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Laser cooling of atomic motion enables a wide variety of technological and scientific explorations using cold
atoms. Here we focus on the effect of laser cooling on the photons instead of on the atoms. Specifically, we
show that noninteracting photons can thermalize with the atoms to a grand canonical ensemble with a nonzero
chemical potential. This thermalization is accomplished via scattering of light between different optical modes,
mediated by the laser-cooling process. While optically thin modes lead to traditional laser cooling of the atoms,
the dynamics of multiple scattering in optically thick modes has been more challenging to describe. We find that
in an appropriate set of limits, multiple scattering leads to thermalization of the light with the atomic motion in a
manner that approximately conserves total photon number between the laser beams and optically thick modes. In
this regime, the subsystem corresponding to the thermalized modes is describable by a grand canonical ensemble
with a chemical potential nearly equal to the energy of a single laser photon. We consider realization of this
regime using two-level atoms in Doppler cooling, and find physically realistic conditions for rare-earth atoms.
With the addition of photon-photon interactions, this system could provide a platform for exploring many-body
physics.
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I. INTRODUCTION

The laser cooling and trapping of atoms [1–4] provides a
variety of powerful tools for exploring the physics of light
and matter [5–7]. While many discussions focus on the atomic
behavior, including the thermalization of the motion of a single
atom without collisions [1], curious possibilities regarding the
light have also emerged [8]. Simple questions, such as the
description of scattered light in optically thick atomic clouds,
remain incompletely explored. Another key question is how
modification of the photon density of states can change the
scattering process. For example, this enables novel regimes of
laser cooling in cavities [9–17], and, in interacting systems,
the observation of Bose-Einstein condensation (BEC) of light
in semiconductors [18–21] and molecular dyes [22–30]. In
those cases, the strength of incoherent pumping of excitations
determines the photon number and sets a nonzero chemical
potential for light [31,32]. By contrast, in traditional laser
cooling, we have a coherent, periodic drive oscillating at the
laser frequency. This scenario has been suggested in a general
setting as a possible regime of thermalization in a driven system
[33–35]—leading to a controllable chemical potential for light
[36]. This leads to the natural question of whether similar
phenomena can occur in optically thick, laser-cooled atomic
systems, where multiple scattering, or cavity confinement,
allows laser photons emitted from the atoms to continue to
interact with the atomic cloud and potentially thermalize.

Here we partially answer this question by exploring the
thermodynamic properties of the photons emitted in the
laser-cooling process in samples with at least one optically
thick axis, comprising many modes. We show that in this

driven-dissipative system the thermalization of these photons
arises directly from atomic laser cooling and they are described
by a detailed balance condition corresponding to a grand
canonical ensemble. These results apply even though the
photons are noninteracting, the atoms are noninteracting, and
neither is in thermal equilibrium with an external bath. As
an illustrative example, this approach allows thermalization of
cavity photons with a single atom trapped in an optical cavity.
The thermodynamic arguments presented in this work, which
are based on the microscopic theory of atom-light interactions,
do not rely on specific assumptions about the interaction
Hamiltonian or the photonic kinetic energy and, thus, apply
to a broad class of many-body photonic systems that can be
realized with ultracold atoms.

The laser-cooling configuration we focus on in this paper is
illustrated in Fig. 1(a). We consider two-level atoms interacting
with Doppler-cooling laser beams and two sets of photon
modes. One set represents a macroscopic collection of lossy
(optically thin), free-space modes and is associated with modes
that allow the atom to Doppler cool; we call these “bath”
modes. The photons in the other set of (optically thick) modes
are distinguished by the high probability that they will be
reabsorbed by the atomic cloud before being lost, either due
to intrinsic optical depth (OD) or the existence of a cavity [see
Fig. 1(a)]. As described above, we find that these high-OD
modes have intriguing thermodynamic properties, and we call
them “system” modes in what follows.

To study the emission and absorption of the system modes
during Doppler cooling, we use the quantum jump formalism
[37,38] but modify it to achieve self-consistent rates with
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FIG. 1. (a) Schematic of an ensemble of Doppler-cooled two-
level atoms interacting with long-lived cavity (system) photon modes
aq [blue (dark-gray) wavy arrows within the light-blue (light-gray)
region] and lossy (bath) photon modes bk [red (gray) wavy arrows].
Traditional laser cooling arises via loss into the bath modes, while
scattering into and out of the blue modes leads to our projected
regime of photon thermalization. (b), (c) The dominant atom-photon
scattering processes that lead to a grand canonical ensemble of system
photons. (b) The atom is excited by the laser field then emits a
system photon. (c) The atom absorbs a system photon then scatters
back into the laser field. Effective system plus pump photon number
conservation applies due to adiabatic elimination of the atomic excited
state and the rotating wave approximation. (d) Characterization of
system photon regimes for a single mode cavity with laser Rabi
frequency (�) and the laser detuning from the system photon energy
(h̄(ωL − ωq)) as parameters. At higher powers, photon generation can
exceed loss as per Eq. (1), leading to either gain [green (gray)] and
possibly lasing, or the formation of a grand canonical ensemble for
light [yellow (light gray)]. For low powers or large laser detunings
from the system photon, photon loss prevents detailed balance with
the atomic motion and only quasithermal light is expected [blue (dark
gray)]. In this diagram we use the physical parameters for the Yb
1S0 −3 P1 narrow cooling transition [39] with ωA/2π = 539 THz,
�/2π = 180 kHz, �̄L ≈ −157 �, and assume |kL − q| = √

2kL.

effective elimination of the bath modes. This allows us to treat
the Doppler-cooled atoms as a thermal bath. We then show
that the detailed balance condition for photon emission and
absorption of the system modes leads to a grand canonical en-
semble description of photons at equilibrium, with a chemical
potential nearly equal to the energy of a single laser photon.
We conclude by examining rare-earth atoms as a practical
two-level system that can laser cool even at high power. We
suggest that the rare-earth atoms provide a good platform for
realizing thermalization of light using this approach.

The structure of the paper is as follows: Section II gives
an overview of how photons thermalize in an optically thick
laser-cooled atomic ensemble using simple thermodynamic ar-
guments and contrast this thermalization mechanism with prior
work. Section III lays out a detailed theoretical formulation
of laser cooling with two sets of modes. Section IV presents
a self-consistent analysis of the steady-state distribution of
system photons, carefully treating the finite lifetime of the
atoms as well as possible photon loss mechanisms. Section V
characterizes the photon steady state by examining rare-earth
atoms as practical two-level atoms to realize the grand canon-
ical ensemble of photons. Section VI concludes by motivating
the potential theoretical and experimental extensions of our re-
sults, including Bose condensation of photons and interacting
photonic systems with ultracold atoms.

II. OVERVIEW OF THEORETICAL ANALYSIS

In the conventional theory of laser cooling the electromag-
netic field is treated as a Markovian bath, which neglects
the backaction of the laser-cooling process on the photonic
environment. This approximation becomes unjustified when
the emitted light from an atom has a high probability of
being rescattered by another atom. Such effects are known
to play an important role in laser cooling of high-optical-depth
atomic ensembles and are a key limitation in efforts to directly
laser cool atoms to quantum degeneracy [40]. This regime
is theoretically challenging because one has to solve self-
consistently for the evolution of the atoms and the rescattered
photons. However, the corresponding interplay between the
atom and photon dynamics is central to their thermalization.

To capture this essential physics we work in the low-
excitation limit, such that the nominal Rabi frequency of the
cooling laser (2�) can be treated perturbatively in �/|�L +
i�/2| for a laser detuning �L = ωL − ωA to an atomic tran-
sition with frequency ωA and linewidth �. In this regime,
photons from the cooling laser scatter from the atoms at the rate
�2�/(�2

L + �2/4). When the coupling of the system photons
to the atoms is much weaker than the overall coupling of
the bath photons to the atoms, this represents the dominant
dynamical process. This cools the atomic motion via loss
of photons emitted into bath modes, leading to a thermal
ensemble with a temperature set by the Doppler limit kBT =
h̄(�2

L + �2

4 )/2|�L|.
As the atoms approach the Doppler limit, there remains the

slower dynamics of the system photons. These photons can
undergo a variety of scattering processes, including absorption
of system photons and reemission into either bath modes or
the cooling laser mode, as well as absorption of cooling laser
photons and reemission into system modes. In general, the rate
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for each of these processes can vary widely depending on the
regime of operation, as discussed in Secs. III and IV. For large
detunings, however, (corresponding to the high-temperature
limit for the atoms) we can understand the steady-state distri-
bution of the system photons by appealing to thermodynamic
arguments based on detailed balance between the laser-cooled
atoms and the emitted system photons.

A. Photon thermalization with a nonzero chemical potential

In our hierarchy of bath and system modes, the rate of
the system scattering processes is small compared to the
overall bath photon-laser photon scattering rate which leads to
Doppler cooling of atoms. For a sufficiently high OD, at large
detuning and high power |�L| � � � �, the key processes
that determine the slow dynamics of the system photons are
the absorption of cooling laser photons and reemission into
system modes [Fig. 1(b)], and vice versa [Fig. 1(c)].

For a given system mode with label q and frequency ωq ,
these emission and absorption processes are associated with an
energy transfer of |h̄ωL − h̄ωq | between the atoms and system
photons. Furthermore, when these processes dominate over the
loss of the system photons (typically into bath modes), these
photons effectively equilibrate with the atoms. In this limit, the
atoms approach a thermal distribution with temperature T due
to the laser-cooling process, and we have the detailed balance
condition, (n̄q + 1)�+

q,L = n̄q�
−
q,L, which leads to

n̄q + 1

n̄q
= �−

q,L

�+
q,L

= eβh̄(ωq−ωL), (1)

where β−1 = kBT , n̄q is the mean photon number in mode
q, �+

q,L is the rate of absorption of laser photons and subse-
quent emission into the system modes, and �−

q,L is the rate
of absorption of system photons and subsequent emission
into the cooling laser mode. These scattering rates �±

q,L are
proportional to the population of the initial momentum states
of the atoms and therefore pick up the Boltzmann factor for
the atomic temperature. For ωq > ωL, we will have n̄q =

1
eβh̄(ωq −ωL)−1

, which corresponds to a bosonic grand canonical
distribution with the temperature of the atomic motion and
an effective chemical potential h̄ωL. Effectively, the system
photons have come to a thermal equilibrium with the atoms, but
in a frame rotating with the laser frequency so that the energy
of a laser photon plays the role of the chemical potential. This
detailed balance argument applies to interacting photons as
well [36].

A nonzero chemical potential for photons occurs because
these dominating processes conserve the total number of
system photons plus cooling laser photons. The system pho-
tons are thermalized through number exchange between laser
photons and system photons when scattered from ground-state
atoms. This implies that the cooling laser acts as a number
reservoir for the system photons, while the atoms play the
role of the energy reservoir in the grand canonical ensemble.
There are modifications to this picture, derived below, arising
from effects such as the finite lifetime of the system photons,
that lead to perturbative shifts in the effective temperature
and chemical potential. These corrections arise because the
underlying system is still a nonequilibrium, mesoscopic one.

We emphasize that this picture of a grand canonical ensemble
for system photons is distinct from the trivial effect whereby
the scattered light reflects the temperature of the atoms [41]. In
this case, the Gaussian spectrum of scattered light reflects the
Maxwell-Boltzmann distribution of the laser-cooled atoms, as
opposed to being in a Bose distribution, as we find here.

For ωq < ωL, in contrast to the case above, there is a
runaway process and we expect gain or lasing instead of an
equilibrium steady state since it is more probable to emit
photons into such system modes than absorb photons from
the mode. In an optically thick medium, the system photons
are diffusive and become trapped for a finite time related to
the OD; however, due to runaway processes the steady state
may become dominated by saturation effects, which we do
not account for in this work. Restricting the system photon
states to ωq > ωL by a cavity or other means will prevent
gain. For simplicity, we focus on the cavity model in the later
discussions.

Reaching the regime where we can safely neglect the loss
of the system photons, due to scattering into bath modes or
other decay mechanisms, requires a careful consideration of
those other, lossy, emission and absorption processes that occur
during the laser-cooling dynamics. The above arguments based
on detailed balance require energy conservation during the
microscopic energy transfer process between atoms and system
photons, while the finite lifetime of the atomic ground state
due to the Doppler-cooling process potentially violates this
condition. To incorporate the mechanisms leading to Doppler
cooling, with the mechanisms leading to detailed balance, we
develop a theoretical tool called the self-consistent Fermi’s
golden rule (SC-FGR). Under the framework of SC-FGR, we
can treat Doppler cooling of atoms, all emission and absorption
processes of system photons, and the loss mechanisms in a
self-consistent manner as described in the following sections.
We find that the finite lifetime of the dressed atomic ground
state due to Doppler cooling, a necessary ingredient for atomic
thermalization, modifies the simple detailed balance argument
presented above. Specifically, at high detuning and high laser
power, where the atomic temperature is far from the Doppler
limit, we see grand canonical ensemble (GCE) and other
behavior, as summarized in the phase diagram of Fig. 1(d).

B. Comparison to previous work

It is helpful to contrast the results of this paper with previous
work on photon thermalization with a nonzero chemical
potential, which has a long history. Such work can be broadly
classified into two categories that rely (i) on interactions
between light and matter where the matter is in thermal
equilibrium with an external reservoir, or (ii) multiple photon-
photon collisions mediated by matter. The former includes
the earliest theoretical proposal of photon BEC in a plasma
[42], photon thermalization and condensation in a dye-filled
microcavity [22,23,26,31,43], as well as recent proposals in
quantum optomechanics [25,44]; the latter includes photon
BEC through photon-photon scattering in a nonlinear resonator
[45] and BEC of exciton polaritons [18–20] and stationary-
light polaritons [21]. Our approach has the most in common
with (i), however, it falls outside this category because the bath
for the photons (i.e., the atoms) is not in thermal equilibrium
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with an external reservoir but rather driven to a nonequilibrium
steady state with a thermal description. In optically thick
atomic media, the dynamics of the system photons, which
are generated during the laser-cooling process, must then be
treated self-consistently with the equilibration dynamics of the
atoms.

A related class of studies is concerned with characterizing
the nonequilibrium steady state of driven-dissipative photonic
systems [46–51]. In many instances, these systems are driven
towards an effectively thermal state at long times. How-
ever, statistical mechanical arguments do not guarantee such
emergence of one of the standard thermodynamic ensembles,
making the results dependent on underlying assumptions about
the system. In cases where universal results can be obtained
using the renormalization group [48–51], the thermal behavior
is only guaranteed to apply at long-time and long-wavelength
scales. Although the analysis from these studies does not apply
to our system, we find a similar conclusion that, under a broad
range of conditions, laser cooling in optically thick media acts
as an effectively thermal driven-dissipative system. This result
is surprising in the context of laser cooling because one might
expect that multiple scattering in such driven optically thick
atomic media leads to complicated many-body effects and
nonthermal steady states [52–55].

III. LASER COOLING WITH OPTICALLY THICK
AND THIN MODES

Here we study light scattering in dilute, optically thick
atomic gases and neglect radiative dipole-dipole interactions
between atoms. The Hamiltonian for a two-level atom inter-
acting with a single laser and two sets of photonic modes HS ,
HB is

H = HS + HB + HAS + HAB + HAL(t) + HA, (2)

HA = p2

2m
+ h̄ωA|e〉〈e|, (3)

HS =
∑

q

h̄ωqa
†
qaq, HB =

∑
k

h̄ωkb
†
kbk, (4)

HAS = −
∑

q

h̄αqaqe
iq·r |e〉〈g| + H.c., (5)

HAB = −
∑

k

h̄βkbke
ik·r |e〉〈g| + H.c., (6)

HAL(t) = −h̄�e−iωLt eikL·r |e〉〈g| + H.c. (7)

Here HA is the Hamiltonian of a two-level atom, and m, p,
r , ωA are the mass, momentum, position, and the transition
frequency of the atom; HS describes long-lived system photon
modes of interest associated with bosonic annihilation opera-
tors aq and energies h̄ωq ; HB describes lossy bath modes with
bosonic annihilation operators bk and energies h̄ωk; HAS , HAB ,
and HAL(t) represent atom-system photon, atom-bath photon,
and atom-laser interactions. Throughout the text q is the wave
vector for system photons and k labels bath photons. 2αq

and 2βk are the single-photon Rabi frequencies of the system
photons and bath photons. Note that all coupling frequencies
αq , βk, and � are assumed to be real and are defined as a

half of the usual Rabi frequencies to absorb the 1/2 factor for
notational simplicity.

In what follows we separate the system and bath modes
by including cavity end mirrors and assume that the intrinsic
optical depth of the atomic cloud is much smaller than 1, while
the effective optical depth after including the cavity is greater
than 1, so that the system photonic modes are now cavity
modes. For simplicity, we make a plane-wave approximation
for the cavity modes so that Eq. (5) still holds. In principle,
our general concept of thermalizing system photons via laser
cooling may also be realized in a cavity-free setting.

To obtain an effective Hamiltonian and the corresponding
master equation describing the evolution of the atom and the
system modes aq , we first integrate out the lossy bath modes
bk in the weak excitation limit � � |�L + i�/2|. According
to Fermi’s golden rule and momentum conservation, the
spontaneous emission rate from the atomic excited state with
momentum p due to all bath modes bk is

�b( p) = 2π

h̄

∑
k

|h̄βk|2δ(�Eeg(k, p)) ≈ �b(0) ≡ �b, (8)

with the energy difference between the initial excited and final
ground states defined as

�Eeg(k, p) = p2

2m
+ h̄ωA − | p − h̄k|2

2m
− h̄ωk. (9)

The effect of atomic motion on the total decay rate is negligible,
assuming the atomic transition energy h̄ωA is much larger than
the Doppler shift and the recoil energy.

Similarly, the total spontaneous emission rate from the
atomic excited state with p due to system modes aq is

�a( p) = 2π

h̄

∑
q

|h̄αq |2h̄κq

�Eeg(q, p)2 + h̄2κ2
q/4

≈ �a(0) ≡ �a.

(10)

Here κq is the cavity decay linewidth of the system photons
aq . Note that the overall approach here can also apply to
the case without a cavity by replacing the Lorentzian factor
in Eq. (10) with a Dirac δ function. We work in the limit
�b � �a so that the spontaneous emission rate into bath modes
is approximately the atomic natural linewidth of the atom,
�b ≈ �.

Scattering between atomic ground states with different
momenta is induced by the laser and the photon modes.
Working in the weak excitation limit, we calculate the tran-
sition rates with time-dependent perturbation theory to the
lowest order in �

�L+i�/2 [56]. The relevant processes are
illustrated diagrammatically in Fig. 2. For example, Fig. 2(b)
represents the coupling from an initial ground-state atom in
momentum state p, |g, p〉, to the new momentum state p +
h̄kL − h̄k, |g, p + h̄kL − h̄k〉, with an additional emission of
a bath photon with momentum h̄k into the bk modes. Using
second-order time-dependent perturbation theory, represented
diagrammatically in Fig. 2(b), we get an effective coupling
between atomic motional ground states with momentum p and
p + h̄kL − h̄k as

Rk( p) = �βk

ωL − ωA − p·kL

m
− Er (kL)

h̄
+ i �

2

. (11)

013834-4



PHOTON THERMALIZATION VIA LASER COOLING OF ATOMS PHYSICAL REVIEW A 98, 013834 (2018)

=
p p p+

p

p + kL − q

p

Ω

p + kL

kL

p − k

βq
q

p

Ω
p + kL

kL

p + kL − k

Rk(p) R+
q (p)

p

Ω
kL

p + q − kL

p + q

βq
q

R−
q (p)

k

αkαk

αk
k

FIG. 2. Diagrams for laser-induced scattering between atomic
ground states with different momenta to lowest order in �.
(a) The dressed atomic excited-state propagator (double dashed line)
is defined by including nonperturbative effects due to the coupling
to the bath photon modes bk [red (gray) wavy arrow] and neglecting
the effect of the system photons assuming �b ≈ � � �a . (b) The
diagrammatic representation of the scattering amplitude of a ground-
state atom (solid black line) from an initial momentum state p to a
final state p + h̄kL − h̄k by absorbing a pump photon [green (gray)
straight arrow] and emitting a bath photon. This process is associated
with an effective coupling Rk( p) between momentum states |g, p〉
and |g, p + h̄kL − h̄k〉. (c) The scattering amplitude from |g, p〉 to
|g, p + h̄kL − h̄q〉 by absorbing a pump photon and emitting a system
photon aq [blue (dark-gray) wavy arrow], associated with a coupling
R+

q ( p). (d) The scattering amplitude from |g, p〉 to |g, p + h̄q − h̄kL〉
by absorbing a system photon aq and emitting a pump photon,
associated with a coupling R−

q ( p). Not shown is the process in which
a system photon is rescattered to a bath photon, which is treated in
Fig. 4.

Note that the term − p·kL

m
= −v · kL is the Doppler shift of the

laser frequency as seen by the moving atom. The photon recoil
energy, defined as

Er (kL) = h̄2k2
L

2m
, (12)

also shifts the laser frequency by an additional amount h̄k2
L

2m
.

Assuming the magnitude of the atom-bath photon coupling
constants βk are insensitive to the photon energy over the
atomic linewidth, we calculate the total dissipation rate for
an atom with momentum p due to laser-bath scattering using
Fermi’s golden rule. Diagrammatically this is equivalent to
summing over the bath output states in Fig. 2(b) labeled by

h̄k,

γ ( p) = 2π

h̄

∑
k

|h̄Rk( p)|2δ(�Egg(k, p))

≈ �2�(
�̄L − p·kL

m

)2 + �2

4

, (13)

with the ground-to-ground energy difference defined as

�Egg(k, p) = p2

2m
+ h̄ωL − | p + h̄kL − h̄k|2

2m
− h̄ωk,

(14)

where �̄L = ωL − ωA − Er (kL)/h̄ is the shifted detuning of
the laser, including the recoil shift from the bare detuning
�L. This momentum-dependent dissipation rate can lead to
Doppler cooling of the atomic motions for �L < 0 [1,57]. In
Appendix A, we recover the results of the standard Doppler
cooling theory applied to our two-mode (system and bath) con-
figuration. More generally, when the Doppler-cooled atomic
ensemble can be treated as a thermal bath for the system pho-
tons, the parametric (laser-induced) coupling between atomic
motion and the system photons will bring the system photons
to an equilibrium state describable using a grand canonical
ensemble, leading to an effective nonzero chemical potential
set by the pump frequency μ = h̄ωL [36].

The system photons also give rise to an effective coupling
between atomic ground states |g, p〉 and |g, p + h̄kL − h̄q〉,
which to lowest order in �

�L+i�
[see Fig. 2(c)] is

R+
q ( p) = αq�

�̄L − p·kL

m
+ i �

2

. (15)

In contrast to the bath modes, the system modes have high
effective optical depth, and we must also take into account
the reverse process of first absorbing a system photon and
reemitting into the laser-cooling field. This gives rise to the
effective coupling between atomic states |g, p〉 and |g, p +
h̄q − h̄kL〉 [Fig. 2(d)],

R−
q ( p) = αq�

�̄q − p·q
m

+ i �
2

, (16)

where �̄q = ωq − ωA − h̄q2/2m = �q − Er (q)/h̄ is the
shifted detuning of the system photon, including the recoil
shift. The combined effects of these momentum-changing
transitions lead to broadening of the motional eigenstates of
the atom.

To determine the transition rates leading to the detailed
balance condition for the system photons, we require a similar
sum over the outgoing states as in Eq. (13). If we can account
for all the relevant processes—including the one not shown
in Fig. 2 in which a system photon is rescattered into a bath
mode—we would have a complete description of the master
equation for the system modes. However, as we discuss in
the next section, this requires a self-consistent treatment of the
atomic-ground-state scattering to account for the broadening of
the ground-state energies due to the Doppler-cooling process.
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IV. SELF-CONSISTENT CALCULATION
OF TRANSITION RATES

To fully account for the finite lifetime of the motional
eigenstates of the atoms in their electronic ground states
due to laser-cooling-induced transitions, here we develop a
formulation of FGR we call the self-consistent Fermi’s golden
rule [58,59], in which the effect of the rapid dissipation is
treated self-consistently. As shown below, this leads to a
replacement of the δ function in the usual sum over atomic
states with an energy-broadened approximate δ function. This
allows us to evaluate the rates for system photon emission and
absorption, leading to a simple set of rate equations for system
modes tracing over the atomic motion. Our SC-FGR approach
yields a key result: For experimentally accessible parameters,
the atomic temperature must be significantly higher than the
Doppler cooling limit for our theory to apply.

The general concept of SC-FGR can be understood through
an example illustrated in Fig. 3. As seen diagrammatically in
Fig. 3(a), the ground-state propagator for the atoms becomes
dressed with the excited state due to the presence of the Doppler
cooling laser field. Solving this equation self-consistently, we
find that the dressed propagator for the ground-state atoms is
approximately

i

ω − p2/2mh̄ + iγ ( p)/2
= πδγ ( p)(ω − p2/2mh̄) + iP.V.,

(17)

where δε(ω) = ε/2π

ω2+ε2/4 is a broadened δ function for ω with
width ε and P.V. corresponds to the principal value in the limit
γ ( p) → 0. When the broadening is neglected we recover the
usual FGR transition rate shown in Fig. 3(b). In comparison,
for our SC-FGR calculation [Fig. 3(c)] we replace the atomic-
ground-state propagators with dressed ones. This way, we
evaluate the system photon emission process over a finite time
before the atoms are reset by the emission process (quantum

= +
Ω

kL

ppp

Ω
kL

pp + kL

Ω
kL βq

p + kLp p + kL − q

q
Ω

kL

p + kLp

βq

q

p + kL − q

FIG. 3. Diagrammatic comparison between Fermi’s golden rule
and self-consistent Fermi’s golden rule. (a) The dressed state picture
of the atomic-ground-state propagator (double black line) is defined
by including nonperturbative effects due to the ground-state scattering
induced by laser. The double dashed line is the atomic excited-state
propagator dressed by the bath modes bk as shown in Fig. 2(a). (b) For
reference, we give the diagrammatic representation of the (regular)
Fermi’s golden rule scattering amplitude that involves a system photon
aq emission, using the dressed excited-state propagators which leads
to a standard FGR result. (c) The diagrammatic representation of the
self-consistent Fermi’s golden rule scattering amplitude, in which we
also replace the atomic-ground-state propagators with dressed ones to
account for the finite lifetime of the original and final atomic motional
states set by rapid emission processes into bath modes.

jump) into bath modes, which leads to a broadening of the
δ function that arises in the standard FGR, as detailed in
Appendix B. The treatment of such a lifetime broadening effect
is crucial since the detailed balance equilibration to a grand
canonical ensemble of photons relies upon energy-conserving
transitions between system modes and their (parametrically)
coupled bath–atomic motion, in our case.

In the next two sections, we use the SC-FGR to derive the
system photon emission rate, the system photon absorption rate
mediated by the laser, and the system photon loss rate due to
scattering into bath modes. We find that the system photons
follow a grand canonical distribution when the photon losses
due to scattering into bath modes or from the cavity mirror
are negligible, and the SC-FGR analysis sets an additional
high-temperature requirement on the atomic motion: kBT �
h̄�/2. For a reader interested in the microscopic details, in
Appendix B we give an alternative derivation of the SC-
FGR using the quantum jump picture, which agrees with this
diagrammatic analysis.

A. Photon equilibration mediated by dressed atoms

Our analysis makes use of a Born approximation, which
assumes that the atomic momentum thermalizes (due to laser
cooling) after each emission or absorption event of system
photons as shown in Appendix A, leading to no correlations
between the motional distribution and the system photons.
Thus we take the steady-state motional distribution to be

�( p)d3 p =
(

β

2πm

) 3
2

e−β| p|2/2md3 p (18)

with a temperature kBT ≈ h̄
2

�̄2
L+�2/4
|�̄L| set by laser cooling. In

this approximation we can use Eq. (18) to integrate over the
atomic motion, and get an average rate for the thermalization of
system photons. We first focus on the two processes involving
system photon-laser photon scattering [see Figs. 1(b)–1(c)
and Figs. 4(b)–4(c)]. This steady-state distribution of the
atoms effectively averages out the phase factor ei(kL−q)·r in the

(a)

(d)

p

βq

q

p + q p + q − k

(c)

Ω
kL

p

βq

q

p + q
p + q − kL

(b)

Ω
kL

p + kLp

βq

q

p + kL − q

Ω
kL

p + kLp p + kL − k

αk
k

αk
k

FIG. 4. The diagrammatic representation of the scattering ampli-
tude for four possible processes associated with transitions out of
the initial state |g, p〉 into final atomic states with a change in the
ground-state momentum. (a) Scattering process that absorbs a laser
photon and spontaneously decays into the bath modes. (b) Scattering
process that absorbs a laser photon and emits a system photon.
(c) Scattering process that absorbs a system photon and scatters back
into the laser mode. (d) Scattering process that absorbs a system
photon and scatters into the bath modes.

013834-6



PHOTON THERMALIZATION VIA LASER COOLING OF ATOMS PHYSICAL REVIEW A 98, 013834 (2018)

atom-light coupling VASL(t) (see Appendixes A and B). As a
result, we can neglect coherent driving of the system photons,
and the steady-state density matrix of the system photons is
diagonal in the photon number basis. The long-time dynamics
is then governed by incoherent transitions between photon
number sectors with rates computed below.

According to the SC-FGR and after integrating over the
atomic momentum, the total rate to emit a system photon is
given by |〈nq + 1|a†

q |nq〉|2�+
q = (nq + 1)�+

q , with a laser-
mediated single-photon emission rate given by the SC-FGR
formula:

�+
q,L =

∫
d3 p�( p)|R+

q ( p)|2δγ ( p)+γ ( p+kL−q)(�Egg(q, p)).

(19)

The decay rates of the initial and final momentum states are
summed together in the broadened δ function because we
evaluate the propagator in Eq. (17) at the on-shell energy
of the intermediate state, which includes the decay rate. By
analogy to Eq. (13), we refer to Eq. (19) as an example of
self-consistent Fermi’s golden rule because of the appearance
of the decay-broadened δ function δγ ( p)+γ ( p+kL−q).

To evaluate Eq. (19), we will use the high-temperature
approximation discussed in Sec. II. The primary reason we
introduced the SC-FGR is to quantitatively determine the
regime of validity of this approximation. In particular, we find
the condition

γ ( p) �
√

kBT

m
|kL − q|, (20)

for which the decay-broadened δ function in Eq. (19) can be
approximated by a true δ function since the integral over atomic
momentum is much wider in energy than the decay broadening.
More intuitively, this high-temperature limit can be interpreted
as the condition that the momentum transfer to the atom
is well defined, which requires that the Doppler broadening
vthδq associated with the thermal velocity vth = √

kBT /m and
atomic momentum transfer δq = |kL − q| is much greater than
the motional decay rate of the ground states γ ( p). With the
additional approximation γ ( p) � � we find

�+
q,L ≈

√
2πβm�2|αq |2e−βp2

0/2m

|kL − q|[(�̄L − p0 n̂·kL

m

)2 + �2

4

] , (21)

where p0 is the magnitude of atomic momentum, satisfying
the energy conservation condition

p0|kL − q|
m

+ h̄(kL − q)2

2m
+ ωq − ωL = 0 (22)

[the δ-function argument in Eq. (19)] and n̂ = kL−q
|kL−q| is the

unit vector along the change between the initial and final
momentum.

Similarly, one can find the total rate to absorb a system
photon through the process that a system photon is first
absorbed by the atom and then scattered back into the laser
field [Fig. 4(c)], nq�

−
q,L, with a laser-mediated single-photon

absorption rate in the high-temperature limit given by

�−
q,L ≈

√
2πβm�2|αq |2e−βp0

′2/2m

|kL − q|[(�̄q − p0
′ n̂·q
m

)2 + �2

4

] . (23)

Here p0
′ is the magnitude of the atomic momentum satisfying

the energy conservation condition

p0
′|kL − q|

m
− h̄(kL − q)2

2m
+ ωq − ωL = 0. (24)

If we consider the equilibration between these two processes
only, the detailed balance condition reproduces the result of
Eq. (1), which we motivated in Sec. II:

n̄q + 1

n̄q
= �−

q,L

�+
q,L

= e−β
p0

′2
2m

e−β
p2

0
2m

= e−β
p0

′2−p2
0

2m = eβh̄(ωq−ωL). (25)

Here we have applied the equalities p0
′2

2m
− p2

0
2m

= h̄ωL − h̄ωq

and �̄q − p0
′ n̂·q
m

= �̄L − p0 n̂·kL

m
. For ωq > ωL, we will have

n̄q = 1
eβh̄(ωq −ωL)−1

, which corresponds to a Bose grand canonical
distribution with temperature β and an effective chemical
potential h̄ωL. For ωq < ωL, Eq. (25) suggests the onset of
gain—higher photon numbers become ever more probable. A
full treatment of that regime is beyond the present work. How-
ever, the use of a cavity can modify the system photon density
of states to prevent gain from contributing to the dynamics (e.g.,
by setting the relevant cavity resonant frequencies higher than
the laser frequency). As shown in Fig. 1(d) and below, once
loss is properly taken into account, there is only a finite range
of frequencies where the gain exceeds the loss.

B. Accounting for additional photon loss mechanisms

The detailed balance condition we found in Eq. (25) will
be modified by system photon loss associated with scattering
into the bath modes [Fig. 4(d)] or via the cavity mirrors.
Considering first the loss into bath modes using SC-FGR, we
find the overall scattering rate nq�

−
q,B in the high-temperature

approximation, and neglecting the Doppler shift relative to the
detuning �̄q ,

�−
q,B ≡

∫
d3 p

�( p)|αq |2�(
�̄q − p·q

m

)2 + �2

4

≈ |αq |2�
�̄2

q + �2

4

. (26)

Neglecting the Doppler shift in �−
q,L, we find the modified

detailed balance condition

n̄q + 1

n̄q
= �−

q,L + �−
q,B

�+
q,L

≈ eβh̄(ωq−ωL) + �|kL − q|
�2

√
2πβm

e
β

2m
(− m(ωq −ωL)

|kL−q| − h̄|kL−q|
2 )2

. (27)

If the scattering loss rate is small, �−
q,B � �−

q,L, one can treat
the effect of loss as a small correction to Eq. (1) and identify
an effective temperature for the cavity mode kBTeff = β−1

eff and
an observed shift to the chemical potential δμ according to the
modified condition Eq. (27):

βeff (h̄ωq − h̄ωL + δμ) = ln
( n̄q + 1

n̄q

)
. (28)

Here the observed shift in the chemical potential δμ, typically
much smaller than the atomic temperature, is formally defined
such that h̄ωq = h̄ωL − δμ is the transition frequency from

013834-7



WANG, GULLANS, PORTO, PHILLIPS, AND TAYLOR PHYSICAL REVIEW A 98, 013834 (2018)

equilibrium to gain,

n̄q + 1

n̄q
= 1 = e−βδμ + �|kL − q|

�2
√

2πβm
e

β

2m
( mδμ

h̄|kL−q| −
h̄|kL−q|

2 )2

, (29)

where δμ and βeff can potentially depend on q. In Sec. V, we
determine the conditions under which this q dependence can
be neglected, in which case a single temperature and chemical
potential [yellow region in Fig. 1(d)] describe the relevant
system modes over a wide range of frequencies.

To aid concreteness in the remaining discussion, we focus
on a Fabry-Perot cavity design as illustrated in Fig. 1(a). In
the regime of interest, the dependence of q on ωq is weak
enough to neglect, and the only q dependence that remains is
in its angle relative to kL. For a Fabry-Perot cavity, the system
modes are nearly colinear and the angle dependence of δμ and
βeff can also be neglected. Equation (29) does not always have
solutions; for a given q direction, there is a critical laser Rabi
frequency �c below which there are no solutions. This value
determines the minimum power required to observe grand
canonical ensemble behavior with a well-defined chemical
potential, setting the bottom of the gain region in Fig. 1(d).
Above this critical power, there are always two solutions, which
determine the left and right boundaries of the gain region in
Fig. 1(d). Finally, we use the left boundary as the definition
of δμ.

To thermalize close to a GCE with βeff ≈ β, we require
the coefficient of the second term in Eq. (29) to be much less
than 1. This is equivalent to the condition �−

q,B � �−
q,L, which

requires √
kBT

m
|kL − q| � �2

�
. (30)

The high-temperature limit has already set a constraint on
the left-hand side of this equation. Combining the inequality
Eq. (30) with the high-temperature limit Eq. (20), using
the explicit form of γ (q) Eq. (13) and the approximation
|kL − q| ≈ |kL|√2(1 − cos θ ), the condition for the system
photon to thermalize close to a grand canonical ensemble is

�4(
�̄2

L + �2

4

)2 � �2
(
�̄2

L + �2

4

)
Er (kL)

�4|�̄L|h̄ (1 − cos θ ) � 1. (31)

The above inequalities can be satisfied in the low-excitation
limit with

� � � � |�̄L|, (32)

with a finite angle θ , and assuming Er (kL)/h̄ � � as one
typically finds for laser-cooling transitions. This condition can
be understood intuitively: In order for the laser-photon-system
photon scattering rate to dominate over the system photon
scattering loss, one needs to increase the pump intensity
until � � �; a large detuning � � |�̄L| is then required to
stay in the low-excitation limit, leading to a higher atomic
temperature than the standard detuning case with �̄L ≈ −�/2.
For strong pump intensity, � > |�̄L|,�, we would need to
revisit the problem nonperturbatively in �/|�̄L + i�|, which
may remove this high-temperature tradeoff.

To account for a finite cavity loss κq , the detailed balance
condition is furthered modified as

n̄q + 1

n̄q
= �−

q,L + �−
q,B + κq

�+
q,L

. (33)

The cavity loss will increase the critical laser Rabi frequency
�c and further modify the observed shift in chemical potential
δμ and the effective temperature Teff . A cavity with small
enough linewidth, i.e., with cavity loss rate much slower
than the system photon emission and absorption rates, is
thus also required to achieve a grand canonical distribution
of system photons. In practice, one can increase the optical
depth by adding more atoms into the ensemble to overcome
the contribution from cavity loss since it is independent of the
number of atoms. We neglect the cavity loss in our calculations
for Fig. 1(d) and the next section.

V. REALIZING THE GRAND CANONICAL
ENSEMBLE LIMIT

We now numerically study the results of the modified
detailed balance equation [Eq. (27)] to verify our previous
analysis and characterize in which regimes the photon steady
state is described by a single temperature and chemical po-
tential. The equilibrium system photon occupation number for
several conditions is shown in Fig. 5(a). In the standard Doppler
cooling case, �̄L � −�/2, the mean system photon number is
always small due to the rapid scattering of system photons into
bath modes, and the grand-canonical-like distribution cannot
be achieved, as suggested in Sec. IV B. [See the dashed line in
Fig. 5(a).]

On the other hand, in the large detuning regime, the photon
occupation number at negative cavity detuning may approach
the distribution for an ideal grand canonical ensemble, as
described in Eq. (1). This occurs for a laser Rabi frequency
larger than the critical value �c [blue and orange curves in
Fig. 5(a)] in the negative detuning regime. We remark that the
chemical potential is shifted from the laser frequency slightly
by an amount δμ, as discussed in Sec. IV B. An example
plot δμ as a function of � is shown in Fig. 5(b), where
the critical end point at �c is indicated as a dot. When the
chemical potential exceeds the single-photon energy, gain is
expected, leading to diverging photon numbers as seen in
Fig. 5(a), which defines the green region in Fig. 1(d). By
further increasing the laser frequency beyond the gain region
to positive cavity detuning, the photon occupation number
becomes finite again, indicating quasithermal behavior distinct
from the grand canonical description. For laser intensity less
than the critical value [green and red curves in Fig. 5(a)], the
photon occupation number never diverges and there is gain-free
region.

In the large detuning regime, we characterize the steady-
state behavior of system photons as a function of laser fre-
quency and intensity by quantifying the degree to which Teff

is independent of q. For a reference temperature we use the
value of the effective temperature at the equilibrium-to-gain
transition (To), defined as Teff when ωq = ωL − δμ/h̄, which
is shown in Fig. 5(c) as a function of the laser intensity.
Above �c, To quickly approaches the atomic temperature. The
calculated ratio Teff/To as a function of mode frequency and
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Teff

To

FIG. 5. Grand canonical ensemble realization for a tunable-
frequency single-mode cavity with a Yb gas. (a) Equilibrium system
photon occupation number (n̄q) as a function of the laser detuning
from the system photon frequency (ωL − ωq). The ideal grand
canonical ensemble result is plotted as the dotted black line, the
standard detuning with �̄L ≈ − �

2 and � = 0.15� is shown as the
purple dashed line, and for large detuning with �̄L ≈ −157� and
varying � are shown with colored solid lines. (b) The observed shift
in the equilibrium-to-gain chemical potential (δμ) as a function of the
laser intensity (�) with �̄L ≈ −157�. (c) The effective temperature
at the equilibrium-to-gain transition (To) as a function of the laser
intensity (�) with �̄L ≈ −157�. (d) The ratio between the effective
temperature Teff and To as a function of the shifted laser detuning
from the system photon frequency (ωL − ωq − δμ/h̄) and the laser
intensity (�) with �̄L ≈ −157�. The y axis has a lower cutoff
�c/|�̄L| = 0.045 76, which also corresponds to the end point (dot)
in Figs. 5(b)–5(c). In these plots we assume |kL − q| ≈ √

2|kL| and
take the parameters for the Yb intercombination transition to 3P1,
ωA/2π = 539 THz, �/2π = 180 kHz, Er,kL

/h = 3.74 kHz.

laser intensity is shown in Fig. 5(d). This ratio quantifies the
degree to which the system photons can be well characterized
by a single chemical potential and temperature, with a ratio of
1 over a large range of q indicating perfect thermalization. We
choose the yellow region in Fig. 5(d)—identified as the grand
canonical ensemble (GCE) region in Fig. 1(d) as well—by
defining the condition that −1/2 � log10 ( Teff

To
) � 0. Outside

the gain and GCE region, i.e., at low laser powers or large
detunings, photon loss prevents detailed balance with the

atomic motion, and only quasithermal light is expected [blue
region in Fig. 1(d)].

VI. OUTLOOK

We have identified an application of Doppler cooling of
atoms by considering the steady state of the reemitted light
and showed this light can be described as a grand canonical
ensemble with a laser-controlled chemical potential and a tem-
perature set by the atomic motional temperature. Our analysis
offers a framework to study the behavior of optically thick
ensembles. Looking forward, the simplicity of our approach—
using an ensemble of two-level atoms contained within an
optical cavity and maintaining a balance between optical
depth and transparency—will admit a variety of extensions
and expansions. For example, we can examine sub-Doppler
regimes, cavity-assisted cooling, and related phenomena. An
immediate consequence of this paper is that Bose condensation
of noninteracting photons via laser cooling of atoms inside
a multimode cavity should be possible; we defer the details
of this for a later work. With a fully microscopic treatment
and thermodynamic detailed balance arguments, our approach
can be directly applied to more exotic interacting photonic
systems [36]. For example, adding synthetic gauge fields to
the problem would map the cavity system to an interacting
quantum Hall system. Another promising future direction
will be studying Rydberg-polariton thermalization with laser-
cooled Rydberg atoms working in the electromagnetically
induced transparency (EIT) regime. This may provide a cavity-
free setting for observing equilibrium behavior of interacting
photons, where intriguing many-body phenomena can arise.
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APPENDIX A: THE MASTER EQUATION

The rapid decay of the lossy bath modes bk leads to
dissipative effects for the atoms (e.g., excited-state decay) and
the system photons aq (via scattering into bath modes). We
describe the resulting dissipative dynamics with a Lindblad-
form master equation. Each Lindblad-form damping term has
a jump operator ĉj and an associated rate rj . Formally, the
master equation for a density matrix ρT describing the atoms
and the system photons is [38]

dρT

dt
= 1

ih̄
(HeffρT − ρTH

†
eff ) +

∑
j

rj ĉj ρTĉ
†
j ,

Heff = HT − ih̄
∑

j

rj

2
ĉ
†
j ĉj , (A1)

where HT is the combined system and atom Hamiltonian.
We now identify the jump operators and corresponding rates

for atomic states due to bath modes based on the above analysis.
Due to spontaneous decay into bath modes, for each bath mode
bk we have an excited-state jump operator ĉe

k with a jump
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rate re
k:

ĉe
k = e−ik·r |g〉〈e|, re

k( p) = 2π

h̄
|h̄βk|2δ(�Eeg(k, p)). (A2)

The sum of all jump rates leads to an overall decay rate of
the excited state,

∑
k re

k = �, as expected. The second-order
transitions due to laser-bath scattering with modes bk will also
lead to ground state–ground state jump operators ĉ

g

k and jump
rates r

g

k ,

ĉ
g

k = ei(kL−k)·r |g〉〈g|, r
g

k ( p) = 2π

h̄
|h̄Rk( p)|2δ(�Egg(k, p)),

(A3)

where Rk( p) is given by Eq. (11). The sum of all jump rates
leads to a laser-induced decay of the atomic ground state,∑

k r
g

k ( p) = γ ( p). Note that the ground-state decay rate is
momentum dependent. The overall effect of the cavity decay
of the system photons can be described as jump operators
ĉq = aq , and jump rates κq .

When applying the ground-state jump operators and rates,
the lowest order effect in � of the bath modes bk has been
included. To treat the overall problem consistently, we have to
express the Hamiltonian to the lowest order in � for the system
modes aq as well. Specifically, we have

VASL(t) = −
∑

q

a†
qe

−iωLt ei(kL−q)·r h̄R+
q ( p)|g〉〈g|

−
∑

q

aqe
iωLt e−i(kL−q)·r h̄R−

q ( p)|g〉〈g|, (A4)

where R+
q ( p) and R−

q ( p) are given by Eqs. (15) and (16).
We can then write down the effective Hamiltonian after

integrating out the lossy bath modes bk as

Heff = h̄

(
ωA − i

�

2

)
|e〉〈e| + p2

2m
− ih̄γ ( p)

2
|g〉〈g|

+
∑

q

h̄
(
ωq − i

κq

2

)
a†

qaq

−
∑

q

h̄αq
(
aqe

iq·r |e〉〈g| + |g〉〈e|a†
qe

−iq·r)

−
∑

q

a†
qe

−iωLt ei(kL−q)·r h̄R+
q ( p)|g〉〈g|

−
∑

q

aqe
iωLt e−i(kL−q)·r h̄R−

q ( p)|g〉〈g|. (A5)

From the VASL(t) term in the effective Hamiltonian, we see
explicitly that the laser mediates time-dependent (parametric)
coupling between the system photons and the atomic ground
state. We will study how the atomic motional state evolves later
in this section, which determines the dynamics of the bath. In
Appendix B we will find the emission and absorption rates of
the system photons on top of the rapid thermalization of atoms
due to laser and bath modes.

Working from Eq. (A1), we write the full master equation
for the atoms and system photons:

dρT

dt
= 1

ih̄
(HeffρT − ρTH

†
eff ) +

∑
q

κqaqρTa†
q

+
∑

k

{
re

k

2
,e−ik·r |g〉〈e|ρT|e〉〈g|eik·r

}

+
∑

k

{
r

g

k

2
,ei(kL−k)·r |g〉〈g|ρT|g〉〈g|e−i(kL−k)·r

}
.

(A6)

Since the jump rates depend on the atomic momentum, we treat
them as operators and symmetrize them around ĉj ρTĉ

†
j terms

using the anticommutator {,}.
The system density matrix now describes the atoms and the

system photons aq only and can be further separated as ρT =
ρee|e〉〈e| + ρgg|g〉〈g| + ρeg|e〉〈g| + ρge|g〉〈e|, where ρij is an
operator acting in the atomic momentum and photon number
Hilbert space. According to the master equation, the excited
component ρee is rapidly decaying with a rate � while the off-
diagonal terms ρeg, ρge dephase with a rate �/2 + γ ( p)/2 ≈
�/2.

We now focus on the ground-state component ρgg only.
We start with the simplest case that the overall space is one
dimensional (1D) along the x̂ axis. In the limit (kL − k) · r �
1, we can make a Lamb-Dicke approximation because the
distance the atom moves during scattering events is much
shorter than the wavelength of the photons. This leads to the
approximate expression

ei(kL−k)·rρgge
−i(kL−k)·r

≈ ρgg + i[(kL − k) · r,ρgg]

− 1
2 [(kL − k) · r,[(kL − k) · r,ρgg]]. (A7)

Applying the first term in Eq. (A7) to Eq. (A6) produces
{ γ ( p)

2 ,ρgg}, which cancels with −{ γ ( p)
2 ,ρgg} from the imag-

inary part of the effective Hamiltonian in ground state,
− ih̄γ ( p)

2 |g〉〈g|.
The second term in Eq. (A7) is imaginary and will

lead to an effective force in Eq. (A6). Assuming the
recoil effect is small as in the usual Doppler cooling
scheme, the relevant bath modes are photons with mo-
mentum about the same magnitude as h̄kL but nearly
isotropic. Therefore, we have

∑
k k|β2

k |δ(�Egg(k, p)) ≈ 0.
For kL = kLx̂, the second term leads to

∑
k ikL[x,{rg

k ,ρgg}] ≈
ikL�2�

�̄2
L+�2/4

([x,ρgg] + �̄LkL

(�̄2
L+�2/4)m

[x,{px,ρgg}]). The approxima-
tion follows by assuming the Doppler shift and the recoil shift
are much smaller than �̄L or �. The part proportional to [x,ρgg]
corresponds to a dc force �2�

�̄2
L+�2/4

h̄kL, and the [x,{px,ρgg}]
part will create a velocity-dependent damping term for px with

a rate −2h̄�2��̄Lk2
L

(�̄2
L+�2/4)2m

. Note that the rate is positive with a negative

detuning �̄L appropriate for laser cooling.
We then examine the third term in Eq. (A7),

− 1
2 [(kL − k) · r,[(kL − k) · r,ρgg]]. Recall that we

are considering the 1D case, we have
∑

k(kL −
k)2 2π

h̄
|h̄β2

k |δ(�Egg(k, p)) ≈ 2k2
L�. We have again neglected

the recoil effect for the relevant bath modes. The leading-order
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contribution from this term to Eq. (A6) is − �2�k2
L

�̄2
L+�2/4

[x,[x,ρgg]],
which corresponds to a diffusion term for the atomic
momentum.

The master equation in 1D for the atoms after elimination
of the excited state now reads

dρgg

dt
= 1

ih̄

[
HT − ih̄

∑
q

κq

2
a†

qaq,ρgg

]

+ 1

ih̄
[−F0(kL)x,ρgg] − iζ

h̄
[x,{px,ρgg}+]

− 2mζkBT

h̄2 [x,[x,ρgg]] +
∑

q

κqaqρgga
†
q . (A8)

Here HT = p2

2m
+ h̄ωA|e〉〈e| + HS + HAS + VASL(t). The

above equation is in fact the master equation for quantum
Brownian motion theory with a damping constant

ζ = h̄�2�|�̄L|k2
L

(�̄2
L+�2/4)2m

and temperature kBT = h̄
2

�̄2
L+�2/4
|�̄L| given

by the momentum diffusion up to a dc force term
F0(kL) = h̄kL�2�

�̄2
L+�2/4

. The dc force term (a drift) can be
compensated for by another dc force term or by including
a counterpropagating laser. This master equation can be
easily generalized to three dimensions. In practice, the use of
multiple laser beams will remove the drift term and recover
the standard Doppler cooling theory of two-level atoms in the
low-excitation limit.

APPENDIX B: SELF-CONSISTENT FERMI’S GOLDEN
RULE USING TIME-DEPENDENT

PERTURBATION THEORY

To treat the dynamics of the atoms and the system pho-
tons self-consistently, we here calculate the transition rates
associated with system photon emission and absorption using
the quantum jump master equation and time-dependent per-
turbation theory. This complements—and indeed is equivalent
to—the diagrammatic approach followed in the main text. For
simplicity, we consider the case of a single laser mode kL,
a single system photon mode aq , and an initial state with a
definite atomic momentum |ψ(t = 0)〉 = |nq〉|g, p〉. Here {nq}
denotes the Fock state of system photons. We also neglect
cavity loss for the moment. Under the effective Hamiltonian,
the time evolution of the un-normalized state is

|ψ(t)〉 ≈ e−izg0 t |ψ(0)〉

− i

h̄

∑
n

|n〉
∫ t

0
dtae

−izn(t−ta )−izg0 ta 〈n|V (ta)|ψ(0)〉

= e−izg0 t |g0〉 + iαq
√

nqfe−
q
(t)|e−

q 〉
+ iR+

q ( p)
√

nq + 1fg+
q,L

(t)|g+
q,L〉

+ iR−
q ( p)

√
nqfg−

q,L
(t)|g−

q,L〉. (B1)

According to the effective Hamiltonian, the evolution of
each state has a complex frequency zi = ωi − iγi/2; the real

part corresponds to the state energy and the imaginary part
denotes the damping. The shorthand notations of the possible
states are

|g0〉 = |nq〉|g, p〉,
|g+

q,L〉 = |nq + 1〉|g, p + h̄kL − h̄q〉,
|g−

q,L〉 = |nq − 1〉|g, p + h̄q − h̄kL〉,
|e−

q 〉 = |nq − 1〉|e, p + h̄q〉, (B2)

and their corresponding complex frequencies are defined as

zg0 = p2

2mh̄
+ nqωq − iγ ( p)

2
,

zg+
q,L

= | p + h̄kL − h̄q|2
2mh̄

+ (nq + 1)ωq − iγ ( p + h̄kL − h̄q)

2
,

zg−
q,L

= | p + h̄q − h̄kL|2
2mh̄

+ (nq − 1)ωq − iγ ( p + h̄q − h̄kL)

2
,

ze−
q
= | p + h̄q|2

2mh̄
+ (nq − 1)ωq + ωA − i�

2
. (B3)

Here the superscript “+” again denotes emission of a system
photon (|nq〉 → |nq + 1〉) and “−” for absorption (|nq〉 →
|nq − 1〉).

The time-dependent functions fi(t) are

fg+
q,L

(t) =
∫ t

0
dtae

−iz
g
+
q,L

(t−ta )
e−iωLta−izg0 ta , (B4)

fg−
q,L

(t) =
∫ t

0
dtae

−iz
g
−
q,L

(t−ta )
eiωLta−izg0 ta , (B5)

fe−
q
(t) =

∫ t

0
dtae

−iz
e
−
q

(t−ta )
e−izg0 ta . (B6)

Compared to the usual time-dependent perturbation theory, the
above time-dependent functions include the dissipative part of
the Hamiltonian and shall lead to modifications from the usual
Fermi’s golden rule.

First, since 〈ψ(t)|ψ(t)〉 ≈ e−γ pt , we find the jump time
tJ by solving r = e−γ ptJ , 0 � r � 1, where r is randomly
distributed in (0,1). The average total jump rate from the
initial state is ∼γ ( p) up to a correction at order V 2. At the
time of the jump, we need to evaluate the different possible
jump outcomes, according to the un-normalized probability
distributions Pj ∝ Pj = γj 〈ψ(tJ )|ĉ†j ĉj |ψ(tJ )〉/r , and here we
have included the 1/r factor to normalize the wave vector. We
see

P0( p) =
∑

k

r
g

k ( p)〈g|ĉg†
k ĉ

g

k|g〉 |e
−izg0 tJ |2

r
= γ ( p), (B7)

P+
q,L( p) = γ ( p + h̄kL − h̄q)|R+

q ( p)|2(nq + 1)

∣∣fg+
q,L

(tJ )
∣∣2

r
,

(B8)
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P−
q,L( p) = γ ( p − h̄kL + h̄q)|R−

q ( p)|2nq

∣∣fg−
q,L

(tJ )
∣∣2

r
,(B9)

P−
q,B( p) = �|αq |2nq

∣∣fe−
q
(tJ )

∣∣2

r
. (B10)

We interpret the possible jump outcomes as the following pro-
cesses (see Fig. 4): (a) P0( p)–scattering process that absorbs
a laser photon and spontaneously decays into the bath modes;
(b) P+

q,L( p): scattering process that absorbs a laser photon and
emits a system photon; (c) P−

q,L( p): scattering process that
absorbs a system photon and scatters back into the laser mode;
(d) P−

q,B( p): scattering process that absorbs a system photon
and scatters into the bath modes. The average rates for those
processes will be evaluated in details.

Since |ψ(tJ )〉 ≈ e−izg0 tJ |ψ(0)〉 + O(V 2), the scattering
process that absorbs a laser photon and emits a system photon
[Eq. (B7)] is the leading-order effect. Therefore,

∑
i Pi ≈

P0( p), and the normalized probability distribution is thus
Pj ≡ Pj /

∑
i Pi ≈ Pj /P0( p). The transition rate associated

with Pj can be found by �j ( p) = ∫ 1
0 γ ( p)Pjdr , which is the

overall decay rate γ ( p) times the normalized probability Pj

averaging over possible jump time.
The leading-order jump outcome associated with Eq. (B7)

happens at a rate �0( p) = γ ( p)
∫ 1

0 dr
P0( p)
P0( p) = γ ( p). This cor-

responds to the laser-bath scattering process [Fig. 4(a)] with
a rate consistent with our analysis in Sec III. We can identify
this rate as the “thermalizing jump rate,” the jump rate that
leads to the thermalization of atoms. In addition, since the
laser-bath scattering leads to Doppler cooling of atoms, we
can assume that the atomic motion reequilibrates to a steady
state ρB

atom = ∫
d3 p�( p)|g, p〉〈g, p| before other processes

involving change of the system photonic state occurs, where
�( p) follows the Boltzmann distribution as defined in Eq. (18).
This steady-state distribution due to Doppler cooling of atoms
averages out the phase factor ei(kL−q)·r in the coupling VASL(t);
one can thus neglect the coherent part of the system photons.
The long-time dynamics of the system photons is then gov-
erned by incoherent transitions between photon number states
with rates calculated below.

The average rate of emitting one system photon from a
specific atomic momentum state |g, p〉, start from |g0〉 and

ending in |g+
q,L〉 on top of the rapid jumps [Fig. 4(b)], is

�+
q,L( p) ≡ γ ( p)

∫ P+
q,L( p)

P0( p)
dr

= γ ( p + h̄kL − h̄q)|R+
q ( p)|2(nq + 1)

×
∫ 1

0

dr|fg+
q,L

(r)|2
r

. (B11)

This rate corresponds to the emission process of a system pho-
ton over a finite time before the atoms being reset (thermalized)
by the emission process into bath modes. We see a simpler
interpretation here: a new jump operator that acts directly on
the system photon state, with a jump rate κ+

q,L( p) = �( p)γ

( p + h̄kL − h̄q)|R+
q ( p)|2 ∫ 1

0 |fg+
q,L

(r)|2dr/r and a jump term

a
†
q .

Evaluating
∫ 1

0 |fg+
q,L

(r)|2dr/r , we have∫ 1

0

∣∣fg+
q,L

(r)
∣∣2

dr/r = γ ( p)
∫ ∞

0

∣∣fg+
q,L

(tJ )
∣∣2

dtJ

=
γg0 + γg+

q,L

γg+
q,L

[(
ωg0 + ωL − ωg+

q,L

)2 +
(
γg0 +γ

g
+
q,L

)2

4

] , (B12)

where we used r = e−γ ( p)t → dr
r

= −γ ( p)dt . The total sys-
tem photon emission rate is (nq + 1)�+

q,L with

�+
q,L ≡

∫
d3 pκ+

q,L( p)

=
∫

d3 p �( p)|R+
q ( p)|2δγ ( p)+γ ( p+kL−q)(�Egg(q, p)).

(B13)

Recall that δε(ω) = ε/2π

ω2+ε2/4 is a broadened δ function of ω

with a width ε. We call the result in Eq. (B13) an example
of the self-consistent Fermi’s golden rule, in which the δ

function in the usual Fermi’s golden rule is now replaced
by the decay-broadened δ function δγ ( p)+γ ( p+kL−q) due to the
finite lifetime of the initial and final states. The system photon
absorption rates according to Eqs. (B9) and (B10) can be found
analogously as presented in Sec. IV.
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