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Full statistics of homodyne correlation measurements
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We derive the full statistics of the product events in homodyne correlation measurements, involving a single
mode signal, a local oscillator, a linear optical network, and two linear photodetectors. This is performed for the
regime of high intensities impinging on the detectors. Our description incorporates earlier proposed homodyne
correlation measurement schemes, such as the homodyne cross-correlation and homodyne intensity-correlation
measurements. This analysis extends the amount of information retrieved from such types of measurements,
since previously attention was paid only to the expectation value of the correlation statistics. As an example, we
consider the correlation statistics of coherent, Gaussian, and Fock states. Moreover, nonclassical light is certified
on the basis of the variance of the measurement outcome.
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I. INTRODUCTION

In the past few decades a diversity of different detection
schemes has been proposed to gain information about the
quantum state of light fields. A prominent example is balanced
homodyning [1–3], which allows one to obtain the field
strength statistics for different optical phases [4]. By contrast,
the unbalanced homodyne detection [5] gives access to the
photon-number distribution of the coherently displaced signal.
The measurement outcomes of both schemes provide the
full information on the quantum state. Hence they can be
transformed to other state representations, such as quasiproba-
bilities [6–11] or the density matrix [10,12–14]. Furthermore,
balanced eight-port homodyning [15,16] allows one to directly
measure the Husimi Q function [17].

Small quantum efficiencies significantly smooth out the
nonclassical effects. For such conditions, homodyne corre-
lation measurement (HCM) techniques have been developed
[18,19], where the quantum efficiency merely rescales the
measurement outcome, due to the detection of normal-ordered
quantities. Similar to balanced homodyne detection, these
experimental setups rely on the interference of a signal beam
with coherent light on beam splitters and the intensity detection
of two outgoing beams. Instead of analyzing the difference
signal of the two photodetectors, the correlated fluctuations
of the photoelectric currents are studied. Later on, another
method was proposed and applied in experiments, which
is based on balanced homodyne detection conditioned on a
photon-number measurement [20–22]. It yields similar insight
in the quantum properties of light as HCMs.

In Ref. [19], two different realizations of HCMs were
studied, the homodyne intensity-correlation measurement and
the homodyne cross-correlation measurement. Recently, both
techniques have been successfully implemented in experi-
ments. In particular, the homodyne intensity-correlation mea-
surement was implemented by following the original proposal
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in Ref. [18] to certify quadrature squeezing in resonance
fluorescence light from a single quantum dot [23]. The ho-
modyne cross-correlation measurement, on the other hand,
demonstrated the existence of anomalous quantum correlations
of field strength and intensity noise of squeezed light [24],
which even extends beyond the phase interval of squeezing. As
an extension, multiport schemes have been considered, which
give access to higher-order normal-ordered moments of the
phase-dependent quadrature operator [25] and the displaced
photon-number operator [26].

Until now, only the mean of the product of the fluctuations
of the photoelectric currents of the detectors in such schemes
was considered. However, the exact shape of the full product
statistics is yet unknown. In this work, we close this gap
by deriving a closed expression for the full HCM statistics
and we also determine the associated positive-operator-valued
measure (POVM). As an application, we develop a nonclas-
sicality criterion based on the variance of these statistics and
demonstrate its usefulness to certify the nonclassicality of an
amplitude-squeezed coherent state.

Our work is organized as follows. In Sec. II we recall earlier
proposed homodyne correlation measurement schemes and
consider them as specific configurations of a more general
measurement device including a linear optical network and
two linear standard detectors. The full correlation statistics
of the product of the photocurrent fluctuations is derived
in Sec. III. In Sec. IV we study the correlation statistics
of several states, such as coherent states, Gaussian states,
and Fock states. Furthermore, we relate our result to the
certification of anomalous quantum correlations in Sec. V and
we provide a sufficient nonclassicality condition based on the
detection outcome of our correlation measurement device. We
summarize in Sec. VI.

II. CORRELATION MEASUREMENT
WITH TWO LINEAR DETECTORS

Consider the scheme, which is illustrated in Fig. 1. A signal
beam, a reference beam, and an additional vacuum input,
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FIG. 1. The HCM detector device for quantum light (gray shaded
area). A linear optical network (LON) combines the signal field
â with a reference mode b̂ and a vacuum input âvac. Two output
beams â1 and â2 are detected by linear photodetectors PD1 and
PD2, with efficiencies η1 and η2 and dark noise counts ν1 and ν2.
They record the intensity noise of both output modes through the
alternating photoelectric currents (ac) c1 and c2. The two currents are
multiplied, resulting in the measurement outcome M . Possible losses
are incorporated in the loss mode âloss.

characterized by the photon annihilation operators â, b̂, and
âvac, respectively, are combined by a linear optical network
(LON). The latter is usually implemented by an assembly of
passive linear optical elements, such as beam splitters, which
realize a unitary transformation of the three input modes. The
LON outputs are three beams, in particular, â1, â2, and a loss
mode âloss. Constant loss of the involved beam splitters in the
LON is transferred to the output âloss. The photonic operators
of the outgoing fields â1 and â2 are related to that ones of the
input fields by the linear input-output relation

(
â1

â2

)
= Q

⎛
⎝ â

b̂

âvac

⎞
⎠, (1)

where the 2×3 matrixQ is a submatrix of a unitary 3×3 matrix.
In particular, Q excludes the output âloss, incorporating losses.
It only keeps the modes â1 and â2 that are relevant in the
following considerations. To be more specific, we consider in
the further calculations only expectation values over functions
of â1 and â2. Therefore, the loss mode is simply traced out.

The intensity correlations of the beams â1 and â2 are
recorded by linear photodetectors with efficiencies η1 and η2

and dark noise counts ν1 and ν2, respectively. The photoelectric
current fluctuations c1 and c2 of the two detectors are extracted
by applying electronic filters and they are multiplied afterward.
The outcome, M = c1 · c2, contains information about the
intensity noise correlation of the two modes â1 and â2 and
consequently also about the signal field.

Two types of such HCM devices have been studied. The first
one is the homodyne intensity-correlation measurement, which
was introduced in Ref. [18] and analyzed in more detail in [19].
It employs two beam splitters. In the first step, the signal field
interferes with a coherent local oscillator |αL〉 (in the reference
channel) on the first beam splitter with field transmittance T1

and reflectance R1. One of the outputs is then split (combined
with vacuum) by the second beam splitter of field transmittance
T2 and reflectance R2. The two outgoing beams of this second
beam splitter correspond to the two modes â1 and â2 in Fig. 1.
For the associated input-output matrix, we obtain

Q(ic) =
(

T2T1 T2R1 R2

R2T1 R2R1 T2

)
. (2)

This measurement technique was recently applied for the de-
tection of quadrature squeezing in the resonance fluorescence
of a two-level system [23]. For the presence of constant losses
in the LON, the input-output matrix has to be adjusted as
|Tj |2 + |Rj |2 < 1 for j = 1, 2.

The second type of HCM device, referred to as the homo-
dyne cross-correlation scheme, was introduced in Ref. [19]. In
this four-port optical setup the signal beam is combined on a
beam splitter (field strength transmittance T and reflectance R)
with a local oscillator (LO), which is prepared in a coherent
state |αL〉. The two output beams are the modes â1 and â2

in Fig. 1. In the absence of losses the input-output matrix in
Eq. (1) reads in this case

Q(cc) =
(

T R 0
R T 0

)
, (3)

with |T |2 + |R|2 = 1 and T ∗R + R∗T = 0. Possible losses
would result in nonzero elements in the third column of this
matrix. Recently, it was demonstrated experimentally that such
a device can detect an anomalous quantum correlation of
two noncommuting observables for a phase-squeezed coherent
state [24].

III. FULL CORRELATION STATISTICS

In the earlier works, which considered a correlation detector
of the kind described in the preceding section, only the expec-
tation value of the measurement outcome E(M ) = E(c1 · c2)
was considered to extract information about the signal field. In
the present paper, however, we investigate the full correlation
statistics, which includes the higher-order moments of M . For
this purpose we will determine the full correlation statistics
w(M ) in this section.

Applying the photon-counting theory of two detectors with
efficiencies η1 and η2 and independent dark noise counts ν1 and
ν2, the joint probability that detector PD1 records m1 events and
detector PD2 records m2 events is given by [27,28]

Pm1,m2 =
〈
:

(η1n̂1 + ν1)m1

m1!
e−(η1n̂1+ν1 )

× (η2n̂2 + ν2)m2

m2!
e−(η2n̂2+ν2 ) :

〉
. (4)

Here : · : denotes normal ordering, 〈·〉 is the quantum mechan-
ical expectation value, and n̂j = â

†
j âj are the photon-number

operators of the output fields â1 and â2. They are related to
the input beams â, b̂, and âvac of the LON by Eq. (1). In the
following we assume that the reference mode b̂ is prepared in
a coherent state |αL〉 (αL = |αL|eiφ), as is the case for both
the homodyne intensity-correlation and the homodyne cross-
correlation measurements [19]. Additionally, we demand that
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the intensities of the input modes â and b̂ result in bright
light in the LON outputs, i.e., η1〈n̂1〉 � 1 and η2〈n̂2〉 � 1,
such that photon-number resolution of the two detectors is not
required.

The quantum state ρ̂ of the signal can be represented in
terms of coherent states |α〉by means of the Glauber-Sudarshan
P function as [29,30]

ρ̂ =
∫

d2α P (α)|α〉〈α|. (5)

Using âvac|0〉 = 0, b̂|αL〉 = αL|αL〉, and the input-output rela-
tion (1), we can rewrite Eq. (4) as

Pm1,m2 =
∫

d2α P (α)

× (η1|α1(α, αL)|2 + ν1)m1

m1!
e−(η1|α1(α,αL )|2+ν1 )

× (η2|α2(α, αL)|2 + ν2)m2

m2!
e−(η2|α2(α,αL )|2+ν2 ), (6)

where

αj (α, αL) = Qj1α + Qj2αL, j = 1, 2, (7)

are the coherent amplitudes of the two outgoing fields â1 and
â2 in the case of a coherent signal with amplitude α and Qju

is the element of the input-output matrix Q in row j = 1, 2
and column u = 1, 2, 3. In the limit η1|α1(α, αL)|2 � 1 and
η2|α2(α, αL)|2 � 1, one can replace the Poisson distributions
in the integrand of Eq. (6) by Gaussian distributions, where the
discrete number events (m1,m2) are replaced by continuous
variables (x1, x2). In this regime the joint event statistics
reads

P (x1, x2) =
∫

d2α P (α)
1√

2π [η1|α1(α, αL)|2 + ν1]

× 1√
2π [η2|α2(α, αL)|2 + ν2]

× exp

(
− [x1 − η1|α1(α, αL)|2 − ν1]2

2(η1|α1(α, αL)|2 + ν1)

)

× exp

(
− [x2 − η2|α2(α, αL)|2 − ν2]2

2[η2|α2(α, αL)|2 + ν2]

)
. (8)

This result was already derived in Ref. [4], but instead of cal-
culating the difference statistics, in the following we determine
the product statistics of the photoelectric current fluctuations
cj = xj − 〈xj 〉 (j = 1, 2). Here the mean photoelectric current
of detector PDj is readily derived as

〈xj 〉 = ηj

∫
d2α P (α)|αj (α, αL)|2 + νj . (9)

In a first step we determine the joint statistics p(c1, c2), which
is obtained out of Eq. (8) by the relation

p(c1, c2) = P (〈x1〉 + c1, 〈x2〉 + c2). (10)

Therefore, it can be expressed in terms of the P function of the
signal as

p(c1, c2) =
∫

d2α P (α)
1√

2πσ 2
1 (α)

exp

(
− [c1 − μ1(α)]2

2σ 2
1 (α)

)

× 1√
2πσ 2

2 (α)
exp

(
− [c2 − μ2(α)]2

2σ 2
2 (α)

)
, (11)

where we defined the variances

σ 2
j (α) = ηj |αj (α, αL)|2 + νj , j = 1, 2, (12)

and the means

μj (α) = ηj |αj (α, αL)|2 + νj − 〈xj 〉, j = 1, 2. (13)

Let us rewrite Eq. (7) as

αj (α, αL) = Qj1γ (α) + αj (〈â〉, αL), j = 1, 2, (14)

where 〈â〉 = ∫
d2α P (α)α is the mean signal amplitude and

γ (α) = α − 〈â〉 is the signal noise. Since we consider the limit
ηj |αj (α, αL)|2 � 1, the signal noise γ (α) in the decomposi-
tion (14) is small compared to the mean interference amplitude
αj (〈â〉, αL). Accordingly, the variances in Eq. (12) are in this
approximation independent of the signal fluctuations γ (α) and
depend only on the mean signal amplitude 〈â〉, i.e.,

σ 2
j = ηj |αj (〈â〉, αL)|2 + νj , j = 1, 2. (15)

Inserting Eq. (9) into Eq. (13) and considering the same
approximation, one derives that the means in Eq. (13) reduce
to a function only of the noise γ = γ (α), i.e.,

μj (γ ) = h∗
j γ + hjγ

∗, j = 1, 2, (16)

where

hj = ηjQ∗
j1αj (〈â〉, αL), j = 1, 2. (17)

Now we use Eqs. (15) and (16) in the joint statistics of
the photoelectric current fluctuations in Eq. (11) and we
additionally substitute the integration variable α for the noise
amplitude γ = α − 〈â〉. This yields the result

p(c1, c2) =
∫

d2γ P (γ + 〈â〉)

× 1√
2πσ 2

1

exp

(
− [c1 − μ1(γ )]2

2σ 2
1

)

× 1√
2πσ 2

2

exp

(
− [c2 − μ2(γ )]2

2σ 2
2

)
. (18)

Finally, one can determine the probability distribution w(M )
of the product M = c1 · c2 of the photoelectric current fluctu-
ations on the basis of the joint statistics in Eq. (18) by using
the relation

w(M ) =
∫ ∞

−∞

dy

|y|p(y,M/y). (19)

In Ref. [31] the exact probability distribution of the product of
two real Gaussian random variables with nonzero means was
derived by utilizing Eq. (19). Since the joint statistics p(c1, c2)
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in Eq. (18) is a combination (weighted with the signal P

function) of Gaussian probability distributions of uncorrelated
random variables c1 and c2, one can directly apply the results
of this reference. Therefore, we obtain the correlation statistics

w(M ) = 1

σ1σ2

∫
d2γ P (γ + 〈â〉)

×
∞∑

u=0

2u∑

=0

Wu,


(
M

σ1σ2

)
G
,2u−
(γ, γ ∗) (20)

for an arbitrary signal state ρ̂ in Eq. (5). Here we introduced
the functions

Ga,b(γ, γ ∗) =
[
μ1(γ )

σ1

]a[
μ2(γ )

σ2

]b

exp

[
−μ2

1(γ )

2σ 2
1

− μ2
2(γ )

2σ 2
2

]
,

Wa,b(z) = 1

π

1

(2a)!

(
2a

b

)
z2a−b|z|b−aKb−a (|z|), (21)

with the modified Bessel functions of the second kind Kv (·).
Note that general nonclassical states, for which the P function
is not a classical probability density [32], are included in this
expression.

Let us introduce the operator for the signal amplitude
fluctuation as

δâ = â − 〈â〉, (22)

which fulfills the bosonic commutation relations. We find the
POVM for the measurement outcome M of our HCM device
as the normal-ordered operator

�̂M =:
1

σ1σ2

∞∑
u=0

2u∑

=0

Wu,


(
M

σ1σ2

)
Ĝ
,2u−
(δâ, δâ†) : . (23)

It holds that
∫

dM �̂M = 1̂, since

w(M ) = 〈�̂M〉 (24)

yields the correlation statistics. The POVM together with the
full correlation statistics in Eq. (20) is a central result of this
work.

Now we determine the expectation value E(M ) and the
variance var(M ) of M , since it is needed for consideration in
the following sections. For this purpose, we first calculate these
quantities for two uncorrelated Gaussian random variables c1

and c2 with variances σ 2
1 and σ 2

2 [cf. Eq. (15)] and means μ1(γ )
and μ2(γ ) [cf. Eq. (16)], respectively, conditioned on the value
of γ . By using the well-known results for the moments of
Gaussian distributed variables (see, e.g., Ref. [33]), they are
given by

E(Mk|γ ) = E
(
ck

1 · ck
2

∣∣γ )
=

(
−σ1σ2

2

)k

Hk

(
i
μ1(γ )√

2σ1

)
Hk

(
i
μ2(γ )√

2σ2

)
, (25)

where Hn(·) are the Hermite polynomials. In particular, the
first and second conditional moments read

E(M|γ ) = μ1(γ )μ2(γ ) (26)

and

E(M2|γ ) = [
μ2

1(γ ) + σ 2
1

][
μ2

2(γ ) + σ 2
2

]
. (27)

Combining this with Eq. (18) yields the expectation value and
the variance of M for the signal state ρ̂ under consideration as

E(M ) =
∫

d2γ P (γ + 〈â〉)μ1(γ )μ2(γ ) (28)

and

var(M ) = E(M2) − E(M )2

=
∫

d2γP (γ + 〈â〉)
[
μ2

1(γ ) + σ 2
1

][
μ2

2(γ ) + σ 2
2

]

−
(∫

d2γ P (γ + 〈â〉)μ1(γ )μ2(γ )

)2

. (29)

We want to point out that the expectation value in Eq. (28)
does not depend on the independent dark noise counts ν1 and
ν2 of the two detectors in Fig. 1. This can be easily seen from
Eq. (16) together with Eq. (17), where μ1(γ ) and μ2(γ ) are
independent of the dark noise. By contrast, this kind of noise
may contaminate the higher moments, such as the variance
in Eq. (29). Note that the latter incorporates the quantities
σ 2

1 and σ 2
2 , which depend on the dark noise counts ν1 and ν2

[cf. Eq. (15)].

IV. EXAMPLES OF CORRELATION STATISTICS

In this section we determine the correlation statistics for
different states of the signal input in Fig. 1. In particular, we
study arbitrary Gaussian states, which include the coherent
states. In addition, we also consider Fock states.

A. Coherent states

Let us start with the simplest case of coherent states |α〉,
which have the mean amplitude 〈â〉 = α and are represented
by the P function P (χ ) = δ(χ − α), with δ(·) being the
Dirac delta function. The corresponding correlation statistics
is readily derived from Eq. (23) and reads

w(M ) = 〈α|�̂M |α〉 = 1

πσ1σ2
K0

( |M|
σ1σ2

)
. (30)

Note that the amplitude α still enters through the variances
σ 2

j [cf. Eq. (15)] and influences the widths of this probability
distribution.

The statistics in Eq. (30) is shown in Fig. 2. It is symmetric
with respect to M and consequently the expectation value
E(M ) is zero [see also Eq. (28) together with Eq. (16)]. This
is reasonable as the LON in Fig. 1 leads for coherent input
states to coherent output states, which show no intensity noise
correlation in its two modes â1 and â2. Although the input
state is Gaussian, we see that the statistics of the measurement
outcome M reveals a strongly non-Gaussian shape, which even
has a singularity at M = 0.

B. Gaussian states

Next we consider Gaussian states, which are completely
described by their first and second moments. Alternatively,
one can uniquely define them by the maximal and minimal
quadrature variance Vx and Vp, respectively, together with the
mean amplitude 〈â〉 and the orientation angle φξ in phase space.
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FIG. 2. Correlation statistics w(M ) for the signal beam prepared
in a coherent state. Note that M is normalized to σ1σ2 [cf. Eq. (15)].
The vertical dashed line indicates the expectation value E(M ).

The Glauber-Sudarshan P function of these Gaussian states
can be highly singular, while their characteristic function

�(β ) = exp[β〈â†〉 − β∗〈â〉] exp

[
−ββ∗

4
(Vx + Vp − 2)

]

× exp

[
−β2

8
e−iφξ (Vx − Vp) − β∗2

8
eiφξ (Vx − Vp)

]
(31)

is always a regular function. In order to derive the joint statistics
of the photoelectric current fluctuations in Eq. (18) and on this
basis the correlation statistics w(M ), it is therefore convenient
to express the P function in terms of the characteristic function
by

P (γ ) = 1

π2

∫
d2β eγβ∗−γ ∗β�(β ). (32)

The definition of the Gaussian states in Eq. (31) includes
mixed states for which VxVp > 1. The special case VxVp = 1
yields pure Gaussian states with the coherent states obtained
for Vx = Vp = 1. For a minimal quadrature variance Vp < 1,
we refer to the Gaussian state as a squeezed coherent state. In
the following, we assume, without loss of generality, that the
mean amplitude 〈â〉 is real. Furthermore, if φξ = 0, the state
is referred to as an amplitude-squeezed coherent state and it
is called a phase-squeezed coherent state for φξ = π .

Using the relation (32) in Eq. (18), we obtain, after a
straightforward calculation involving Gaussian integrals, the
joint probability distribution for Gaussian states as

p(c1, c2) = 1

2πs1s2

√
1 − C2

× exp

{
− 1

2(1 − C2)

[
c2

1

s2
1

− 2Cc1c2

s1s2
+ c2

2

s2
2

]}
. (33)

This is a distribution of two correlated Gaussian variables with
zero mean, the variances

s2
1 = J1,1, (34)

s2
2 = J2,2 (35)

FIG. 3. Correlation statistics w(M ) as a function of the phase φ

of the LO for a squeezed coherent state defined through Eq. (31) with
Vx = 4.0, Vp = 0.5, and mean amplitude |〈â〉| equal to the amplitude
|αL| of the strong LO, |αL| � 1. Phase squeezing is shown on top
(φξ = π ) and amplitude squeezing on bottom (φξ = 0). The plots
are logarithmic (color-bar numbers indicate log10[w(M )]) and M is
normalized to |αL|2 + |〈â〉|2. The orange line marks the expectation
value E(M ) and the purple lines indicate E(M ) ± √

var(M ).

and the correlation coefficient

C = − J1,2√
J1,1J2,2

. (36)
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Here the Ju,
 with u, 
 = 1, 2 are defined by

Ju,
 = σuσ
δu,
 + 1
2 (−1)u+
{(Vp + Vx − 2)Re[huh

∗

]

+ (Vp − Vx)Re[huh
e
−iφξ ]} (37)

and they incorporate the variances σ 2
j [cf. Eq. (15)] and the

quantities hj [cf. Eq. (17)]. Hence, we can directly apply
the result of Ref. [31] and find the closed expression for the
correlation statistics

w(M ) = 1

πs1s2

√
1 − C2

exp

( CM

s1s2(1 − C2)

)

× K0

( |M|
s1s2(1 − C2)

)
. (38)

Figure 3 illustrates this probability distribution for the signal
prepared in a phase- and amplitude-squeezed coherent state as
a function of the phase of the LO for a realistic example. Here
the homodyne cross-correlation scheme is applied, described
by the matrix Q(cc) in Eq. (3). We set the beam-splitter
transmittance-reflectance ratio to |T |2:|R|2 = 14:86, as it was
applied in the experiment reported in Ref. [24]. Furthermore,
we assume ideal detectors, i.e., η1 = η2 = 1 and ν1 = ν2 = 0.
The expectation value of M , which is given by

E(M ) = Cs1s2, (39)

and the standard deviation√
var(M ) =

√
1 + C2s1s2 (40)

are also shown in Fig. 3. The correlation statistics for specific
phases φ of the LO together with the expectation value
E(M ) is shown for both kinds of states in Fig. 4. As for the
coherent states, we obtain non-Gaussian correlation statistics
for Gaussian signals.

C. Fock states

The states, which are considered to be most contrary to
the classical understanding of light, are the Fock states |n〉
(n = 1, 2, . . . ), excluding the vacuum state. Let us calculate
the resulting correlation statistics w(M ) if a Fock state im-
pinges on our HCM detector in Fig. 1. Inserting the P function
of |n〉, which is given by

P (γ ) =
n∑

q=0

(
n

q

)
1

q!
∂q
γ ∂

q
γ ∗δ(γ ), (41)

into Eq. (20), one obtains, through integration by parts, the
correlation statistics

w(M ) = 1

σ1σ2

n∑
q=0

(
n

q

)
1

q!

q∑
u=0

2u∑

=0

Wu,


(
M

σ1σ2

)

×
∫

d2γ δ(γ )
[
∂q
γ ∂

q
γ ∗G
,2u−
(γ, γ ∗)

]
. (42)
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FIG. 4. Correlation statistics w(M ) as in Fig. 3 for various phases
φ of the LO. Phase squeezing is shown on top (φξ = π ) and amplitude
squeezing on bottom (φξ = 0). The expectation values E(M ) are
indicated by the vertical dashed lines of the same color. Note that
M is normalized to |αL|2 + |〈â〉|2.

The derivatives of Ga,b(γ, γ ∗) with respect to γ and γ ∗, for
a, b = 0, 1, 2, . . . , are given by the formulas

∂γ ∗Ga,b(γ, γ ∗) = −
[
h1

σ1

]
Ga+1,b(γ, γ ∗) −

[
h2

σ2

]
Ga,b+1(γ, γ ∗)

+a

[
h1

σ1

]
Ga−1,b(γ,γ ∗)+b

[
h2

σ2

]
Ga,b−1(γ,γ ∗),

∂γGa,b(γ, γ ∗) = [∂γ ∗Ga,b(γ, γ ∗)]∗, (43)

with σj and hj defined in Eqs. (15) and (17), respectively.
Together with

Ga,b(0, 0) = δa,0δb,0 (44)

one can recursively evaluate the derivatives of Ga,b at γ = 0
appearing in Eq. (42). In particular, for a single photon the
correlation statistics reads

w(M ) = 1

πσ1σ2

{[
1 − |h1|2

σ 2
1

− |h2|2
σ 2

2

]
K0

( |M|
σ1σ2

)

+ 2

[ |h1|2
σ 2

1

+ |h2|2
σ 2

2

] |M|
σ1σ2

K1

( |M|
σ1σ2

)

+ 1

σ1σ2
[h1h

∗
2 + h∗

1h2]
|M|
σ1σ2

K0

( |M|
σ1σ2

)}
. (45)
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FIG. 5. Shown on top is the correlation statistics w(M ) for the
signal beam prepared in a single-photon state. The two detectors in
Fig. 1 have the same efficienciesη1 = η2 and no dark noise counts. The
statistics is shown for various total detector efficiencies η = η1 · η2.
Shown on bottom is the correlation statistics for ideal detectors as
a function of the number of photons n in the signal beam for n =
0, 1, 2, 3, 4. For both figures note that M is normalized to the square
of the absolute value of the LO amplitude. The expectation values
E(M ) are indicated by the vertical dashed lines of the same color.

Note that this general expression is employable in all types
of homodyne correlation measurement schemes considered. A
particular device can be specified by fixing the input-output
matrix Q in Eq. (1), which determines the values of σj and hj

in Eq. (45) [cf. Eqs. (15), (17), and (7)].
Let us study in the following the particular scenario, where

the signal Fock state is combined on a beam splitter of field
strength transmittance T and reflectance R with a strong LO,
|αL| � 1. In this case the two detectors with efficiencies η1

and η2 and no dark noise counts receive high light intensities
and the correlation statistics is independent of the phase of the
LO. The expectation value of the measurement outcome M as
a function of the photon number n can be calculated to be

E(M ) = −2η1η2|T |2|R|2|αL|2n. (46)

It decreases linearly with increasing photon number and is
equal to zero for the vacuum state (n = 0).

Applying a 50:50 beam splitter, the resulting correlation
statistics w(M ) for the single photon (n = 1) is shown for
various detector efficiencies of the photodetectors in Fig. 5

together with the mean value in Eq. (46). We recognize
the well-known linear dependence of E(M ) on the detector
efficiencies. By contrast, the shape of the statistics reveals
a nonlinear dependence with respect to the efficiencies. In
addition, the correlation statistics is shown in Fig. 5 for the
signal beam prepared in various Fock states. We consider the
same setup as previously with ideal detectors (η1 = η2 = 1
and ν1 = ν2 = 0). The mean values E(M ) are nonpositive
due to the fact that they are up to positive prefactors equal to
the negative normal-ordered quadrature variance −〈: (�x̂)2 :〉,
which cannot be positive for Fock states (see also Ref. [19]).

V. NONCLASSICALITY TESTS

In this section we want to investigate whether there are
nonclassical signatures in the correlation statistics w(M ). For
this purpose, we first link our results of the previous sections to
the certification of nonclassical effects via homodyne intensity-
correlation and cross-correlation measurements. In this regard,
we study in particular so-called anomalous quantum correla-
tions. Afterward, we develop a criterion for the certification
of nonclassical light based on the variance of the correlation
statistics.

A. Uncovering nonclassicality by the mean
of the correlation statistics

Defining mixtures of coherent states |α〉 as the classical
reference, a state ρ̂ is called nonclassical if its Glauber-
Sudarshan P function in the representation (5) does not have
the properties of a probability density [32]. It is already
known that in the case of the homodyne intensity-correlation
measurement associated with the matrix Q(ic) in Eq. (2) of the
LON, a negative expectation value E(M ) of the correlation
statistics directly indicates the nonclassicality of the signal
field (for details see [19]). On the other hand, in the case of the
homodyne cross-correlation measurement, described by the
matrix Q(cc) in Eq. (3) of the LON, the nonclassicality cannot
be directly inferred from negativities of the mean correlation
E(M ). However, one can decompose the latter in terms of
various orders with respect to the LO field strength αL,

E(M ) = η1η2[|T |2|R|2〈: (�n̂)2 :〉
+ |αL||T ||R|(|R|2 − |T |2)〈: �x̂φ�n̂ :〉
− |αL|2|T |2|R|2〈: (�x̂φ )2 :〉], (47)

with the optical phase φ as outlined in [19]. Here 〈:(�n̂)2:〉
and 〈: (�x̂φ )2 :〉 are the normal-ordered variances of the
photon number n̂ = â†â and the quadrature x̂φ = âeiφ +
â†e−iφ , respectively. The normal-ordered moment 〈:�x̂φ�n̂:〉
corresponds to the anomalous correlation of quadrature and
photon-number fluctuations. One can distinguish two scenarios
on the basis of the expression (47). If the LO intensity is
much larger than the signal intensity, the expectation value
E(M ) corresponds to the negative normal-ordered quadrature
variance −〈:(�x̂φ )2:〉 of the signal, which is why a positive
expectation value of M indicates squeezing. By contrast, if the
LO intensity is comparable to the intensity of the signal beam
also the normal-ordered moments 〈:(�n̂)2:〉 and 〈:�x̂φ�n̂:〉
contribute in Eq. (47). Methods to extract the three moments
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FIG. 6. Value of D(φ) (normalized by |〈â〉|2) in Eq. (48) for a
phase-squeezed coherent state as a function of the optical phase φ.
Negative values certify anomalous quantum correlations.

〈:(�n̂)2:〉, 〈:�x̂φ�n̂:〉, and 〈: (�x̂φ )2 :〉 from the mean (47) of
the correlation statistics have been proposed in [19]. These
techniques have recently been successfully applied in an
experiment [24] and the separated moments have been used
to test the violation of the Cauchy-Schwarz inequality

D(φ) = 〈: (�n̂)2 :〉〈: (�x̂φ )2 :〉 − 〈: �x̂φ�n̂ :〉2
cl
� 0, (48)

which is fulfilled for all classical states. As this condition
incorporates an anomalous moment of two noncommuting
observables, a violation of the inequality refers to the presence
of anomalous quantum correlations. Remarkably, anomalous
quantum correlations of a phase-squeezed coherent state have
been certified experimentally, for almost the full range of
the optical phase φ, i.e., even for phases corresponding to
antisqueezing [24]. This is consistent with the theoretical
prediction. The three moments under consideration are given
for a general Gaussian state, as defined by Eq. (31), with large
mean value (|〈â〉| � 1) by

〈: (�n̂)2 :〉 = |〈â〉|2
[
Vp − Vx

2
cos[2 arg(〈â〉) − φξ ]

+Vx + Vp − 2

2

]
, (49)

〈: �x̂φ�n̂ :〉 = |〈â〉|
[
Vp − Vx

2
cos[φ − arg(〈â〉) + φξ ]

+Vx + Vp − 2

2
cos[φ + arg(〈â〉)]

]
, (50)

〈: (�x̂φ )2 :〉 = Vp − Vx

2
cos(2φ + φξ ) + Vx + Vp − 2

2
. (51)

Figure 6 shows the resulting quantity D(φ) in (48) for a
phase-squeezed coherent state (φξ = π ) with the orthogonal
quadrature variances Vx = 4.0 and Vp = 0.5, which are the
parameters also used in Sec. IV B. The negativity of D(φ),
except for phases φ being multiples of π , unambiguously
uncovers anomalous quantum correlations.

B. Higher-order quantum features of the correlation statistics

Our knowledge of the full statistics of M allows us to use
higher moments beyond the expectation value to visualize
nonclassical effects. Suppose the state of the signal field
is classical, i.e., its P function is a classical probability
distribution Pcl(γ ). Recalling Eqs. (26)–(29), we can use the
relation

var(M ) =
∫

d2γPcl(γ + 〈â〉)

× {[E(M|γ ) − E(M )]2 + var(M|γ )} (52)

for mixture distributions, where E(M|γ ) and var(M|γ ) are
the expectation value and the variance of M conditioned on
the value of γ , respectively. Obviously,

var(M ) �
∫

d2γ Pcl(γ + 〈â〉)var(M|γ )

� min
γ

var(M|γ ) (53)

holds for all classical states. The conditional variance is derived
from Eqs. (26) and (27) as

var(M|γ ) = E(M2|γ ) − [E(M|γ )]2

= σ 2
1 σ 2

2

[
1 +

(
μ1(γ )

σ1

)2

+
(

μ2(γ )

σ2

)2
]
. (54)

It is minimal for γ = 0, resulting in μ1 = μ2 = 0 [cf. Eq. (16)],
and we arrive at

min
γ

var(M|γ ) = σ 2
1 σ 2

2 , (55)

which is the same expression one obtains if the signal is in a
coherent state with amplitude 〈â〉. Introducing the quantity

r = var(M )

σ 2
1 σ 2

2

− 1, (56)

we infer from (53) together with Eq. (55) that all classical states
fulfill the inequality

r
cl
� 0. (57)

By contrast, if

r < 0 (58)

is observed in the experiment, nonclassicality of the state
under study is certified. Note that this requires an additional
measurement with the signal beam prepared in a coherent state
|α〉 with its amplitude equal to the mean amplitude of the
state under study, i.e., α = 〈â〉. In this measurement the same
amplitude of the LO is used as for the measurement with the
signal state under study.

In the preceding section, we studied the certification of
the nonclassicality of the signal field for the particular case
of the homodyne cross-correlation measurement with weak
LO, i.e., the signal and the LO have comparable intensities.
These considerations focus on the mean value of the correlation
statistics. Since this mean value does not directly uncover
nonclassical effects, three different normal-ordered moments
of the signal quadrature and photon number are separated from
this quantity to show the violation of the classicality condition
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the extended light green colored phase region.

(48). Note that the extraction of these moments requires precise
knowledge of the beam-splitter transmittance-reflectance ratio
and also measurements for different LO amplitudes or phases
(see Ref. [24] for details). Such a separation procedure is not
necessary if the variance of the correlation statistics is used
to show the nonclassicality via the condition (58). Figure 7
shows the value of r as a function of the LO phase for
the amplitude-squeezed coherent state defined by Eq. (31)
with Vx = 4.0, Vp = 0.5, and φξ = 0, which was considered
also in Sec. IV B. This result corresponds to the detection
via homodyne cross-correlation measurement with the mean
amplitude |〈â〉| of the signal being equal to the strong LO
amplitude |αL| � 1, with ideal photodetectors and with the
beam-splitter transmittance-reflectance ratio set to |T |2:|R|2 =
14:86. We observe that r is negative for a wider region of LO
phases φ than the phase region where squeezing is present. This
demonstrates the nonclassicality of this state by our criterion in
Eq. (58) for an extended range of LO phases, beyond the range
of squeezing. For comparison, the nonclassicality test based

on the violation of condition (48) is for this state even more
powerful as the nonclassicality is shown for almost all optical
phases (see Fig. 6). However, the nonclassicality condition (58)
is directly based on the variance of the correlation statistics
and thus does not require additional measurements with other
LO configurations to extract further information, as needed to
test condition (48). It is expected that nonclassicality criteria
involving higher moments, E(Mk ) with k > 2, will uncover
nonclassicality of a larger class of states.

VI. CONCLUSION

Motivated by the successful implementation of homodyne
correlation measurements, we provided a rigorous derivation
of the full statistics for the outcome of such a class of
measurement devices, given high light intensities incident on
the employed photodetectors. This correlation statistics is as-
sociated with a non-Gaussian POVM, which we determined in
this work explicitly. In this regard, the probability distribution
is non-Gaussian if the correlation detector is fed with Gaussian
states of light, such as coherent states. Additionally, the results
for squeezed coherent states and Fock states in the signal beam
were calculated. We retrieved the linear dependence of the
expectation value of the correlation statistics on the quantum
efficiency, but showed also that the shape of the whole statistics
strongly depends on the amount of loss.

Extending nonclassicality tests based on the mean of the
correlation statistics, we formulated a nonclassicality condi-
tion, which is based on the variance of this statistics. We
demonstrated the usefulness of this higher-order condition to
certify the nonclassicality of an amplitude-squeezed coherent
state. It is an open and interesting matter whether the correla-
tion statistics for all LO phases contains the whole quantum
information of the probed field, as is the case for the difference
statistics in balanced homodyne detection. This and related
questions should be addressed by further research.
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