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We experimentally investigate topological phenomena in one-dimensional discrete-time photonic quantum
walks using a combination of methods. We first detect winding numbers of the quantum walk by directly measuring
the average chiral displacement, which oscillates around quantized winding numbers for finite-step quantum
walks. Topological phase transitions can be identified as changes in the center of oscillation of the measured
chiral displacement. The position of topological phase transition is then confirmed by measuring the moments
of the walker probability distribution. Finally, we observe localized edge states at the boundary of regions with
different winding numbers. We also confirm the robustness of edge states against chiral-symmetry-preserving
disorder.
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I. INTRODUCTION

The quantum walk [1–3] is a versatile and highly control-
lable platform for quantum algorithms [4–7] and quantum
simulations [8–13]. In recent years, quantum walks have
been realized experimentally in a wide range of physical
systems such as nuclear magnetic resonance [14–16], trapped
atoms [17–19] and ions [20,21], linear optics [22–28], and
integrated optics [29–31]. A particularly intriguing study
here is the Floquet topological phases (FTPs) in discrete-
time quantum walks, which have been experimentally imple-
mented, for example, using photons in interferometric network
[10–13,32–34].

Topological phases exhibit remarkable properties, and have
stimulated extensive research interest in modern physics
[35,36]. In contrast to conventional phases of matter which
are characterized by symmetry properties and local order
parameters, topological phases are typically parametrized by
integer-valued topological invariants [35–40]. As integers
cannot change continuously, a necessary consequence is the
emergence of exotic phenomena, such as topological edge
states, at the boundary between regions with different topo-
logical invariants. Whereas the existence of robust topological
edge states localized at a boundary constitute a smoking-
gun evidence for topological phenomena, direct detections of
topological invariants in the bulk have been made possible by
probing losses from the system [41]. However, the method of
detecting topological invariants in nonunitary quantum walks
via loss [13] cannot be extended to the case of unitary quantum
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walks. Recently, Cardano et al. [11] have shown that in chiral
one-dimensional unitary Floquet systems, the average chiral
displacement of a particle’s wave packet becomes quantized
and proportional to the winding number in the long-time
limit. Further, the same group has demonstrated that statistical
moments of the unitary quantum-walk dynamics can also be
used to characterize topological phase transitions in the bulk.

In this work, we report an experimental characterization
of topological phenomena in discrete-time photonic quantum
walks in one dimension. Adopting a split-step quantum walk
of single photons, we measure the chiral displacement and the
statistical moments of the dynamics. While in the long-time
limit, chiral displacement should be quantized and converge to
the bulk winding numbers, we show that for the experimentally
achievable finite-step quantum-walk dynamics, the chiral dis-
placement exhibits oscillatory behavior centered around the
bulk winding numbers. Topological phase transitions can be
identified as changes in the center of oscillation of the measured
chiral displacement, which is consistent with topological phase
boundaries deduced from the statistical-moment measure-
ments. Finally, we confirm the measured topological invariants
by direct observations of robust topological edge states at
the boundary of regions with distinct winding numbers. By
a systematic study of topological phenomena in discrete-time
split-step quantum walks, our results lay the foundation for
future studies of topological phenomena in multistep quantum
walks, where higher winding numbers exist.

Compared to the previous experiments in [10,11], the
physical system is different. The walker is encoded in the
spatial modes of single photons, instead of the orbital angular
momentum of light. In other words, we employ the “real”
position space, instead of “abstract” position space, i.e., the
transverse modes of the light beam. Furthermore, it is easy

2469-9926/2018/98(1)/013835(7) 013835-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.013835&domain=pdf&date_stamp=2018-07-20
https://doi.org/10.1103/PhysRevA.98.013835


WANG, XIAO, QIU, WANG, YI, AND XUE PHYSICAL REVIEW A 98, 013835 (2018)

to realize inhomogeneous quantum walks in our experimental
setup. Thus, we are able to observe topological edge states and
their robustness to symmetry-preserving disorder.

The paper is organized as follows. In Sec. II, we intro-
duce the experimentally realized split-step quantum walk, and
characterize its topological properties using winding numbers.
We discuss the theoretical aspects of chiral displacement
and statistical moments of the split-step quantum walk in
Sec. III. In Sec. IV, we present our experimental results.
We confirm the measured topological invariants by detecting
robust topological edge states in Sec. V. Finally, we summarize
in Sec. VI.

II. TOPOLOGICAL INVARIANTS FOR SPLIT-STEP
QUANTUM WALKS

We start from a split-step quantum walk governed by the
unitary Floquet operators,

U1 = R(θ1/2)SR(θ2)SR(θ1/2),
(1)

U2 = R(θ2/2)SR(θ1)SR(θ2/2),

where R(θ ) = ∑
x |x〉〈x| ⊗ e−iθ (x)σy is the position-dependent

coin rotation, σy is a Pauli operator, and S = ∑
x |x + 1〉〈x| ⊗

|1〉〈1| + |x − 1〉〈x| ⊗ |0〉〈0| is the conditional position shift
operator. Here, x denotes the position of the walker and
{|0〉, |1〉} are two orthogonal coin states. As the system has
translation invariance, we can adopt the Fourier transformation
|x〉 = 1√

N

∑
k e−ikx |k〉, where N is the total site number, and

rewrite the Floquet operators U1 and U2 with R(θ ) = e−iθσy

and S = eikσz . The Floquet operators U1 and U2 have chiral
symmetry with the symmetry operator � = σx , i.e., �U1,2� =
U−1

1,2 .
We then introduce the effective Hamiltonian Heff(k) =

Eknk · σ through U1 = e−iHeff with Ek the quasienergy disper-
sion of FTPs, σ the Pauli vector, and n indicating the direction
of the spinor eigenstate at each momentum −π < k � π . It is
straightforward to derive [8,10–13]

cos Ek = cos θ1 cos θ2 cos 2k − sin θ1 sin θ2,

nx = 0,

ny = 1

sin Ek

(cos θ2 sin θ1 cos 2k + cos θ1 sin θ2), (2)

nz = − 1

sin Ek

cos θ2 sin 2k,

n2
y + n2

z = 1.

The topological invariant of the FTP is the winding number
defined as

ν1 = 1

2π

∮
dk

(
n × ∂n

∂k

)
x

. (3)

The winding number above is the number of times the vector n
which lies in the y-x plane, winds around the x axis as k varies
through the first Brillouin zone. Similarly, we can define ν2

for the Floquet operator U2. Note that the winding number
Eq. (3) is defined through the spinor eigenvectors of U1. This
is equivalent to the definition through the spin eigenvectors
of the corresponding effective Hamiltonian Heff (k). We also
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FIG. 1. Phase diagrams of the split-step quantum walk governed
U1. Different topological phases are characterized by the winding
numbers (ν1, ν2). Black solid lines mark the topological phase
boundaries. Nine red dots indicate the coin parameters for detecting
the topological invariants. The other colored symbols indicate the coin
parameters for observing the topological edge states.

define [42]

(ν0, νπ ) :=
(

ν1 + ν2

2
,
ν1 − ν2

2

)
, (4)

which are directly related to edge states at the boundaries with
quasienergies 0 and π , respectively. Specifically, the number
of edge states with quasienergy 0 (π ) should be equal to the
difference in the winding numbers ν0 (νπ ) on either side of the
boundary. In Fig. 1, we show the phase diagram on the θ1 − θ2

plane with topological invariants (ν1, ν2).

III. CHIRAL DISPLACEMENTS AND STATISTICAL
MOMENTS OF QUANTUM WALKS

In this section, we introduce the average chiral displacement
and the statistical moments of unitary quantum walks. Consider
a general initial state of the walker-coin system as |�0〉 = |x =
0〉 ⊗ |ψ0〉, where |ψ0〉 represents the coin state. At any given
time step t > 0, we have |�t 〉 = Ut

1|�0〉, and the probability
of measuring the walker at position x is

p(x, t ) = 〈�t |x〉〈x| ⊗ 1c|�t 〉, (5)

where 1c = |0〉〈0| + |1〉〈1| is the identity matrix for the coin
space.

The average chiral displacement is defined as [11]

C(t ) = 〈�x〉 =
∑

x〈�t |x〉〈x| ⊗ �|�t 〉∑
x〈�t |x〉〈x| ⊗ 1c|�t 〉 , (6)

which quantifies the relative shift between the two projections
of the states onto the eigenstates of the chiral operator �. The
winding number can be simply achieved by the scaled average
chiral displacement of the walker −2C(t ), whose location is
consistent with topological phase boundaries.

The j th statistical moment of this distribution is given by
Mj (t ) = 〈xj 〉t = ∑

x xjp(x, t ) [10]. In particular, we write
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the first and second moments in the momentum space as [10]

M1(t ) =
∫ π

−π

dk

2π
〈ψ0|U †t

(
−i

d

dk

)
Ut |ψ0〉 (7)

and

M2(t ) =
∫ π

−π

dk

2π
〈ψ0|U †t

(
−i

d

dk

)2

Ut |ψ0〉. (8)

Specifically, we have U1 = cos Ekσ0 − i sin Ek (n̂k · σ ) ⇒
Ut

1 = cos(Ekt )σ0 − i sin(Ekt )(n̂k · σ ), where n̂k = nk/ sin Ek

and cos Ek = n0. It is then straightforward to derive [10]

M1(t )

t
= 〈�0|(σy − σz)|�0〉

∫ π

−π

dk

2π
v2

k + O(1/t ),

M2(t )

t2
=

∫ π

−π

dk

2π
v2

k + O(1/t2), (9)

∫ π

−π

dk

2π
v2

k =
∫ π

−π

dk

2π

(
dEk

dk

)2

=
∫ π

−π

dk

2π

1

1 − n2
0

(
dn0

dk

)2

,

where vk = dEk

dk
is the group velocity. At the topological phase

boundary, the bulk gap closes at certain points in the momen-
tum space, and the corresponding n0(k) at these momenta
approaches zero. This gives rise to the slope discontinuity,
as well as a peak structure of the first and second moments
near the phase boundary [10]. Thus the probability distribution
moments of the walker position can be used as direct indicators
of the topological quantum transitions in a long-time limit.

IV. EXPERIMENTAL REALIZATION OF MULTISTEP
NONUNITARY QUANTUM WALKS

For a single-photon quantum walk, the coin states are
represented by the horizontal |H 〉 and vertical |V 〉 polarization
states of the photons, and the walker states are encoded in their
spatial modes. As shown in Fig. 2, a pair of photons is generated
via type-I spontaneous parametric downconversion. With one
photon serving as a trigger, the other photon is projected into
the state |+〉 = (|H 〉 + |V 〉)/

√
2 with a polarizing beamsplit-

The First Step The Seventh Step 

PBS HWP DetectorBDBBO PBS HWP BBDBBO BBDDPBSSingle
 Photon

Trigger

FIG. 2. Experimental setup. The photon pair is created via spon-
taneous parametric downconversion. One photon serves as a trigger
and the other photon is projected into the polarization state |+〉 with
a PBS and a HWP at 22.5◦. The coin rotation R is realized by two
HWPs with certain setting angles and the conditional position shift
operator S is realized by a BD. Finally, the photons are detected by
APDs in coincidence with the trigger photons.

ter (PBS) and a half-wave plate (HWP) heralded by the trigger
photon, and is then sent to the quantum-walk interferometric
setup. We implement the coin operator R(θ ) via two HWPs and
the shift operator S via a beam displacer whose optical axis is
cut so that the photons in |V 〉 are directly transmitted and those
in |H 〉 undergo a lateral displacement into a neighboring mode
[13]. After passing through the quantum-walk interferometric
network, we apply a projective measurement on the photons
with the basis {|+〉, |−〉}, and |±〉 are the eigenstates of the
chiral operator �. The projective measurement is realized by
a HWP at 22.5◦ following by a PBS. After passing through
the HWP, the photons in the state |−〉 are projected into
|V 〉 and then reflected by the PBS, while the photons in |+〉
are projected into |H 〉 and transmitted. Finally, for a t-step
quantum walk, we perform coincidence measurements on both
reflected and transmitted photons at each position successively
up to t by single-photon avalanche photodiodes (APDs).

Similar to the Zak phase in a quantum walk based on the
orbital angular momentum of a light beam [11], the winding
number in our system can be detected by measuring the
average chiral displacement of the walker initially prepared
in |�0〉 = |0〉|+〉. We realize seven-step quantum walks with a
fixed θ2 = π/4 and varying θ1 along the red dotted lines in the
phase diagrams. The experimental results of the scaled average
chiral displacements are shown in Fig. 3(a) for evolution
operator U1 (those for U2 are not shown). The results agree
well with the numerical simulations of seven-step quantum
walks and demonstrate plateaux close to quantized value ν1

calculated from infinite-step quantum walks. For completeness
we also show results predicted for 51 steps in Fig. 3(b), and the
asymptotic long-time limit. We note here that, although both
theoretical and experimental data oscillate, as few as seven
steps are enough to have a clear detection of winding numbers.

Now we demonstrate topological phase transitions between
FTPs with different topological invariants by probing statis-
tical moments of the walker. Experimentally, the moment is
evaluated from the spatial distribution of the photons at the
last step. In Fig. 4, we plot the measured values of M1(t )/t of
the quantum walk governed by U1 with a fixed θ2 = π/4 and
varying θ1 up to seven steps and those predicted theoretically
for 51 steps. The coin parameter scanned along the red

)b()a(

11

FIG. 3. (a) Scaled chiral displacement of the quantum walk
governed by U1 with a fixed θ2 = π/4 and varying θ1 as indicated
by the nine red dots in the phase diagram. The solid curve represents
the theoretical result for the seven-step quantum walk and the
experimental results are shown by dots. The dashed curve indicates
the expected results of infinite-step quantum walks. (b) Theoretical
predictions of the scaled chiral displacement in the long-time limit
(t = 51). Experimental errors are due to photon-counting statistics.
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FIG. 4. (a) Statistical moments M1(t )/t of the walker position
distribution of the seven-step quantum walk governed by U1 with
a fixed θ2 = π/4 and varying θ1 as indicated by nine red dots in the
phase diagram. The solid curve represents the theoretical result for the
seven-step quantum walk and the experimental results are shown by
dots. The dashed line indicates where topological quantum transition
occurs. (b) Theoretical predictions of M1(t )/t in the long-time limit
(t = 51).

dotted lines in the phase diagrams. Similar to the behavior
of the scaled average chiral displacement, both theoretical
predictions in the long-time limit and the experimental results
oscillate and we find good agreement between experimental
results and theoretical predictions with the same evolution
time.

In Fig. 5, we confirm the topological phase boundaries,
signaled by jumps of the measured topological invariants,
by probing the second statistical moments M2(t )/t2. The
measured M2(t )/t2 exhibits anomalies near the topological
phase transitions. The emergence of an abrupt slope variation
at±π/4 can be appreciated and the observed nonanalyticity is a
signature of the underlying quantum transition. We find reason-
able agreement between experimental results and theoretical
predictions. The differences between the experimental results
and the theoretical ones are due to experimental imperfections,
especially decoherence.

Here, we show that much of the discrepancy between the
experimental results and the theoretical ones is attributed
to decoherence. In our experiment, the major decoherence
is dephasing caused by the misalignment between BDs. To
simplify our estimation, we assume the dephasing rate η is
constant. The density matrix ρt evolves according to [13]

ρ
(1)
t+1 = SR

(
θ1

2

)
ρtR

†
(

θ1

2

)
S†,

ρ
(2)
t+1 = ηρ

(1)
t+1 + (1 − η)(1w ⊗ σz)ρ (1)

t+1(1w ⊗ σz)†,

ρ
(3)
t+1 = SR(θ2)ρ (2)

t+1R
†(θ2)S†,

ρ
(4)
t+1 = ηρ

(3)
t+1 + (1 − η)(1w ⊗ σz)ρ (3)

t+1(1w ⊗ σz)†,

ρt+1 = R

(
θ1

2

)
ρ

(4)
t+1R

(
θ1

2

)
. (10)

For seven-step quantum walks under U1, the effect of
dephasing on the polarizations of the photons gives rise to
the quantum-to-classical transition, and renders the probability
distribution of the walker Gaussian-like in the long-time limit.
In Fig. 5(c), we show the numerically simulated average chiral
displacement for seven-step quantum walks with different
dephasing rates, which qualitatively explains the small dis-
crepancy between the experimental results and the numerically
ones in Fig. 5(a).

V. TOPOLOGICAL EDGE STATES AND THEIR
ROBUSTNESS AGAINST DISORDER

To confirm the topological properties of the split-step
quantum walk, we create regions with distinct topological
invariants and probe the existence of edge states via localized
probability distribution at the boundaries between two regions.
The boundaries are created by making the coin parameters
spatially inhomogeneous, such as (θ l

1, θ
l
2) for the left region

x < 0 and (θr
1 , θ r

2 ) for the left region x � 0. These spatially
inhomogeneous coin rotations in our experiment are realized
via HWPs individually inserted in the special paths. To observe
edge states, we fix the coin parameters for the right region
(θr

1 , θ r
2 ) = (π/8, 3π/16), which belongs to the topological

phase with bulk topological invariants (ν0, νπ ) = (−1, 1)
[(ν1, ν2) = (0,−2)].

First, we choose the coin parameters for the left region
(θ l

1, θ
l
2) = (π/16, π/8), which belongs to the topological

phase with the same bulk topological invariants compared to
the right region. No edge state is expected, which is confirmed
by the experimental results. In Fig. 6(a), the distribution of the
quantum walk governed by U1 up to five steps shows ballistic
behavior and no localization is observed. We also show the
comparison of the measured and predicted probabilities after
the fifth step.

Second, we choose the coin parameters for the left region
(θ l

1, θ
l
2) = (−7π/16,−3π/8), which belongs to the topologi-

cal phase with the bulk topological invariants (ν0, νπ ) = (1, 1)
[(ν1, ν2) = (2, 0)]. As the topological invariants ν0 for the
left and right regions are different, we expect to observe the

)c()b()a(
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M
2/t
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FIG. 5. (a) Statistical moments M2(t )/t2 of the walker position distribution for the quantum walk governed by U1 with a fixed θ2 = π/4
and varying θ1 up to seven steps. Error bars are smaller than symbol size. (b) Theoretical predictions of M2(t )/t2 in the long-time limit (t = 51).
(c) Simulated M2(t )/t2 for the seven-step quantum walk under dephasing, for the protocol U1.
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FIG. 6. Experimental observation of topological edge states in
the inhomogeneous quantum walk governed by U1. (Left column)
The measured probability distributions with fixed coin parameters
for the right region (θr

1 , θ r
2 ) = (π/8, 3π/16) and varying those for

the left regions indicated by the symbols in the phase diagram, such
as (θ l

1, θ
l
2 ) = (π/16, π/8) (a), (θ l

1, θ
l
2) = (−7π/16,−3π/8) (b), and

(θ l
1 = −5π/8, θ l

2 = −9π/16) (c). (Right column) The comparison
between experimental results and theoretical predictions of the prob-
ability distribution of the quantum walk after the last step.

topological edge states near the boundary. In Fig. 6(b), a
localized distribution is shown and the probability of the walker
P (0) is clearly enhanced for each step up to seven steps, which
confirms the existence of the edge states.

Third, we choose the coin parameters for the left region
(θ l

1, θ
l
2) = (−5π/8,−9π/16), which belongs to the topolog-

ical phase with the bulk topological invariants (ν0, νπ ) =
(1,−1) [(ν1, ν2) = (0, 2)]. Both topological invariants are
different and thus edge states are also expected in this case,
which is confirmed by the experimental results shown in
Fig. 6(c).

A key feature of topologically nontrivial systems is the
robustness of topological properties against small perturba-
tions. We find that the edge states of the split-step quantum
walk here is robust against static disorders which is chiral
symmetry preserving. We keep the mean values of the coin
parameters (〈θr

1 〉, 〈θr
1 〉) = (π/8, 3π/16) and (〈θ l

1〉, 〈θ l
1〉) =

(−7π/16,−3π/8). We implement five-step quantum-walk
dynamics governed by the evolution operator U1 with 10

FIG. 7. Edge states are robust against static disorder to the
rotations R(〈θ1,2〉 + δθ ) and δθ ∈ [−π/20, π/20]. The measured
probability distribution of the quantum walk governed by U1 with
(〈θr

1 〉, 〈θr
1 〉) = (π/8, 3π/16) and (〈θ l

1〉, 〈θ l
1〉) = (−7π/16, −3π/8)

up to five steps.

randomly generated coin rotations R(〈θ1,2〉 + δθ ) for each
position. The time-independent δθ is unique for each posi-
tion and chosen from the intervals [−π/20, π/20]. In our
experiment, δθ is implemented by manipulating the setting
angles of HWPs by small random amounts δθ around the coin
parameters (θ1, θ2). We then calculate the mean values of the
10 sets of the probabilities of the walker. As shown in Fig. 7,
the probability distribution still shows localized behavior and
P (0) is obviously enhanced.

VI. DISCUSSION AND CONCLUSION

In summary, we experimentally investigate the topological
phenomena in one-dimensional discrete-time quantum walks
by directly measuring the average chiral displacement which
converges rapidly the winding number in the long-time limit.
Furthermore, we reveal topological quantum transitions via
measuring the moments of the walker probability distribution,
which are consistent with jumps in winding numbers. Finally,
we observe the localized edge states on the boundary of two
regions with different topological invariants and the robustness
of edge states against chiral-symmetry-preserving disorder.
Our work shed new light on studies of topological phenomena
and their simulations with proper physical systems. Due to
the full dynamic control of quantum walk dynamics, the
approaches would be applicable to investigate topological
phenomena with more complex symmetries or with a higher
dimensionality in the future.
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