h̄we ) as the high-temperature limit of

coth

(
h̄w

2kBT

)
= 2n̄ + 1,

where n̄ is the average number of excited modes of the
harmonic oscillator at thermal equilibrium. Finally, we switch
to the adimensional time t = weτ and thus obtain

i∂t� = we[â†â, �] + γ [x̂, {p̂, �}]
− iγ (2n̄ + 1)[x̂, [x̂, �]], (B1)

where γ is the classical damping rate, i.e., the system loses
energy with that rate. We compare to the master equation with
the general form, Eq. (1) in Sec. II, to find

DCL[�] = 2i[x̂, {p̂, �}] + 2(2n̄ + 1)[x̂, [x̂, �]]. (B2)
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