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Optimizing the signal-to-noise ratio of biphoton distribution measurements

Matthew Reichert,* Hugo Defienne, and Jason W. Fleischer†

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 25 January 2018; revised manuscript received 11 May 2018; published 26 July 2018)

Single-photon-sensitive cameras can now be used as massively parallel coincidence counters for entangled
photon pairs. This enables measurement of biphoton joint probability distributions with orders-of-magnitude
greater dimensionality and faster acquisition speeds than traditional raster scanning of point detectors; to date,
however, there has been no general formula available to optimize data collection. Here we analyze the dependence
of such measurements on count rate, detector noise properties, and threshold levels. We derive expressions for the
biphoton joint probability distribution and its signal-to-noise ratio (SNR), valid beyond the low-count regime up to
detector saturation. The analysis gives operating parameters for global optimum SNR that may be specified prior
to measurement. We find excellent agreement with experimental measurements within the range of validity and
discuss discrepancies with the theoretical model for high thresholds. This work enables optimized measurement
of the biphoton joint probability distribution in high-dimensional joint Hilbert spaces.
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I. INTRODUCTION

Quantum states of light—such as entangled photon pairs
(biphotons)—offer substantial promise over classical light,
including enhanced spatial resolution, phase sensitivity, and
signal-to-noise ratio [1–3]. They also hold great potential in
quantum metrology, with possible improvements in gravita-
tional wave detection [4], biology [5], and microscopy [1]. In-
creasingly, these fields are moving towards higher-dimensional
entanglement, as it offers greater channel capacity [2,6–9],
security [2,6–9], and computational speed [10,11].

Garnering these advantages requires detecting both photons
in coincidence. This is typically performed with two single-
photon-counting modules (SPCMs); as these modules have no
spatial resolution, both must be scanned over each dimension
of the joint Hilbert space. In an imaging configuration, for ex-
ample, measuring photon pairs entangled in transverse position
requires scanning each detector over a two-dimensional (2D)
plane. The number of required measurements scales quadrat-
ically with the number of modes, making high-dimensional
entangled systems prohibitively time consuming to charac-
terize and inaccessible in practice. Furthermore, coincidence
measurements of biphotons are typically performed in the
low-count regime, where the count rate itself may be assumed
to be proportional to the biphoton joint probability distribution.
Operating at a substantially higher count rate can yield drastic
improvements in measurement speed and signal-to-noise ratio
(SNR) [12], but direct proportionality breaks down as the count
rate increases (accidental coincidences between photons from
different pairs become substantial or even dominant). This
breakdown complicates the relationship between the measured
detection counts and the true joint probability distribution,
making interpretation of the results far from straightforward.
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The advent of single-photon-sensitive cameras, such as
intensified charge-coupled device (ICCD) and electron-
multiplying CCD (EMCCD) cameras, has made rapid charac-
terization of spatially entangled photon pairs feasible [12–21].
We have recently developed a method of parallelizing such
measurements using an EMCCD camera [19]. Each pixel is
treated as a single-photon counter, with coincidences between
all pixels measured simultaneously. Using only measured
data, we have shown how to account completely for genuine
and accidental coincidences. For a megapixel camera, the
massively parallel apparatus allows for precise measurement of
the biphoton joint probability distribution within Hilbert spaces
of up to 1012 dimensions. Such measurements are impractical
with traditional scanning (or compressed sensing) methods.

The goal of this work is to provide a prescription for
optimizing the measurement of the biphoton joint probability
distribution. Prior work has examined maximizing the visi-
bility of the genuine biphoton coincidences relative to the
mean accidentals background [22]. There, the authors found
an optimum visibility when the count rate from photons is
equal to that from electronic noise events but noted that the
SNR could be improved by increasing the count rate. Similarly,
Lantz et al. found that the SNR is improved for higher count
rates [12], provided that measurements remain within the low-
count-rate regime. Indeed, if the background can be identified
and removed, only the fluctuations in the background limit the
quality of the result.

Here, we develop a general model for the SNR of mea-
surements of the biphoton joint probability distribution that is
valid for arbitrary count rates, up to saturation of the detector.
Our model is based on binary detection systems and accounts
completely for multiple photons and their number distribution.
The SNR is given in terms of the singles-count rate and
detector noise properties and allows optimization of any part
of the distribution function, including, especially, coincidence
measurements of entangled photon pairs.

We apply this model to massively parallel coincidence
counting with EMCCD cameras [19] and compare it to
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experimental measurements of spatially entangled biphotons.
We operate the camera in photon-counting mode and consider
detection as a function of gray level threshold. For low
threshold, EMCCDs are well approximated as binary detection
devices [23,24]. For higher thresholds, this approximation
breaks down. Experimentally, we explore both regions, with a
focus on the validity of the binary model and its impact on the
SNR. Note that while we consider spatial entanglement here,
the analysis applies to other degrees of freedom as well, such
as frequency or orbital angular momentum, with appropriate
projection onto camera pixels.

II. THEORY

The (pure) quantum state of entangled photon pairs, such
as that generated by spontaneous parametric down-conversion
(SPDC) in a thin χ (2) nonlinear medium in the low-gain regime,
may be defined by

|�〉 =
∫∫

ψ(ρ1,ρ2)||ρ1〉|ρ2〉d2ρ1d2ρ2, (1)

where ψ(ρ1,ρ2) is the transverse biphoton wave function and
|ρi〉 are states of the transverse position with ρ = x x̂ + y ŷ.
We want to measure the biphoton probability distribution
|ψ(ρ1,ρ2)|2 using an EMCCD camera. We thus have a dis-
cretized distribution,

�ij =
∫∫ w/2

−w/2
|ψ(ρ1 − ρi ,ρ2 − ρj )|2d2ρ1d2ρ2, (2)

where w is the width of the square pixels centered at positions
(ρi ,ρj ). The marginal distribution is

�i =
∑

j

�ij =
∫ w/2

−w/2

[∫
|ψ(ρ1 − ρi ,ρ2)|2d2ρ2

]
d2ρ1, (3)

which is proportional to the irradiance.
In general, there are two possible cases: (1) photons from

pairs are deterministically separated to different detector arrays
(or different regions of a single array), and (2) photons are all
sent to a single detector array. The principle difference between
them is that in (2), both photons from a single pair may hit
the same pixel. Case (1) is only possible for distinguishable
particles, where some degree of freedom uniquely identifies
which photon is which, e.g., polarization, frequency, etc. Here
we present equations for case (1) explicitly. To convert to case
(2), the substitutions �i → 2�i − �ii and �ij → 2�ij should
be made throughout. In addition, to simplify the notation, we
omit factors of the detector quantum efficiency η; to account
for it, one need only make the substitutions [25]

�i → η�i,
(4)

�ij → η2�ij .

A. Coincidence-count distributions

The singles-count probability at pixel i is given by

〈Ci〉 =
∑
m

Pm(μi|m + pelμī|m), (5)

where Pm is the probability distribution for the number of
generated pairs m and pel is the electronic count probability of

the detector [dark counts, clock-induced charge (CIC), etc.].
The first term describes the probability of counts due to pho-
tons, while the second describes counts due to electronic noise
in the absence of photons. The factor μī|m is the conditional
probability, given m photon pairs, that no photons are detected
in pixel i (indicated by the barred ī), which is related to the
marginal distribution by

μī|m = (1 − �i)
m. (6)

μi|m is the conditional probability that at least one photon is
detected in pixel i. Because the two conditionals sum to unity,
they are related by

μi|m = 1 − μī|m. (7)

In a similar fashion, the coincidence-count probability
between pixels i and j may be written

〈Cij 〉 =
∑
m

Pm

[
μij |m + pel(μij̄ |m + μīj |m) + p2

elμīj̄ |m
]
. (8)

The first term represents coincidences between two photons,
the second between one photon and one electronic noise event,
and the third between two noise events. The sum of the μ’s
gives unity: μij |m + μij̄ |m + μīj |m + μīj̄ |m = 1.

As before, to find the full expression for 〈Cij 〉, it is easiest
to consider the zero-photon case first. Coincidences between
two electronic noise events depend on no photon detection in
either pixel i or j , so that

μīj̄ |m = (1 − �i − �j + �ij )m. (9)

The coincidence counts between photons and electronic
noise require at least one photon detection in one pixel and zero
in the other. This is given by the probability that no photons
are detected in one pixel, i.e., μj̄ |m, minus the probability that
no photons are detected in either pixel, μīj̄ |m; that is,

μij̄ |m = μj̄ |m − μīj̄ |m, (10)

where j̄ indicates that mode j is unoccupied, and vice versa
for μīj |m. The probability that at least one photon is detected
in each pixel i and j is then

μij |m = 1 − μī|m − μj̄ |m + μīj̄ |m. (11)

Equations (5) and (8) have simple analytic form if the
number distribution of pairs is Poissonian. In this case, Pm =
m̄me−m̄/m!, where m̄ is the mean number of pairs emitted
within exposure time τe [26,27], and we have

〈Ci〉 = 1 − (1 − pel)e
−m̄�i (12)

and

〈Cij 〉 = 1 − (1 − pel)(e
−m̄�i + e−m̄�j )

+ (1 − pel)
2e−m̄(�i+�j −�ij ). (13)

Notice that both 〈Ci〉 and 〈Cj 〉 appear within 〈Cij 〉. Using Eq.
(12), we can rewrite Eq. (13) as

〈Cij 〉 = 〈Ci〉 + 〈Cj 〉 − 1 + (1 − 〈Ci〉)(1 − 〈Cj 〉)em̄η2�ij ,

(14)
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where we have reintroduced the quantum efficiency η. Solving
for �ij gives

�ij = α ln

[
1 + 〈Cij 〉 − 〈Ci〉〈Cj 〉

(1 − 〈Ci〉)(1 − 〈Cj 〉)
]
, (15)

where α = 1/(m̄η2) [α = 1/(2m̄η2) for case (2)]. Therefore,
to within a constant scaling factor, only the mean coincidence-
and singles-count probabilities are necessary to uniquely ex-
tract the joint probability distribution.

B. Signal-to-noise ratio

We want to relate the signal that we measure to the mean
count rates and otherwise previously known parameters of the
camera. This will ensure the use of parameters that result in
optimized SNR before performing actual measurements of �ij

(i.e., without requiring iteration). To do so, we write �ij =
�i�j |i and use Eq. (12) to express �i in terms of the singles-
count probability:

�ij = −αη�j |i ln

(
1 − 〈Ci〉
1 − pel

)
. (16)

We are interested in the SNR, which is an experimental
quantity that describes how well the measurement estimates
the joint probability distribution. By this definition, the signal
is the peak measurement of �ij and the noise is given by the
fluctuations of the background measured where �ij = 0 (i.e.,
〈Cij 〉 = 〈Ci〉〈Cj 〉). This form of the SNR stands in contrast to
the ratio of the signal to the mean background itself, that is, the
visibility [22], as the mean background is deterministic (i.e.,
〈Ci〉〈Cj 〉) and can therefore be subtracted [as in Eq. (15)] [28].
The estimator of the joint probability distribution has standard
deviation [28] (see Appendix A),

σ̂�ij
= sCij√

N

∂�ij

∂Cij

, (17)

where sCij
is the sample standard deviation of Cij . We define the

noise where�ij = 0, i.e., where 〈Cij 〉 = 〈Ci〉〈Cj 〉, since we are
interested in the capability of distinguishing the signal above
fluctuations of the background. Binary detection (Ci = {0,1})
gives [12] (see Appendix A)

sCij
= √〈Ci〉(1 − 〈Ci〉)〈Cj 〉(1 − 〈Cj 〉), (18)

and, taking the derivative of Eq. (15),

∂�ij

∂Cij

= α
1

1 − 〈Ci〉 − 〈Cj 〉 + 〈Cij 〉 , (19)

giving

σ̂�ij
= α√

N

√〈Ci〉(1 − 〈Ci〉)〈Cj 〉(1 − 〈Cj 〉)
1 − 〈Ci〉 − 〈Cj 〉 + 〈Cij 〉 . (20)

For uniform illumination, 〈Ci〉 = 〈Cj 〉 = 〈C〉, the noise be-
comes

σ̂�ij
= α√

N

〈C〉
1 − 〈C〉 (21)

FIG. 1. Normalized signal-to-noise ratio [SNR/(η�j |i
√

N )] ver-
sus mean count rate (solid curves) plotted for several values of pel

(indicated by the numbers below each curve, in percent). Dashed line
shows the trend of the maximum SNR of the pel , given by 1 − 〈C〉.

(for nonuniform illumination, see Appendix B). The SNR is
given by the ratio of Eq. (16) over Eq. (21):

SNR = η�j |i
√

N
〈C〉 − 1

〈C〉 ln

(
1 − 〈C〉
1 − pel

)
. (22)

In the low-count-rate limit, this equation reduces to the formula
provided in [12].

Equation (22) relates the quality of measurements of the
biphoton joint probability distribution to experimental param-
eters. These are either parameters set by the detection system—
the quantum efficiency η and electronic noise probability
pel—or set by the user—the mean count rate 〈C〉 and number
of frames N . Figure 1 shows the normalized SNR (SNR
divided by η�j |i

√
N ) versus 〈C〉 for several different values

of pel . In the limit of low electronic noise (pel → 0), the
SNR is maximized for low count rate 〈C〉 → 0, since the only
coincidence counts are those between entangled photon pairs.
Increasing the count rate adds accidental coincidences between
photons from different pairs, which contribute noise and reduce
the SNR. When pel is nonzero, electronic noise dominates
at low count rates, and the SNR increases with 〈C〉 until it
reaches a maximum and turns back over. For high count rates,
the number of accidentals grows more rapidly than those from
entangled pairs, and the SNR → 0 as 〈C〉 → 1.

The optimum count rate, i.e., the one that maximizes the
SNR, is

〈C〉opt = 1 + W

(
pel − 1

e

)
, (23)

where W is the Lambert-W function [29]. 〈C〉opt depends on
only the noise characteristics of the detector; by identifying pel ,
the mean count rate may be set by adjusting the pump power or
exposure time. The corresponding maximum achievable SNR
(peaks of curves in Fig. 1) falls off with more electronic noise.
Remarkably, however, its falloff is quite slow; a relatively high
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pel of 0.2 yields a reduction in the maximum SNR of only 50%
from when pel = 0.

C. Electron-multiplying CCD camera

Electron-multiplying charge-coupled-device (EMCCD)
cameras are massively parallel single-photon-sensitive devices
capable of measuring high-dimensional biphoton joint proba-
bility distributions [19]. If the camera is operated in photon-
counting mode, where the gray levels above a thresholded
value are registered as “clicks” and set to 1 while those below
threshold are set to zero, then the probability of a gray level
above threshold is

P (x > T |k) =
∞∑

x>T

P (x|k), (24)

where k is the number of photoelectrons generated by the
detector. This conditional probability distribution depends on
the gain and noise properties of the EMCCD, and has been
studied extensively [23,24]. In the following, we provide a
summary of the principal contributions.

Photons incident on the camera are absorbed to create
photoelectrons with quantum efficiency η. The electron-
multiplying gain then amplifies the number k of electrons
stochastically, producing a random number of electrons at the
output xel , with conditional probability distribution P (xel |k).
Photoelectrons at the input of the multiplication register
produce an output number xel of electrons with conditional
probability [23,24,31]

Pgain(xel |k) = xel
k−1e

− xel
g

gk(k − 1)!
, (25)

where g = (1 + pc)r is the mean gain, where pc is the multipli-
cation probability in each of the r elements in the multiplication
register. Finally, an analog-to-digital converter produces a gray
level value x proportional to the number of electrons.

There are several processes that result in noise independent
of the presence of photoelectrons. Readout noise yields a
Gaussian distribution with mean μread and standard deviation
σread,

Pread(x) = 1√
2πσread

e
− (x−μread)2

2σ2
read . (26)

In addition, there are two noise processes that depend on the
gain. First, there is a small probability ppar that a spurious elec-
tron will be generated at the input of the multiplication register.
This is predominantly due to CIC, as thermal dark counts are
comparably negligible at low operating temperatures and short
exposure times [24]. As this electron experiences the same gain
as the photogenerated electrons, it results in a probability of
electrons at the output of the multiplication,

Ppar(xel) = pparPgain(xel |1) = ppar
e
− xel

g

g
. (27)

Second, there is a small probability pser that a spurious electron
will be generated at each multiplication register cell, which is
then amplified by the remaining registers. This results in an

FIG. 2. Typical conditional probability distributions of gray-level
(gl) outputs from EMCCD camera given (solid black) zero, (dashed
red) one, and (dotted blue) two input photoelectrons. Plots are
based on Eqs. (25)–(28), with parameters in Table I. Vertical dotted
line indicates typical threshold level of T = 210 gl. Shaded regions
represent P (x > T |k), the areas of which give pel and ηEMCCD for
k = 0 and 1, respectively.

output probability,

Pser(xel) = pser

r∑
l=1

e
− xel

(1+pc )r−l

(1 + pc)(r−l) . (28)

Both Eqs. (27) and (28) are valid only for xel > 0; their value
at x = 0 is determined by 1 − Pi(xel > 0). Finally, the total
P (x|k) is given by the convolution of Eqs. (25)–(28), followed
by conversion of electrons xel to gray levels x.

Examples of P (x|k) are shown in Fig. 2 for k = 0, 1, and
2 input photoelectrons, for the camera parameters listed in
Table I. Gray levels above threshold—the dotted vertical line
at x = 210 gl—contribute a signal proportional to the shaded
area under the curve, which gives P (x > T |k). For k = 0,
this represents the electronic noise probability pel , which
here is 0.016. For k = 1, it gives the probability of getting a
“click” from an absorbed photon. This is an effective quantum
efficiency P (x > T |1) = ηEMCCD, which here has a value of
0.61. EMCCDs with sufficiently high gain and low read noise

TABLE I. Parameters for Andor iXon Ultra 897 EMCCD camera
based on fit of the histogram shown in Fig. 3(b) with Eqs. (25)–(28).
EMCCD was set to a readout rate of 17 MHz, 0.3 μs vertical shift
time; vertical clock voltage was set +4 V above default.

Parameter Value

xel/x 12
g 1000
r 536 [30]
pc 0.012971
μread 167.1035 gl
σread 18.379 gl
ppar 6.03 × 10−3

pser 5.32 × 10−5
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FIG. 3. Experimental measurement of SNR of entangled photon pairs. (a) Experimental schematic. A 400-nm laser diode pumps a BBO
crystal and near-degenerate down-converted photons are filtered, and the far field is projected onto an EMCCD camera (Andor, iXon Ultra 897).
(b) Conditional probability distribution of gray-level output given zero input photoelectrons. (Black open circles) Measured histogram of gray
levels from ∼105 101 × 101 pixel frames collected with the shutter closed at 5-ms exposure time. (Red curve) Fit of Eqs. (25)–(28) to determine
EMCCD properties given in Table I. Dotted vertical line shows threshold at T = 210 gl. The EMCCD measures (c) the irradiance distribution
and (d) �ij , shown projected onto the sum coordinates. A region of uniform irradiance, indicated by the central black boxed region in (c), is
selected for SNR measurements. The signal and noise are taken as the area of the anticorrelation peak in (d) and the standard deviation of the
fluctuations of the background far from the peak. Measurements (open circles) are repeated for many values of 〈C〉, and (e) the signal (black)
and noise (red) are calculated and fit (solid curves) to theory. (f) Their ratio is taken to determine the SNR. Black dataset in (f) corresponds
to signal and noise in (e). Also in (f), many lower thresholds were applied to the gray-scale images, resulting in increased pel and ηEMCCD, all
showing agreement with theory. Numbers next to each curve indicate threshold level (see Fig. 2 and Table I). (g) We observe disagreement that
worsens for higher thresholds, where the approximations in treating the EMCCD as an SPCM break down.

may operate in photon-counting mode and be approximated as
an array of single-photon counters. This is the regime in which
the above analysis is applicable.

III. EXPERIMENTAL RESULTS

We compare our theoretical results with experimental
measurements of spatially entangled photon pairs using an
EMCCD camera. Biphotons are generated via collinear type-I
SPDC in a BBO crystal pumped by a spatially filtered 400-nm
cw laser diode, and the far field is projected onto an EMCCD
camera (Andor, iXon Ultra 897) [see Fig. 3(a)]. The EMCCD
consists of a 512 × 512 array of 16 × 16 μm2 pixels, and is
operated at −85 ◦C (maintained by water cooling), 17 MHz
readout rate, with 0.3 μs vertical shift time, and vertical clock
voltage of +4 V above default. A 101 × 101 pixel region of
interest centered on the intensity distribution is selected, and
the exposure time is fixed to 5 ms. The electronic noise P (x|0)
is measured by obtaining a histogram of gray levels from 105

frames collected with the shutter closed [Fig. 3(b)]. This is
fit with the theoretical P (x|0) given by the convolution of
Eqs. (25)–(28) to characterize the EMCCD [23,24]; resulting
parameters are given in Table I. Here, the gain g is manually set

to 1000, r is the number of multiplication registers (provided
in the EMCCD chip specifications [30]), and the multiplication
probability in each register is calculated by pc = g1/r − 1. The
remaining values in Table I are altered iteratively to minimize
the mean squared difference with the measured values.

Measurements of �ij are performed at many values of 〈C〉.
The mean count rate is varied by adjusting the attenuation of the
pump laser with a continuously variable neutral density filter.
For each mean count rate, 104 gray level images are collected,
thresholded at T = 210 gl—the value which maximizes the
SNR—and processed. A region with uniform singles-count
rate (uniform irradiance) is selected [Fig. 3(c)], from which �ij

is calculated via Eq. (15) (with α set to 1). Figure 3(d) shows
the projection of �ij onto the sum coordinates, (ρ1 + ρ2)/

√
2,

where the strong peak in the center indicates anticorrelation of
the entangled photon pairs. For ideally anticorrelated photons,
|ψ(ρ1,ρ2)|2 ∝ δ(ρ1 + ρ2), and the conditional probability �j |i
is unity for pixels oppositely located about the origin (j =
−i). Realistically, however, the conditional distribution is
spread over several pixels (determined by the correlation
width). As �j |i is normalized (i.e.,

∑
j �j |i = 1), summing

over the pixels j effectively synthesizes an ideal anticorrelated
case for the purposes of SNR measurement [see Eq. (22)].
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That is, we simulate the SNR we would measure had �−i|i = 1
[12]. To determine the SNR, we fit the correlation peak to a
2D Gaussian distribution and take its area as the signal. The
noise is given by the standard deviation of the background
far from the peak. Defining the signal and noise in this way
essentially averages the four-dimensional (4D) joint probabil-
ity distribution �ij over many pixels. Thus, the uniformity of
the irradiance (and �j |i) is important to this metric, as spatial
variation complicates the analysis. As shown in Figs. 3(e) and
3(f), measurements of the signal, noise, and SNR agree well
with theory.

Further evaluation of the theory over a large range of pel

and ηEMCCD can be performed by imaging at different threshold
levels. For thresholds below the original T = 210 gl, both pel

and ηEMCCD increase, as a larger portion of P (x|k) is above
threshold. Figure 3(f) shows measurements of the SNR at
thresholds from 147 to 210 gl (corresponding to 1.0σread below
and 1.9σread aboveμread), with good agreement with theoretical
fits of Eq. (22) over the entire range.

For higher thresholds, the approximation of the EMCCD
camera as an SPCM breaks down. Figure 3(g) shows that
measurements of the SNR for thresholds between 233 and 388
gl (corresponding to 2.5σread and 1.0σread aboveμread), disagree
with theory. For large 〈C〉, the measured SNR is much greater
than predicted, particularly for the highest thresholds. In this
regime, counts are more likely to originate from more than
one input electron, k > 1. The reason for this, as discussed in
Sec. IV below, is that the probably of registering a click for
more than one input photon scales differently for an EMCCD
than for an SPCM.

We also compare the optimum count rate 〈C〉opt and corre-
sponding maximum SNR found from experiment with theory.
Figure 4(a) shows that the measured 〈C〉opt agrees well with
Eq. (23) for pel > 0.01 (smaller values of pel correspond to
higher thresholds, where the model breaks down). Over the
range of validity, we may incorporate the threshold dependence
of pel(T ) = P (x > T |0) [see Fig. 2] and the optimum count
rate [Eq. (23)] into the expression for the SNR [Eq. (22)]
to predict the maximum achievable SNR as a function of
threshold. This curve is plotted in Fig. 4(b), which shows a
peak at T = 210 gl (thus our preferred operating value). As
before, agreement with experiment is very good for all but the
highest thresholds.

IV. DISCUSSION

By characterizing noise properties of the EMCCD camera,
that is, measuring P (x|0), the optimum operating parameters
can be deduced. Using Eqs. (22)–(24), the threshold T and
count rate 〈C〉opt that maximize the SNR can be found. We
have experimentally validated the theory for threshold values
within several standard deviations of μread. Fortunately, the
global optimum of the SNR is found in this range, which is
therefore where measurements of the biphoton joint probability
distribution should be made.

The breakdown of the theory at high thresholds arises
from differences between EMCCDs and SPCMs, i.e., how the
probability of registering a “click” depends on the number of
incident photons. SPCMs are Geiger-mode avalanche devices,
whose output is either zero or 1 depending on whether or

FIG. 4. Comparison of (circles) measured optimum count rate
〈C〉opt and corresponding maximum SNR (SNRmax) with (curves)
theory. Curve in (a) is 〈C〉opt from Eq. (23) plotted versus pel , which
shows good agreement for pel > 0.01. In (b) the maximum SNR is
plotted versus gray-level threshold. The red curve shows Eq. (22)
with 〈C〉 = 〈C〉opt and the known dependence of pel on threshold,
i.e., P (x > T |0). There is agreement between theory and experiment
for all but the highest thresholds, which correspond to the lowest
values of pel .

not an avalanche was triggered. This results in an avalanche
probability that scales with the number of incident photons n as

P (1|n) = 1 − (1 − η)n. (29)

This form of the “click” probability allows the simple insertion
of the quantum efficiency as in Eq. (4) [25]. Applying this
concept to the EMCCD camera requires the probability of
getting a gray level above threshold to scale as

P (x > T |k) = 1 − (1 − ηEMCCD)k, (30)

where ηEMCCD = P (x > T |1) (see Appendix C). However,
EMCCDs do not have this form of scaling with incident
photon number. Figure 5 shows P (x > T |k), calculated
via Eqs. (24)–(28) for the EMCCD parameters in
Table I. Even for two input photoelectrons, P (x > T |2)
(dotted blue curve) is significantly different from
1 − [1 − P (x > T |1)]2 (dot-dashed maroon curve). This
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FIG. 5. Discrepancy between thresholded EMCCD and SPCM.
(a) Probability of a gray level above threshold, P (x > T |k), given
(solid black) k = zero, (dashed red) one, and (dotted blue) two
input photoelectrons. Curves were calculated with Eqs. (24)–(28)
with EMCCD parameters in Table I. Dot-dashed maroon curve is
1 − [1 − P (x > T |1)]2 which is implicitly assumed in the model.
The difference between dashed blue and dot-dashed maroon curves,
and those for larger k, is the cause of the discrepancy between
experimental results at high threshold and theory. (b) Comparison
of simulations of (black squares) EMCCD and (maroon triangles)
SPCM with (teal circles) experiment and (curve) theory. Simulation
parameters were the same as experiment with EMCCD at T = 280 gl
and SPCM with the same value of pel = 0.002, and scaled to the same
amplitude as experiment.

discrepancy grows with both increasing threshold and increas-
ing photoelectron number. For sufficiently low threshold, the
approximation of an EMCCD as an SPCM, Eq. (30), is valid. [It
even improves with decreasing threshold since P (x > T |k) →
1.] This explains the agreement between experiment and theory
for T � 210 gl [see Figs. 3(f) and 4]. However, for higher T

this approximation becomes incorrect. Because P (x > T |k) >

1 − (1 − ηEMCCD)k , the measured SNR is greater than the
theory predicts for high thresholds and count rates, as most
counts originate from multiple input photoelectrons per pixel.

To further confirm the origin of the discrepancy, we perform
numerical simulations using both SPCM and realistic EMCCD
responses, i.e., P (x > T |k). Briefly, a Poissonian distribution

of photon pairs with mean m̄ is sampled for each of 106 frames.
The pairs then arrive at the detector per an ideally anticorrelated
biphoton joint probability distribution, �ij = δi,−i . In each
pixel, photons are detected with quantum efficiency η. For
the EMCCD, the gray level at the output is calculated by
sampling P (x|k), with the appropriate k, and then thresholded.
For SPCM simulations, Poissonian noise is added with mean
pel . For both detector systems, simulated measurements of �ij

are calculated via Eq. (15) (with α = 1), from which the SNR
is found. This is repeated for many values of m̄ to span the
entire range of 〈C〉 from pel to 1.

Simulations of the EMCCD were performed using the
parameters in in Table I to model P (x|k) at T = 280 gl, which
shows excellent agreement with experiment [Fig. 5(b)]. A
global scaling factor is applied to the simulations to match
the amplitude with experiment. This accounts for differences
in unknown quantum efficiency and mean photon number in
the experiment, as well as the lower number of pixels used in
simulation for computational speed. The remaining deviations
from experiment may be due to slight nonuniformity of P (x|k)
across the pixels in the frame, inaccuracies in the model
[23,24], or fitting errors. Simulations of SPCMs with the same
pel were then performed, and match well with our theory. We
therefore conclude that the discrepancy between theory and
experiment is due to the non-SPCM-like behavior of EMCCDs
at high thresholds. A complete characterization of this behavior
can be understood by taking into account the full properties of
the camera [25].

V. CONCLUSION

We have provided a general analytical expression for the
SNR for measurements of entangled photon pairs. This expres-
sion assumes only a Poissonian distribution of photon pairs and
is valid for the full range of count rates up to saturation. There
is an optimum count rate at which the SNR is maximized that
depends only on the detector noise properties and therefore
may be specified ahead of any quantum experiments. The
theory works particularly well for EMCCDs at low thresholds,
while for high thresholds the cameras deviate from ideal binary
photon counters. These differences are negligible for EMCCDs
with low readout noise and high gain when operated with the
appropriate threshold. Indeed, the optimum threshold occurs
well within the region of validity, even for relatively high read
noise, when operated at maximum readout rate [14,24,32]. The
SNR curve around the peak is relatively broad, with a falloff
for nonideal parameters that is relatively slow. The results
therefore suggest a large operating window for collecting data
at significantly higher count rates than is typically done.
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APPENDIX A: SNR CALCULATIONS

In general, we wish to determine some parameter W that
can be expressed as a function of a random variable X, i.e.,
W = F (X). To estimate the “true” value of W = w0, we can
sample X several times and calculate ŵ = F (x̄N ), where ŵ
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is the “estimator of” w0, and x̄N is the sample mean of N

independent measurements of x. Given different sets of N

independent measurements of x, we expect some variation
between the resulting ŵ’s. This variation can be estimated by
the standard deviation of ŵ [28],

σ̂ŵ = sx√
N

∂F

∂X
, (A1)

where sx =
√∑N

i=1 (xi − x̄N )2/(N − 1) is the sample stan-
dard deviation of x. We define the SNR as the estimate of
w0 (i.e., ŵ) divided by its expected variation from multiple
repeated independent measurements (i.e., σ̂ŵ),

SNR ≡ ŵ

σ̂ŵ

. (A2)

For our purposes, X = Cij , x̄ = 〈Cij 〉, and ŵ = �ij , as given
by Eq. (15). From Eq. (A1), σ̂ŵ is

σ̂�ij
= sCij√

N

∂�ij

∂Cij

, (A3)

which is Eq. (17).
In general, for a covariance W defined by

W =
n∑

i=1

Pi(Xi − X̄)(Yi − Ȳ ), (A4)

where Pi is the probability of each of the n possible values, the
variance is

var(W ) =
n∑

i=1

Pi(Xi − X̄)2(Yi − Ȳ )2. (A5)

In our case W = 〈Cij 〉 − 〈Ci〉〈Cj 〉, with Ci,Cj = {0,1}. We
are interested in the fluctuations in the background, where
�ij = 0, which means that mean(W ) = 0. Its variance is then

var(W ) = P00(1 − 〈Ci〉)2(1 − 〈Cj 〉)2 + P01(1 − 〈Ci〉)2〈Cj 〉2

+P10〈Ci〉2(1 − 〈Cj 〉)2 + P11〈Ci〉2〈Cj 〉2, (A6)

where

P00 = (1 − 〈Ci〉)(1 − 〈Cj 〉),
P01 = (1 − 〈Ci〉)〈Cj 〉,

(A7)
P10 = 〈Ci〉(1 − 〈Cj 〉),
P11 = 〈Ci〉〈Cj 〉.

Simplifying, these give

σ 2
Cij

= 〈Ci〉(1 − 〈Ci〉)〈Cj 〉(1 − 〈Cj 〉), (A8)

the square root of which is Eq. (18).

APPENDIX B: NONUNIFORM ILLUMINATION

For nonuniform illumination, the signal is related by

�ij = −αη�j |i ln

(
1 − 〈Ci〉
1 − pel

)
= −αη�i|j ln

(
1 − 〈Cj 〉
1 − pel

)
.

(B1)

due to the symmetry of the biphoton joint probability dis-
tribution. The standard deviation where �ij = 0, i.e., where
〈Cij 〉 = 〈Ci〉〈Cj 〉, is

σ�ij
= α√

N

√
〈Ci〉〈Cj 〉

(1 − 〈Ci〉)(1 − 〈Cj 〉) . (B2)

The SNR is given then by

SNR = −η�j |i
√

N

√
(1 − 〈Ci〉)(1 − Cj )

〈Ci〉〈Cj 〉 ln

(
1 − 〈Ci〉
1 − pel

)

= −η�i|j
√

N

√
(1 − 〈Ci〉)(1 − Cj )

〈Ci〉〈Cj 〉 ln

(
1 − 〈Cj 〉
1 − pel

)
.

(B3)

In the limit of low count rate, this reduces to

SNR ≈ η�j |i
√

N
〈Ci〉 − pel√〈Ci〉〈Cj 〉

= η�i|j
√

N
〈Cj 〉 − pel√〈Ci〉〈Cj 〉

. (B4)

APPENDIX C: SPCM-LIKE SCALING OF EMCCD

For a detector with general gray-scale response to incident
photons, the conditional probability of a particular gray level
x on the number of incidence photons n is given by [25]

P (x > T |n) =
n∑

k=0

P (x > T |k)P (k|n), (C1)

where k is the number of generated photoelectrons and

P (k|n) =
(

n

k

)
ηk(1 − η)k, (C2)

where η is the quantum efficiency (absorption probability). Let
P (x|k) be the probability of generating gray level x given k

input photoelectrons. If

P (x > T |k) = 1 − (1 − ηEMCCD)k, (C3)

then Eqs. (C1)–(C3) give

P (x > T |n) = 1 − (1 − ηηEMCCD)n. (C4)
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