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Excitation and propagation of the surface polaritonic rogue waves and breathers are investigated by proposing
a coupler free optical waveguide that consists of a transparent layer, middle negative index metamaterial layer,
and bottom layer of the cold four level atomic medium. In this planar optical waveguide, a giant controllable
Kerr nonlinearity is achieved by sufficient field concentration and a proper set of intensities and detunings of the
driven laser fields. As a result, various kinds of temporal surface polaritonic solitons, rogue waves, and breathers
can be propagated in the narrow window for electromagnetically induced transparency. We find that the giant
intensity and extreme concentration of surface polaritons with low generation power can be achieved by excitation
of the first- and second-order peregrine rogue waves. Furthermore, the first- and higher-order surface polaritonic
Akhmediev breathers can be propagated at the slow light level due to modulation instability in the proposed
optical waveguide. We demonstrate that surface-polariton propagation length can be significantly enhanced by
Kuznetsov-Ma breather dynamics.
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I. INTRODUCTION

Rogue waves are low-probability, high-amplitude events
that can arise in the dynamical behavior of a particular system
[1–3]. The dramatic impact and nature of these waves are
widely studied [4,5]. In the past few decades, experiments
have been proposed to demonstrate existence of rogue waves
and breathers in various physical systems such as water waves
[6], optical fibers, optical cavities [7], photorefractive crystals
[8], Bose-Einstein condensates [9], plasmas [10], and laser-
induced dielectric filamentation [11]. Moreover, various theo-
retical investigations such as standard self-focusing nonlinear
Schrödinger equations (NLSEs), higher-order NLSEs [12], the
Hirota equation [13], the Sasa-Satsuma equation [14], and
the Davey-Stewartson equation [15] have been developed in
order to investigate the conditions where the rogue waves
and breathers (i.e., peregrine, Akhmediev, and Kuznetsov-Ma
breathers) can form [16,17].

During the past decade, observing nonlinear waves (e.g.,
solitons, rogue waves, and breathers) in optics has become of
paramount importance due to their potential applications to
supercontinuum generation [18], pulsed operation of mode-
locked lasers [19,20], photonic-crystal fibers [21], Raman
amplifiers [22], parametric processes [23], spatiotemporal
structures [24], and more [25,26]. Among these phenomena,
optical rogue waves have been observed in whispering-gallery-
mode resonators as a result of chaotic interplay between
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the Kerr nonlinearity and group-velocity dispersion (GVD)
[27]. Alongside these investigations, elementary breathers and
higher-order solitons on finite background structures can be
observed by chaotic modulation instability. Dynamical behav-
ior of these waves can be described by the NLSE; as a result,
various rogue waves can be effectively identified by means of
solitons on finite background collisions [28]. Recently, reso-
nant interaction of two-level ion with an optical field has shown
that the optical field component has peregrinelike structure,
whereas the matter wave experiences more complicated, yet
spatiotemporal-balanced, amplitude distribution [29].

The peregrine soliton has been observed in the semiclassical
limit of the NLSE [30] by nonlinear propagation of the intense
laser pulse into the optical fiber. The optical Kerr nonlinearity
in a typical optical fiber is typically weak and as a result the
observation of rogue waves and breathers need the high input
power [31]. Very recently, the weak nonlinearity and necessity
of the high optical field input power have been overcome by
considering the cold three-level electromagnetically induced
transparency (EIT) sample as a potential nonlinear medium.
In this work the rogue waves and different types of breathers
are also observed at the weak light level [32].

The mentioned investigations indicate that the dynamics
of the optical rogue waves and breathers in the self-focusing
medium can be described by the NLSE. On the other hand,
many theoretical and experimental proposals demonstrate that
the combination of a dielectric medium with a negative-index
metamaterial (NIMM) optical waveguide is a nonlinear system
and stable linear and nonlinear surface polaritons (SPs) can be
propagated through NIMM-dielectric interface by doping thin
multilevel atomic medium as a substrate [33–36]. Therefore, a
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natural question that appears is whether the surface polaritonic
rogue waves and breathers can be excited and propagated in the
experimentally feasible scheme. To the best of our knowledge,
the propagation and excitation of the surface polaritonic rogue
waves and breathers has not been investigated.

We propose a planar polaritonic waveguide comprising an
upper transparent medium, a middle NIMM layer, and a bottom
layer containing a four-level cold N -type atomic medium
[37]. Our results show that stable and efficient propagation
of the polaritonic rogue waves and breathers can be achieved
by controlling the linear and nonlinear optical properties of
SPs at weak light level. In the linear regime, the large-field
concentration, i.e.,

|End |2 ≈ 6|E0|2, (1)

reduced reflection, and the modulated dielectric constant of the
atomic ensemble are obtained in the narrow EIT window and
as a result the SPs can be excited without the dielectric coupler.

The existence of mode confinement and suitable adjustment
of the driven laser intensities and detunings results in the con-
trollable Kerr nonlinearity–group-velocity dispersion couples
which makes it possible to excite various types of (1 + 1)-
dimension [i.e., (1 + 1)D; one dimension depicted position
and one dimension for time variation] surface polaritonic
solitons. This efficient SP excitation and giant self-focusing,
self-defocusing nonlinearity then lead to surface polaritonic
rogue waves and breathers propagation. It is noticed that the
first- and higher-order surface polaritonic peregrine breather
can be explicitly achieved in our proposed scheme. Moreover,
the MI results in the formation and evolution of the different
orders of the Akhmediev breathers.

We show that the intense surface polaritonic train with
sufficiently enhanced propagation length can be propagated
by Kuznetsov-Ma breathers in this polaritonic waveguide. Our
results have two main aspects.

(i) High-amplitude and extreme concentration of SP rogue
waves achieved by excitation of first- and second-order pere-
grine rogue wave as well as two-mode Akhmediev breather
collisions that may have applications in plasmonics [38].

(ii) Formation of various SP breathers with sufficiently
large intensity results in the enhancement of the SP’s prop-
agation length, which is suitable for optical communication
devices.

II. MODEL

Excitation and propagation of the surface polaritonic rogue
waves and breathers can be investigated by proposing a
coupler-free optical waveguide as shown in Fig. 1. This
polaritonic device consists of three layers. The upper layer
is supposed to be a transparent layer with

nt =
√

εtμt

ε0μ0
≈ 1. (2)

εt and μt are the electrical permittivity and magnet perme-
ability of the upper layer, NIMM is superposed as a middle
layer, and a coherently driven cold four-level N - type atomic
medium is considered as a bottom medium of the waveguide.
The optical properties of the NIMM layer can be described by

FIG. 1. Free space coupled planar waveguide: the surface polari-
tons can be excited and propagated through the x axis in the NIMM–
quantum emitter interface [39]. The system consists of transparent
medium (the optical properties of this medium εt and μt ), middle layer
of NIMM (with electrical permittivity εN and magnetic permeability
μN ), and coherently driven cold four-level N type atomic medium
is set as a quantum emitter in the bottom layer (the white dots). The
inset of the figure denotes the cold atomic medium with energy-level
diagram. ω1; l ∈ {c,p,s} are the center frequencies of the couple,
probe, and signal laser fields, |l〉 is the bare atomic state, and �1

are corresponded detunings (see the text for details).

the simple Drude model, i.e.,

εN(ωl) = ε∞ − ω2
e

[ωl(ωl + iγe)]
,

μN(ωl) = μ∞ − ω2
m

[ωl(ωl + iγm)]
, (3)

where ε∞(μ∞) is the background constant of permittivity
(permeability), ωl is the oscillation frequency, ωe(ωm) is the
electric (magnetic) plasma frequency, and γe (γm) is the
corresponding decay rate). Moreover, the quantum emitters are
supposed to be a four-level cold N -type atomic medium. This
sample is then cooled with the magneto-optical trap (MOT)
technique and embedded to the bottom of the NIMM layer as
a thin substrate.

This cold atomic layer with energy levels

Ej = h̄ωj (4)

and atomic transition |j 〉 (j ∈ {1,2,3,4}) are then pumped by
the three laser fields ω1 (l ∈ {c,s,p}) in which the couple, probe,
and signal laser are coupled the |2〉 → |3〉, |1〉 → |3〉, and
|1〉 → |4〉, respectively, with the corresponding detunings

�c = ωc − ω23,

�p = ωp − ω13,

�s = ωs − ω14. (5)

The total electric-field vector of the medium is

E(r,t) =
∑

l=c,s,p

E1(r,t) + c.c., (6)

with

E1(r,t) = E1u1(r)ei(k1.r−ω1t) (7)

and

E1 =
(

h̄ωl

ε0LxLyLz

)1/2

â(ωl) (8)

being the amplitude of the electric mode component, Lx(y) the
length of the NIMM–cold gas interface in the x(y) directions,
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â(â†) the creation (annihilation) operator of the quantized
electric field, and

Lz =
∑
j=n,t

{(
ω2

1

2c2

)[
ε̃j (|k|2 + |kj |2)

|kj |
∣∣ε2

j

∣∣
]

+ μ̃j

2|kj |

}
, (9)

with

ε̃j ≡ Re

[
∂(ω1ε1)

∂ω1

]
, μ̃j ≡ Re

[
∂(ω1μ1)

∂ω1

]
(10)

being the effective mode length that determines the confine-
ment of the EM mode at the interface and

u1(r) = c[k(ω1)ez − ikt ′ (ω1)ex]ekt (ω1)·r/εtω1. (11)

The Hamiltonian of the proposed cold atomic medium in
the interaction picture and under the rotating-wave and dipole
approximations is

HI = h̄

[
4∑

l=1

�1 |l〉 〈l| + ζc(z)�c |3〉 〈2|

+ ζp(z)�p |3〉 〈1| + ζs(z)�s |4〉 〈1| + c.c.

]
, (12)

where �1 = 0 and

�2 = ωp − ωc + E1 − E2

h̄
,

�3 = ωp − E3 − E1

h̄
,

�4 = ωs − E4 − E1

h̄
. (13)

Moreover, one can assume ωc ≈ ωp ≈ ωs. Therefore, we have

ζc(z) ≈ ζp ≈ ζs ≈ e13.up(z). (14)

Here eij is the atomic electrical dipole moment of the |i〉 → |j 〉
transition (i.e., pij = eij |pij |).

The quantities

�c = | p23|Ec/h̄, �p = | p13|Ep/h̄, �s = | p14|Es/h̄ (15)

are the half-Rabi frequency of the couple, probe, and signal
fields, respectively. The dynamics of the atomic medium is
given by the Bloch equation

ih̄

(
∂

∂t
+ 	

)
ρ̃ = [HI ,ρ̃], (16)

with 	 the 4 × 4 matrix describing the decay rates of the cold
atomic medium. Explicit solutions of the Bloch equations is
presented in Appendix A.

Here we take advantage of the coupler free scheme, as this
design is experimentally feasible [40]. As shown in Sec. III
this waveguide is suitable for coherent excitation of the SP
mode. For efficient excitation, the field enhancement in the
NIMM–cold atoms interface should be greatly enhanced and
the transmittance T and total reflection R should be modulated
as T 
 R. To achieve this, the three-layer reflection coefficient
in the proposed scheme can be expressed as [41]

rtnd = rtn + rnde
iknxl

1 + rtnrnde2iknxl
, (17)

where

rtn =εNktx − εtkNx

εNktx + εtkNx
, rnd = εdkNx − εNkdx

εdkNx + εNkdx
(18)

is the reflection coefficient of the transparent-NIMM and
NIMM–atomic-medium interface, respectively,

k2
lx = k2

z − ω2ε1μ1

c2
(19)

with (kz = k0nt sinθ , l ∈ {t,N,d}) being the normal component
of the electrical field in the lth medium with k0 = 2π/λp, λp the
wavelength of the probe laser field, θ the angle of incidence,
and εd the dielectric constant of the atomic medium, which is
given by the following expression [42]:

εd = 1 + χp

1 − χp/3
, (20)

where χp is the yet to be determined susceptibility of the
atomic medium, which is expanded into different orders of
perturbation.

Excitation of the SP modes can then be obtained by the
field enhancement in the atomic medium–NIMM interface and
special modulation of the dielectric constant of the atomic
sample. On the other hand, the Maxwell equation is used for
the control of the weak probe field in this planar waveguide,
i.e.,

∇2 Ep −
(

1

c2

)
∂2 Ep

∂t2
= 1

ε0c2

∂2 Pp

∂t2
, (21)

with

Pp = Na p31ρ̃31e
i(kp·r−ωpt) (22)

treated as the probe-field polarization intensity.
Using the slowly varying amplitude approximation

[|∂2�p/∂x2| � |2ikp(∂�p/∂z)|] the Maxwell equation re-
duces to the expression

i

(
∂

∂x0
+ 1

neffc

∂

∂t0

)
�p + κ13〈ρ̃13〉 = 0, (23)

where κ13 = Naωp|êp. p13|2/2h̄ε0c, Na is the atomic density,
ωp is the center frequency of the probe field, c is the speed of
light in free space, neff = ckp/ωp is the effective refraction
index, êp is the unit vector of the probe field polarization
direction, and

〈ψ(z)〉 ≡
∫ +∞
−∞ ζ ∗(z)ψ(z)dz∫ +∞

−∞ |ψ(z)|2dz
. (24)

III. SURFACE POLARITON EXCITATION AND LINEAR
PROPAGATION REGIME

Excitation and propagation of the SPs in this coupler free
waveguide is described by the perturbative solution of the MB
equations. The zeroth order of this perturbative method (i.e.,
the base state of the atomic medium) is obtained by assuming
�p = 0 and ∂/∂t = 0 in the Bloch equations. We thus obtain

ρ̃
(0)
11 = X23γ31(	44 − iX14)

D
,

ρ̃
(0)
22 = X14[γ42	33 + γ32γ43 − iX23(γ42 + γ43)]

D
,

013825-3



ASGARNEZHAD-ZORGABAD, SADIGHI-BONABI, AND SANDERS PHYSICAL REVIEW A 98, 013825 (2018)

ρ̃
(0)
33 = iX14X23(γ42 + γ43)

D
, ρ̃

(0)
44 = iX14X23γ31

D
,

ρ̃
(0)
14 = −X23X1	44γ31

D
, ρ̃

(0)
23 = X14X2(γ42	33 + γ32γ43)

D
,

(25)

where

X1 = �s

d41
, X2 = �c

d23
,

X14 = 1

d14
− 1

d∗
14

, X23 = 1

d23
− 1

d∗
23

,

D = X23γ31	44 + X14(γ42	33 + γ32γ43) (26)

− 2iX23(γ31 + γ42 + γ43).

Here

	44 =
∑
l<4

γ4l , 	33 =
∑
l<3

γ3l (27)

are the decay rates of the |4〉 and |3〉 atomic transitions, respec-
tively, andγjl = (	j + 	1)/2 (with	j (l) being the spontaneous
emission from |j 〉 to |l〉). Here the effect of collisional and
dephasing rates and Doppler shifts are neglected by cooling the
atomic sample to very low temperature (i.e., for suppression

of collisional effect one takes γ col
j l � 	j (l) and for neglecting

Doppler effect we assumed

WD =
√

kBT

Me
� 	31, (28)

where T is the temperature of the atomic cell and M is the
atomic mass of the rubidium) [43].

In the linear excitation of the system (i.e., first-order
perturbation), the probe laser is switched on and the system
possesses the time-dependent variations. However, this laser
field is considered to be weak enough such that one can assume
that the populations of the atomic states and the coherence
between |1〉 → |4〉 and |2〉 → |3〉 transitions do not change
significantly. In this order, the MB equations are linearized by
assuming

�p(r) = ε�(1)
p (r) (29)

for ε a weak perturbation parameter that represents small
depletion of the |1〉 atomic state and ρ̃ij = ρ̃

(0)
ij + ερ̃

(1)
ij . As

a result one has

ρ̃
(1)
21 = a

(1)
21 ζ (z)F eiφ, ρ̃

(1)
31 = a

(1)
31 ζ (z)F eiφ,

ρ̃
(1)
42 = a

(1)
42 ζ (z)F eiφ, ρ̃

(1)
43 = a

(1)
43 ζ (z)F eiφ, (30)

with �(1)
p = F eiφ and other ρ̃

(1)
j l = 0. Here φ = K(ω) − ωt

(with ω being the frequency perturbation of the SPs) with

K(ω) = ω

neffc
+ κ13

〈
ζ (z)

X
(1)
32 ρ̃

(0)
32 − ζ (z)�c(1 + Dcs)

(
ρ̃

(0)
11 − ρ̃

(0)
33

) + ζ (z)�s(d42 − d13)(Ds + |ζ (z)�c|2)ρ̃(0)
41

(d13 − d42){Dcs + (d42 − d13)[Dc(d12 + ω) − |ζ (z)�s|2(d43 + ω)]}

〉
, (31)

where

Ds =(d12 + ω)(d43 + ω) − |�s |2,
Dc =|�c|2 + (d42 + ω)(d43 + ω),

Dcs =(Dc − |�s|2)(Ds + |�c|2),

X
(1)
32 =Dc(d42 − d13)(Ds + |�c|2) − (d42 + ω)(1 + Dcs).

(32)

Moreover, the atomic susceptibility can also be calculated by
using the steady-state approximation of the Bloch equation,
which is also expanded to the different order of perturbations.
i.e.,

χp ≈ χ (1)
pp (ω) + |�p(r)|2χ (3)

pp (ω). (33)

The linear susceptibility is then given by

χ (1)
pp (ω) = Na| p13|a(1)

31

ε0|Ep| . (34)

(The explicit expressions of the first-order perturbative solu-
tions are given in Appendix C.)

The presented model can be easily realized in the experi-
ment. For the NIMM one can use the Drude model parameters
as [44] εt = εt’ = 1, μt = μt’ = 1, ε∞ = 6.5, μ∞ = 6.5, ωe =
1.37 × 1016 Hz, ωm ≈ 2.28 × 1015 Hz, γe = 2.73 × 1013 s−1,
and γm = 10−3γe, which is operated in the optical region

[45,46]. Moreover, the cold 87Rb atomic cell parameters are
assumed to be [47,48]

|1〉 = |5S1/2,F = 2〉 , |2〉 = |5S1/2,F = 3〉 ,

|3〉 = |5P1/2,F = 2〉 , |4〉 = |5P3/2,F = 3〉 . (35)

Here λc ≈ 795 nm and λs ≈ 780 nm are the two overlapped
external cavities couple and signal diode lasers and

λp ≈ 794.95 nm (36)

satisfies the

λc ≈ λp ≈ λs (37)

condition, κ31 ≈ 2.4 × 109, | p13| = 2.54 × 10−27 C cm, ωp =
2.37 × 1015 Hz, Na = 8.75 × 1010 cm−3, and 	31 = 	32 ≈
	42 = 18.85 MHz. The absorption and the dielectric constant
of this cold Rb atomic cell as a function of ω is depicted
in Figs. 2. Figure 2(a) shows that the adjustment of couple
and signal laser intensities and frequencies results in the
narrow EIT windows in the various frequency deviations:
ωEIT ≈ 11.57 MHz [49] for �c = −1.89 MHz and ωEIT ≈
2.6 MHz for �c = 8.8 MHz with asymmetric absorption pro-
file.

As a result of this narrow EIT window the dispersion
of the atomic medium can be especially modulated. In the
center of this window (ω = ωEIT ≈ 10 MHz), Re(χ (1)

pp ) � 1
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FIG. 2. Plot of (a) linear absorption and (b) the real part of the dielectric constant of atomic medium as a function of the frequency deviation
(ω). The ultranarrow EIT window is observed due to the existence of the signal and couple laser fields and the resultant interference effects.
Moreover, the optical properties of the atomic medium reach to the three level � type atomic system when the signal laser switched off �s = 0.
The parameters used for these figures are �c = 34.56 MHz, �s = 30.79 MHz, �s = 15.71 MHz, and �p = 11.31 MHz.

and Im[K(ω)]|ω=ωEIT � 1 are satisfied simultaneously and
therefore one can assume

εd ≈ 1 + χ (1)
pp . (38)

These conditions provided that

Im[εd(ω)]|ω=ωEIT � 1 (39)

and

Re[εd(ω)]|ω=ωEIT < 1 (40)

are simultaneously observed in the atomic media.
These simulations demonstrate that ωEIT is suitable for

SP propagation. The physical explanation of this frequency
selection can be expressed as follows: the atomic medium and
the NIMM layer have negligible absorption, the giant field
concentration is achieved, and the atomic medium has also
sufficient dispersion in this special EIT window which provides
the lossless propagation of the SPs. The dispersion properties
of the weak probe pulse can be achieved The propagation
properties of the SPs can be obtained by applying the expansion

of K(ω) around the EIT frequency ωEIT in the form

K(ω) =
∞∑

m=0

(
Km

m!

)
(ω − ωEIT)m, (41)

where Km = [∂mK(ω)/∂ωm]|ω=ωEIT . This equation shows that
the propagation properties of the SP’s wave (such as the group
velocity and the GVD) in the center of the EIT window can be
described by the various coefficients of the expansion.

To deeply look into the phenomena, the field factor and
the reflection of this planar waveguide is represented in Fig. 3.
Here the transmission coefficient of this three-layer waveguide
is calculated similar to Eq. (17) as

ttnd = ttntnde
iknxl

1 + rtnrnde2iknxl
, (42)

where tj l = 1 + rjl is the two layer transmission coefficient
and

T = |ttnd|2, R = |rtnd|2 (43)

FIG. 3. Enhancement factor and the reflection coefficient is plotted as a function of (a) frequency deviation (ω) and (b) angle of incident
(θ ). In the ultranarrow EIT windows, giant field factor is observed with negligible reflection. The giant field factor (up to |End|/E0|2) in the EIT
position promises the efficient excitation of SP modes in the coupler free scheme (see the text for details).
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FIG. 4. Group velocity of the excited SP modes as a function of ω.
The group velocity can be switched from subluminal to superluminal
with reduced atomic absorption. The blue solid line represents the SP
group velocity for negative small coupling detunings, while the red
dashed line denotes the behavior of Ṽg for positive �c and negligible
absorption (see the text for details).

is the total transmission and reflection, respectively. Moreover,
for the TE mode

TF.E =
∣∣∣∣End

Etn

∣∣∣∣
2

=
∣∣∣∣ εt

εd
ttnd

∣∣∣∣
2

, (44)

where

|Ej l|2 = E2
x,j l + E2

y,j l + E2
z,j l (45)

is assumed as a field factor of the waveguide. Here the
transmission, reflection, and the linear optical properties of
the atomic sample can be especially modulated and as a result
one obtains TFE ≈ 5.73 and R ≈ 0.21. The other parameters
for this efficient field enhancement are assumed as θ ≈ 63◦,
l = 95 nm,�c = −1.89 MHz, andωEIT ≈ 10 MHz. Presented
simulations also indicate that the probe field incident angle
(θ ) is a crucial parameter for obtaining giant field factor and
reduced reflection as denoted from [Fig. 3(b)]. Therefore, giant
field factor and reduced reflection, as well as the modulated
optical absorption and dispersion of the atomic sample, can
be simultaneously observed in this waveguide by setting the
proper intensity, detuning of the driven laser fields, and suitable
angle of incidence of the probe field which results in coherent
excitation of the SP modes.

By investigation of the dispersion curves near resonance
condition, one can observe that the normal and anomalous
dispersion can be achieved by proper adjustment of the cou-
pling field detuning. In order to further investigate, the group
velocity of the SPs for various detunings of the coupled laser
is depicted in Fig. 4. Existence of the signal field can lead
to the sharp dispersion variation of the probe field in the EIT
window. Therefore, one observes that the group velocity can be
switched from subluminal to superluminal with reduced atomic
absorption. The simulation also indicates that in the negative
coupling field detuning the stable slow SPs can propagate in the
EIT window (Ṽg ≈ 1.50 × 10−4c for ωEIT), while, for �c =
8.8 MHz, the superluminal fast SPs (Ṽg ≈ −7.97 × 10−4c)
propagate with negligible linear absorption. The modification
of the SPs linear optical properties may lead to the formation
of the shape preserved surface polaritonic solitons, rogue
waves, and breathers with fairly long propagation length and
controllable SP group velocity.

IV. EXCITATIONS AND PROPAGATION OF THE
NONLINEAR SURFACE POLARITONS: SOLITON

AND BREATHER SOLUTION

The rest of the results is arranged as follows: in Sec. IV A
the NLSE is derived and the different (1 + 1)D temporal
surface polaritonic solitons are observed. We investigated
the possibility of the polaritonic rogue wave and breather
formations in Sec. IV B.

A. Propagation of the bright and dark
surface polaritonic solitons

The formation and propagation of the nonlinear SPs is
investigated by applying the asymptotic expansions to the
probe field Rabi frequency and the density matrix elements

�p(r,t) =
∑

1

εl�(l)
p (r,t),

ρ̃ij (r,t) − ρ̃
(0)
ij =

∑
1

εlρ̃
(l)
ij (r,t), (46)

where the different order of these expansions are considered to
be a function of multiscale variables xl = εlx (l = 0,1,2) and
t1 = εlt (l = 0,1). Therefore, the position is scaled as a slow
two step and time is set as a slower one scaled variable. By
substituting into MB equations, the linear but inhomogeneous
set of equations are achieved which can be solved order by
order. In the second order, the density matrix elements are
assumed as

ρ̃
(2)
41 = a

(2)
41 ζ (z)|F |2e−αx2 , ρ̃

(2)
41 = a

(2)
41 ζ (z)|F |2e−αx2 ,

ρ̃
(2)
jj = a

(2)
jj ζ (z)|F |2e−αx2 , ρ̃

(2)
11 = −(

ρ̃
(2)
22 + ρ̃

(2)
33 + ρ̃

(2)
44

)
,

ρ̃
(2)
j ′1 = a

(2)
j ′1ζ (z)

∂F

∂t1
eiθ , ρ̃

(2)
4j ′ = a

(2)
4j ′ζ (z)

∂F

∂t1
eiθ ,

with j = 2,3,4 and j ′ = 2,3. Moreover, the divergence free
solution in this order can be obtained by taking �(2)

p (r) = 0
and

i

(
∂F

∂x1
+ 1

Vg

∂F

∂t1

)
= 0, (47)

where Vg = 1/[∂K(ω)/∂ω]|ω=ωEIT is the group velocity of the
SPs (the explicit expressions of the second-order density matrix
elements is represented in Appendix D). In the third order
(l = 3), the solvability condition of the MB equations for �(3)

p
requires

i
∂F

∂x2
− K2

2

∂2F

∂t2
1

+ W |F |2F e−2αx2 = 0, (48)

where α = ε2Im[K(ω)] represents the loss coefficient, K2 =
[∂2K(ω)/∂ω2]|ω=ωEIT characterized the GVD of the medium,
and W = [h̄2ωp/(2c| p13|2)]χ (3)

pp (z,ω) is the self-phase
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FIG. 5. Giant Kerr nonlinearity and sufficiently enhanced group-velocity dispersion. The Kerr nonlinearity (Re[χ (3)
pp (r,ω)]) in panel (a)

represents a giant self-focusing and self-defocusing optical Kerr in the EIT position. Panel (b) denotes the various types of (�c) assisted normal
and anomalous GVD as a function of frequency deviation. Balanced GVD-optical Kerr nonlinearity couples are achieved for both self-focusing
and self-defocusing regimes. The parameters are the same as Fig. 2.

modulation coefficient of the cold atomic sample with

W =
〈
ζ (z)|ζ (z)|2 X

(1)
32 a

(2)
32 − ζ (z)�c(1 + Dcs)

(
a

(2)
11 − a

(2)
33

) + ζ (z)�s(d42 − d13)(Ds + |ζ (z)�c|2)a(2)
41

(d13 − d42){Dcs + (d42 − d13)[Dc(d12 + ω) − |ζ (z)�s|2(d43 + ω)]}

〉
. (49)

Equation (48) is a partial differential equation (PDE) that can
be obtained by applying the multiple fast-slow scales variable
to the MB equations. The multiple scale method and the
asymptotic expansions applied for the derivation of Eq. (48) are
consistent with the general formalism of the PDEs developed
in Refs. [50,51]. This equation has three main aspects. (i) The
combination of the derivative with respect to x2, second-order
derivative with respect to t1 of the F , and existence of the
nonlinear term |F |2F denotes that this equation is valid up
to the third order of perturbation (l = 3). (ii) This equation
consists of a different order of perturbation which originates
from the treatment of the fast two step scaled position and
slow one step scaled time expansions. Therefore, derivative
with respect to x2 and second-order derivative with respect
to t1 become the same order of perturbation and can be
observed in Eq. (48). (iii) The considered one step slow time
variable admits that the derivative with respect to t1 should
be considered in each order of perturbation [the details of the
derivation of Eq. (48) are given in Appendix B].

The plot of Kerr nonlinearity (i.e., Re[χ (3)
pp (r,ω)]) and

the GVD as a function of ω is shown in Fig. 5. Panel (a)
of this figure denotes that the optical Kerr nonlinearity can
be significantly enhanced in the EIT window due to the
existence of the mode confinement and modulation of the
coupling field detuning. Moreover, by changing the sign of
the Kerr nonlinearity, one observes that the coherently driven
atomic sample has potential to act as a self-focusing and
self-defocusing medium (i.e., χ (3)

pp (ω) > 0 and [χ (3)
pp (ω) < 0])

by suitable field concentration in the atomic medium–NIMM
interface, proper adjustment of the intensities, and detunings
of driven laser fields. Furthermore, it is obvious from panel
(b) that the GVD of the atomic medium in both focusing
and defocusing regimes can be suitably modulated and as a
result one can obtain the normal and anomalous GVD of the

SPs. Therefore, the various balanced GVD-Kerr nonlinearity
couples can be achieved in this cold atomic medium in order
for the propagation of the stable nonlinear SPs as bright and
dark surface polaritonic solitons.

These results can be observed in an experiment by choosing
the realistic parameters for the proposed waveguide: �s ≈
31 MHz, �c ≈ 35 MHz, �s = 15.7 MHz, �p ≈ 11 MHz, and
ωEIT = 107 s−1.

(i) For �c = −2 MHz one has K0 ≈ (−2 + 0.016i) cm−1,
K2 ≈ (−4.42 + 0.21i)× 10−12 cm−1s2, χ (3)

pp (ω,z = 0) = (4.7
+ 0.9i) × 10−3 cm2 V−2, the field concentration

|End|2 ≈ 5.8|E0|2, (50)

and n2 = 3 Re[χ (3)
pp (z = 0,ωEIT)]/{2[1 + 2cK(ωEIT)/ωp]1/2}

≈ 7 × 10−3 cm2 V−2.
(ii) For �c ≈ 9 MHz we obtain

K0 ≈ (−1.3 + 0.054i) cm−1, (51)

K2 ≈ (2.82+ 0.1i)× 10−11 cm−1s2, χ (3)
pp (ω,z = 0)=(−1.3 +

0.24i) × 10−3 cm2 V−2, |End|2 ≈ 3|E0|2, and n2 ≈ −2 ×
10−3 cm2 V−2.

Note that, in the present work, we have neglected the GVD
related to the NIMM, which can be explained as follows: one
can calculate the GVD related to the metamaterial layer by
k2,n = [∂2kn/∂ω2

1]|ω1=ωp . For the NIMM assumed in Sec. III
one has k2,n = (1.23 − 156i) × 10−23 cm−1 s2, which is 1010

smaller than that of the GVD related to the atomic medium and
therefore can be effectively neglected.

It can be realized that the imaginary parts of these quantities
are much smaller compared to their real parts and, as a result,
Eq. (48) can be written as

i

(
∂

∂s
+ α

)
u + ddis

2

∂2u

∂σ 2
+ |u|2u = 0. (52)
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FIG. 6. Formation of bright and dark surface polaritonic solitons: the spatiotemporal dynamics of bright nonlinear SP’s in the EIT window is
depicted in (a) which demonstrates the existence of the bright mode surface polaritonic soliton. The stability of the two mode subluminal bright
surface polaritonic solitons is investigated in (b) by plotting the collision of the corresponding SP solitons. The propagation of superluminal
dark nonlinear SP’s with negligible linear absorption is depicted in (c). Sufficient stability of these dark SP’s [panel (d)] represents the fairly
long distance propagation of the superluminal dark SP soliton.

where u = U/U0; U = εF e−αx , U0 = (K̃2/W̃ )1/2/τ0 is the
half-Rabi frequency of the probe field, s = x/Lnon [with
Lnon = 1/(U 2

0 |W̃ |) being the nonlinear length of the medium],
and ddis = Lnon/Ldis; Ldis = τ 2

0 /K̃2 is the dispersion length
and K̃2 and W̃ are the real part of K2 and W (ω = ωEIT),
respectively. In the EIT position, α ≈ 0 and, by taking �c =
−2 MHz, τ0 = 1 μs, and �p ≈ 4 MHz, one can assume the
single soliton solution of the dark and bright surface polaritonic
modes as

�(B)
pp (r,t) =

√
K̃2(

τ 2
0 W̃

) sech[(t − x/Ṽg)/τ0]

× exp[i(K̃0 + 1/(2LD))x], (53)

�(D)
pp (r,t) =

√
K̃2(

τ 2
0 W̃

) tanh[(t − x/Ṽg)/τ0]

× exp[i(K̃0 + 1/(2LD))x]. (54)

Here K̃0 = Re[K(ω)]|ω=ωEIT . This set of solutions describes
the bright and dark traveling waves with the group velocities
Ṽg = Re[(1/[∂K(ω)/∂ω])|ω=ωEIT ]. The corresponding electric
fields of bright and dark waves are readily obtained as

E(B)
pp (r,t) = h̄

| p20|τ0

√
K̃2

W̃
up(z)sech

[
τ−1

0

(
t − x

Ṽg

)]
× exp i[K(ω) + k(ωp) + 1/(2LD) − (ω + ωp)t]

+ c.c., (55)

E(D)
pp (r,t) = h̄

| p20|τ0

√
K̃2

W̃
up(z)tanh

[
τ−1

0

(
t − x

Ṽg

)]
× exp i[K(ω) + k(ωp) + 1/(2LD) − (ω + ωp)t]

+ c.c. (56)

(i) For stable bright nonlinear SPs we have
W̃ ≈ (2.88 + 0.56i) × 10−11 cm−1 s2, Lnon ≈ 22 cm,
Ldis = 23 cm, and ddis ≈ 1. (ii) In order to observe the
shape preserved dark nonlinear SPs one has W̃ ≈ (−7.96 +
3.30i) × 10−12 cm−1 s2, �p ≈ 5.95 MHz, Lnon ≈ 0.35 cm,
Ldis ≈ 0.35 cm, and ddis = 1. The propagation of nonlinear
bright and dark SPs is depicted in Fig. 6.

Evidently, the balanced dispersion with sufficient self-
focusing coefficient is obtained by assuming �c = −2 MHz,
�p = 4 MHz, and θ ≈ 63◦, results in the shape preserved ro-
bust nonlinear bright SP propagation with Ṽg ≈ 1.49 × 10−4c

slow group velocity, and as a result the bright surface polari-
tonic solitons can be excited and travel without significant
distortion for a fairly long distance. Moreover, the peak power
of the input probe laser pulse for the formation of the bright
optical solitons can be calculated by Poynting’s theorem [52]

P =
∫

S

dS
(
E(B)

pp × H (B)
PP

) · ex, (57)

where

H (B)
pp = ε0cneffE

(B)
pp ey (58)
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is the magnetic-field vector of the excited SPs. Therefore, one
can obtain the bright input peak power as

P̄ (B)
max = 2ε0cneffS0

∣∣E(B)
pp,max

∣∣2 = 4.57 μW, (59)

which is a very low input power to excitation of the surface
polaritonic solitons.

Similarly, by relatively enhanced field concentration
|End|2 ≈ 3|E0|2 as well as the negligible linear absorp-
tion and by taking into account �c ≈ 9 MHz, θ = 60◦,
�s = 32 MHz, and �p ≈ 6 MHz, the resonantly excited su-
perluminal dark nonlinear SP (with Ṽg ≈ −7.97 × 10−4c)
can be propagated without serious distortion. The phys-
ical explanation can be expressed as follows: the half
probe field Rabi frequency is used for the excitation of
the nonlinear SPs. In the bright SP solitons one has
Im[K(ωEIT)] = 0.0016 cm−1 and Im[k(ωEIT)] = 0.001 cm−1,
which implies that Im[K(ωEIT) + k] ≈ 0.003 cm−1 and �pp ∼
�(x=0)

pp e−Im[K(ωEIT)+k] ≈ 0.997�(x=0)
pp . The small power attenu-

ation as well as the balanced optical nonlinearity and dispersion
effects result in the robust nonlinear bright SP propagation as
a surface polaritonic soliton. Also, the propagation length of
the excited SP’s soliton along x direction can be estimated
as LBr = 3 cm. Similarly, for the dark nonlinear SP propaga-
tion Im[K(ωEIT)] ≈ 0.02 cm−1, as a result Im[K(ωEIT) + k] ≈
0.022 and |�pp|2 ∼ 0.67|�(x=0)

pp |2 after z = 10Lnon. In this
case, the highly self-defocusing nonlinearity and sufficient
enhanced GVD in the resonant excitation are observed simulta-
neously, which demonstrates that the stable superluminal dark
SP solitons without serious distortion in pulse envelope can
propagate even up to 0.7 cm.

B. Weak light surface polariton rogue waves
and breathers solutions

1. First- and second-order surface polariton peregrine breathers

One of the outstanding features of the present work is the
investigation of the SPRWB excitation and propagation in this
coupler free planar waveguide. These nonlinear optical waves
are the exact solutions of the standard self-focusing form of
the nonlinear Schrodinger equation (NLSE)

i
∂u

∂s
+ 1

2

∂2u

∂σ 2
+ |u|2u = 0. (60)

This equation is obtained from Eq. (52) by neglecting
the total loss of the optical waveguide. However, the
suppression of the loss can be achieved by controlling
the driven laser intensities and detunings. The loss reduction
and modulated linear and nonlinear SPs can be achieved
in the proposed waveguide by taking the experimentally
feasible parameters to the NIMM and atomic medium
as �s ≈ 34.6 MHz, �c = 30.8 MHz, �s = 15.70 MHz,
�p = 1 MHz, and ωEIT ≈ 1 MHz (center of the narrow
EIT window) and, by taking θ = 63.27◦, one has K0 ≈
(7.71 + 0.29i) cm−1, K1 = (1.01 + 0.36i) × 10−6 cm−1s,
α = 0.001 cm−1, K2 = (−2.65 + 0.52i) × 10−11 cm−1s2,
W = (3.48 − 0.05i) × 10−11 cm−1s2, τ0 = 8.5 × 10−7 s,
U0 ≈ 1 MHz, Lnon ≈ 2.87 cm, Ldis = 2.74 cm, and
Labs = 1/α ≈ 620 cm, and, as a result ddis ≈ 1.05, and
Eq. (48) then was reduced to the standard NLSE with

sufficient probe laser field concentration |End|2 ≈ 5.6|E0|2 in
the NIMM-atomic medium interface.

The standard NLSE admits a hierarchy of the localized
rogue waves (breathers) solutions with a single maximum
referred to as the peregrine rogue wave. This kind of breather
can be written in terms of the polynomials G(s,σ ), H (s,σ ),
and D as [53]

u(s,σ ) =
[

1 − G + iH

D

]
eis . (61)

The first-order solution is then given by

G = 4, H = 4σ, D = 1 + 4s2 + 4σ 2. (62)

After returning to original variables we have

�pp(x) = U0

[
1 − 4

(1 + 2ix/Lnon)

1 + 4x2/L2
non + 4[(t − x/Ṽg)/τ0]2

]

× ei(K̃α+ 1
Lnon

)x. (63)

These breathers are localized in time and space and the
amplitude can be amplified by a factor of 3 in the (x,τ ) = (0,0).
However, the mentioned breather can also be coherently gener-
ated and manipulated by the phase engineering techniques. The
first-order solution is then rewritten in the form of �pp(x,t) =
ψ (1)

pp (x,t)eiϕ
(1)
pp (x,t) with

ψ (1)
pp (x,t) =

√√√√1 + 8
(
4x2/L2

non − 4(τ/τ0)2 − 1
)

(
1 + 4x2/L2

non − 4(τ/τ0)2
)2 , (64a)

ϕ(1)
pp (x,t) =

(
K̃(ω) + 1

Lnon

)
x − 2x/Lnon

x2/L2
non + (τ/τ0)2 − 3/4

,

(64b)

where τ = x − t/Ṽg . Excitation and dynamics of the surface
polaritonic rogue wave is represented in Fig. 7. The simulations
indicate that the first-order SP peregrine wave can be generated
in this polaritonic waveguide. We give two physical explana-
tions for the formation and propagation of the SP peregrine
rogue wave. First, the dynamics of the probe laser field under
slowly varying amplitude approximation described by the
standard NLSE admits the rogue wave solutions. Second, the
NIMM-atomic medium interface can be effectively assumed
as a nonlinear self-focusing system due to giant field concen-
tration, suppressed atomic absorption, and controllable optical
Kerr effect and, as a result, the proposed medium has potential
for the propagation of the SP peregrine wave. The surface
polaritonic plane wave then experiences dynamic growth as a
result of MI in the proposed scheme. This SP amplification then
results in the observation of the SP breather with intensity peaks
up to |�pp,max|2 ≈ 9|U0|2 [Fig. 7(a)] in a subluminal slow light
level Ṽg ≈ 3.35 × 10−4c. The generated SP peregrine breather
can be propagated through the waveguide at the optimum probe
field incidence θ ≈ 63.30◦ with a very low generation peak
power P̄max ≈ 4 μW.

The corresponding contour map of the excited SP peregrine
breather [panel (b) of Fig. 7] also denotes that the amplitude
of the excited wave is dramatically decreased out of the
amplification region (x,τ ) ≈ (0,0). However, the formations
of this SP peregrine breather can be manipulated by phase
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FIG. 7. Excitation of the weak light first-order surface polaritonic
peregrine waves: 3D representation of the formation and evolution
of the first-order surface polaritonic peregrine wave in the NIMM-
quantum emitter interface is represented in panel (a). Panel (b)
represents the contour map of panel (a), while the effect of phase
engineering on the localization and the modulation of its contour map
is represented in panel (c).

engineering of this rogue wave. Here the initial conditions
can be taken as ψ (1)

pp = const and θ (1)
pp = θi ; however, for a

weak probe laser the giant SP intensity is observed only for
|τ | � τ0 and x � Lnon. Therefore, the SP peregrine breather
can also be observed by applying the small phase perturbation
[Fig. 7(c)]. The above results can be verified by taking the
numeric values to this waveguide, τ ≈ 0.7 μs, x = 4.85 cm,
one has |ψ (1)

pp | = 2.97, ϕ(1)
pp = 0.32, and �(1)

pp ∼ U0(1 − 0.3i);
as a result the phase (ϕ) can be applied as a perturbation
parameter and in this case |�pp,max(ϕpp)|2 ≈ 8.86|U0|2 is also
obtained.

The giant optical Kerr effect and the relatively large probe
field factor in the NIMM-atomic medium interface results in
the nonlinear focusing of the local polaritonic wave amplitude
which leads to the generation of higher-order SP peregrine
breathers in this planar waveguide. The polynmials for this
second-order SP peregrine breather (super-rogue wave) is
[54,55]

G =
[(

x

Lnon

)2

+
(

τ

τ0

)2

+ 3/4

]

×
[(

x

Lnon

)2

+ 5

(
τ

τ0

)2

+ 3

4

]
,

H =
(

τ

τ0

)[(
τ

τ0

)2

− 3

(
x

Lnon

)2
]

+
(

τ

τ0

)⎧⎨
⎩2

[(
x

Lnon

)2

+
(

τ

τ0

)2
]2

− 15

8

⎫⎬
⎭,

FIG. 8. Observation of the second-order surface polariton pere-
grine breathers. The giant SP amplitude enhancement |�(B)

PP | ≈
4.58U0 with sufficient localized distribution is achieved.

D = 1

3

[(
x

Lnon

)2

+
(

τ

τ0

)2
]3

+ 1

4

[(
x

Lnon

)2

− 3

(
τ

τ0

)2
]

+ 3

[
12

(
x

Lnon

)2

+ 44

(
τ

τ0

)2

+ 1

]
. (65)

The dynamics of the second-order SP peregrine breather is
represented in Fig. 8. This simulation indicates that the SP
super-rogue wave has a maximum amplitude in (x,τ ) = (0,0)
up to |�(2)

pp |2 ≈ 25|U0|2. The obtained intensity peak crucially
depends on the loss mechanism of the medium, i.e., absorption
of the atomic medium and ohmic loss of the NIMM, field
concentration in the NIMM-atomic medium interface, and
enhancement of the optical self-focusing. Therefore, small
peak attenuation is expected due to the weak losses of this
polaritonic waveguide.

In order to see the SP super rogue wave, we
choose the experimental parameter of the atomic en-
sembles and the NIMM layer. One has �c = 1.9 MHz,
�p = 1 MHz, �c = 31 MHz, �s = 25 MHz in the ωEIT ≈
0.7 MHz, Im(K0) = 0.01 cm−1, Im[k(ωEIT)] = 0.007 cm−1,
Im[K(ωEIT) + k(ωEIT)] ≈ 0.02 and, with subluminal group
velocity Ṽg ≈ 4500 m/s, field attenuation |�pp(x = 3Lnon,t =
x/Ṽg)| ∼ 0.84U0 can be achieved and hence SP surface rogue
wave with |�(2)

pp,max| ≈ 21|U0|2 and very low generation power
P̄max ≈ 4 μW is observed in the �x ≈ 0.52 cm and �τ =
0.03τ0 intervals. The observation of the extreme SP super-
rogue waves may have potential applications in many fields of
plasmonics such as the optical resonators, nanoantennas and
amplifiers, subwavelength imaging and photolithography, etc.

2. Observation of the periodic surface polariton breathers

The standard NLSE admits other exact solutions which
are periodic in the σ and s directions. The special first-order
solution pointed out by Akhmediev and Korneev can be
assumed as

�
(1)
pp,AB(s,σ ) = U0

[
1 + 2[1 − 2a] cosh(bs) + ib sinh(bs)√

2a cos (�σ ) − cosh(bs)

]

× ei(K̃α+ 1
Lnon

)x, (66)
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which, after returning to the original variable, we have

�
(1)
pp,AB(x,τ ) = U0

[
(1 − 4a) cosh (bx/Lnon) + √

2a cos (�τ/τ0) + ib sinh (bx/Lnon)√
2a cos (�τ/τ0) − cosh (bσ )

]
ei(K̃α+ 1

Lnon
)x, (67)

where a is the modulation parameter, real variable b =√
8a(1 − 2a), and � = 2

√
1 − 2a are the parametric gain

coefficient and the modulation frequency, respectively. The
evolution and propagation of the Akhemediev breathers is
depicted in Fig. 9. Here, for 0 < a < 0.5, the instability can be
periodically modulated and as a result the plane wave (a = 0)
possesses a significant pulse shape and converts into a train of
periodic waves along τ axis with T = π/

√
1 − 2a period.

The physical explanation of this effect can be expressed
as follows. The initial surface polaritons can be assumed as a
plane wave which can experience an exponential growth due
to gain coefficient and as a result the SP’s amplitude amplified
significantly by means of the growth factor b in a certain period
of time. Existence of the modulated self-focusing nonlinearity
of the atomic medium, negligible loss of the waveguide,
and the giant electric-field concentration leads to the time
domain modulation of the instability. Therefore, amplified SP’s
amplitude in time domain is observed and the first-order SP
Akhmediev breathers can be excited and propagated in this
waveguide.

Efficient propagation of the SP Akhmediev breather can
also be observed in an experiment by taking ν1 ≡ √

2a = 0.71,
� ≈ 1.41, b = 1, T = 1.39π , �τ ≈ 1.7τ0, and �x = 0.1Lnon

and |�pp,AB| ≈ 2.72U0 maximum peak of the SPs is obtained.
By choosing a = 0.32, T = 1.67π and |�pp,AB| ≈ 2.41U0. As

FIG. 9. Dynamics of the SP Akhemediev breathers. The dynamics
of the probe field intensity |�pp,AB/U0|2 as a function of normalized
length x/LNon and normalized time (t − z/Ṽg)/τ0 is represented in
panel (a). The parameters used are � = 1.2, a = 0.32, and b = 0.96.
Panel (b) represents the corresponding contour map of the panel (a)
when the modulation frequency is set as real values. This plot shows
the zero velocity of the SP Akhmedieve breather propagation. (c)
The nonzero velocity of the SP Akhmediev breathers: this breather
propagation can be achieved by considering the complex frequency
modulation. The values are the same as panel (a) with �i = 0.3.

a result, by increasing the modulation parameter a, the strong
localizations of the SPs in both dimensions can be achieved;
however, the peak intensity of the rogue waves is decreased
simultaneously. The proper set of the modulation parameter in
order to obtain the maximum peak intensity is a = 0.25.

The nonzero velocity of the SP Akhmediev breathers can
also be observed in the waveguide by inducing the imaginary
parts to the modulation frequency (i.e., � = �r + i�i). The
exact solution in this case can be obtained by using the Darboux
transformation

�pp,AB = U0

[G1 + iG2

DG

]
eis ′

, (68)

where

DG = cosh

(
�rlx

Lnon
+ ϑi

)
cosh(2ξi)

− cos

(
�ilx

Lnon
− ϑr

)
sin (2ξr),

G1 = cosh

(
�rlx

Lnon
+ ϑi

)
[cosh (2ξi) − 2l sin (2ξr)]

+ cos

(
�ilx

Lnon
− ϑr

)
[2l cosh (2ξi) − sin (2ξr)],

G2 = 2l

[
cos (2ξr) sinh

(
�rlx

Lnon
+ ϑi

)

− sin

(
�ilx

Lnon
− ϑr

)
sinh (2ξi)

]
. (69)

In order to obtain the above equation, we used

ϑr(i) = �r(i)

(
t + ν1x

Lnon

)
,

p =
√(

1 + �r

2

)2

+
(

�i

2

)2

,

q =
√(

1 + �r

2

)2

+
(

�i

2

)2

,

cos(2ξr ) = �r

(p + q)
, cosh(2ξi) = (p + q)

2
. (70)

The result of these calculations is depicted in Fig. 9(c).
It can be noticed that the train of the pulses travels with
the nonzero velocity while the propagation direction of the
breathers possesses small angles with respect to the τ axis.
The explanation of this effect can be expressed as follows.
The complex eigenvalues (i.e., e1 = ν1 + il) of the Daroubax
transformation results in the complex modulation frequency.
The zero velocity propagation of the Akhmediev breather
was obtained for pure imaginary of the eigenvalue, while the
real value of the frequency modulation and consequently the
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FIG. 10. Dynamics of the higher-order NLSE solution: the col-
lision of the SP Akhmediev breathers is plotted as a function of
normalized time (τ/τ0) and normalized length (z/LNon). The picture
shows the significant time and space localizations of the SP breather.
The parameters used are a2 = 0.30, �i = 0.3, l1 = 0.6, and l2 =
−0.6. Other parameters are the same as Fig. 9.

real value of the complex eigenvalue of this transformation
is responsible for the nonzero propagation of the Akhmediev
breathers.

The high SP breather intensity with sufficient localization
can also be achieved in this coupler free polaritonic waveguide
by investigation of the collision between the two independent
Akhmediev breathers with different frequency modulations. In
this case the higher-order NLSE can be solved as [56]

�
(2)
pp,AB = �

(1)
pp,AB + 2(e′∗1 − e′

1)s12m
∗
12

|s12|2 + |m12|2 . (71)

The exact coefficient of Eq. (71) can be found in Ap-
pendix E. This solution leads to the collision of the two
SP Akhmediev breather as depicted in Fig. 10. Here the
existence of two near zero velocity SP breather modes
with the two identical frequency modulations �(�′) and
the two eigenvalues e1 = ν1 + il, e′

1 = ν2 + il′ results in the
formation of the giant SP intensity peak in the (x,τ ) =
(0,0). The maximum SP intensity peak can be estimated as
|�(2)

pp,AB|2 ≈ 25U 2
0 . However, the peak intensity of this breather

is limited by the different loss mechanisms in the present
waveguide. The above results can be checked by assuming
the real parameters in this waveguide: ωEIT ≈ 1 MHz, �s =
30 MHz and �c ≈ 35 MHz, Im[K(ωEIT)] = 0.001 cm−1 and
Im[k(ωEIT)] ≈ 0.004 cm−1, K̃α(ωEIT) = Im[K + k] ≈ 0.005,
x0 = 2.7 cm, |�pp| ≈ 0.98U0 and the loss can be effectively
suppressed and one has |�(1)

pp,AB(x = 0,τ = 0)/U0| = 2.38;
therefore, the highly localized intense SP mode can be ob-
served in the presented waveguide as a result of two SP Akhme-
diev breather mode collisions. The corresponding intensity
peak of this breather is estimated as∣∣�(2)

pp,AB(x = 0,τ = 0)
∣∣2 = 22.61|U0|2. (72)

The first- and second-order SP Akhmediev breathers can be
propagated only for 0 < a < 0.5 frequency modulation. The
limiting case a → 0.5 corresponds to the first- and second-
order SP peregrine rogue waves and the solution for a > 0.5
referred to as Kuznetsov-Ma breathers, which are

�
(1)
pp,KMB(x,τ ) = U0

[
(1 − 4a) cos(bx/Lnon) + √

2a cosh(�τ/τ0) − ib sin(bx/Lnon)√
2a cosh(�τ/τ0) − cos(bx/Lnon)

]
ei(K̃α+ 1

Lnon
)x. (73)

This SP breather is then periodic in the x axis and localized in
the τ domain. The dynamics of the SP Kuznetsov-Ma breathers
is represented in Fig. 11. It can be realized that the breather is

FIG. 11. Observation of the SP Kuznetsov-Ma breathers. This
solution of the standard NLSE is localized in both in x and τ axes
and propagates along the interface of the NIMM–atomic medium
interface. The probe field intensity |�p/U0|2 has maximas along the
propagation direction with giant SP intensity peaks. The propagation
length can be greatly enhanced compared to that of the temporal
soliton. The parameter used for this simulation is � = 1.26, b = 1.5,
and Tz ≈ 1.3π .

modulated in the position domain with period

Tz = π√
2a(1 − 2a)

. (74)

Moreover, compared to that of the SP Akhmediev breathers,

b =
√

8a(2a − 1), � = 2
√

2a − 1 (75)

are the instability growth rate and the modulation frequency of
the SP Kuznetsov-Ma breathers.

The physical origin of the generation of the SP Kuznetsov-
Ma breathers is the modulation instability in the position
domain. Here the initial surface polaritonic plane wave is
assumed to be excited in this waveguide which can be am-
plified through the propagation in the NIMM-atomic medium
interface due to MI. Therefore, the train of intense SP pulse
along with the mentioned interface can travel in this waveguide
with sufficiently enhanced propagation length compared to
that of the temporal solitons. This kind of SP breather can
also be observed in an experiment by considering the above
system parameter: x0 = −2.7 cm, K̃α(ωEIT) = 0.004 cm−1 by
propagation after 7Lnon we have |�pp,KMB(x,t)| ∼ 0.93|U0|
and Ṽg ≈ 4460 m/s, which represents the robust intense SP
pulse compared to that of the temporal soliton. The existence
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of this kind of SP pulse with enhanced propagation length may
have potential applications in many fields of plasmonics.

V. CONCLUSION

To sum up, the coherent excitation and propagation of
the surface polaritonic solitons, rogue waves, and breathers
are proposed using a coupler free waveguide which consists
of three layers: transparent medium, NIMM layer, and cold
four level N type atomic medium. In the linear excitation,
the giant field concentration (|End|2 ≈ 6|E0|2) and modified
dielectric constant of the atomic susceptibility are achieved in
the obtained narrow EIT window.

Existence of giant controllable Kerr nonlinearity also results
in the stable propagation of (1 + 1)D temporal bright and
dark surface polaritonic solitons with controllable SP group
velocity. Therefore, the linear and nonlinear optical properties
of the SP’s in this optical waveguide can be modified, which
makes it possible to use this polaritonic device as a SPRWB
propagator. The results for the surface polaritonic breathers
and rogue waves have some interesting aspects.

(i) The first- and second-order peregrine rogue wave is
observed in this coupler free polaritonic waveguide. The con-
siderable intensity enhancement and the sufficient localization
of the SPs are observed by the investigation of the various order
of peregrine breather dynamics.

(ii) The different zero and nonzero velocities and collisions
of the two modes near the zero velocity surface polaritonic
Akhmediev breather is achieved in our proposed waveguide.

(iii) The train of the intensity enhanced SPs with effective
time and space localizations is also observed in this coupler
free optical waveguide due to the existence of the MI and as a
result the giant propagation length of the SPs can be achieved.

The localized SPs with the giant intensity and enhanced
propagation length due to rogue wave and breather formations
may have potential applications in the fields of plasmonics and
optical communication systems.
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APPENDIX A: EXACT SOLUTION OF THE BLOCH EQUATIONS

The dynamics of the density matrix elements of the proposed four level N type cold atomic medium can be expressed as
follows:

i

(
∂

∂t
+ 	21

)
ρ̃22 − i	42ρ̃44 − i	32ρ̃33 + 1

2
[ζ ∗(z)�∗

c ρ̃32 − ζ (z)�cρ̃23] = 0, (A1a)

i

(
∂

∂t
+ 	33

)
ρ̃33 − i	43ρ̃44 + 1

2
[ζ (z)�cρ̃23 − ζ ∗(z)�∗

c ρ̃32 + ζ (z)�pρ̃13 − ζ ∗(z)�pρ̃31] = 0, (A1b)

i

(
∂

∂t
+ 	44

)
ρ̃44 + 1

2
[ζ (z)�sρ̃14 − ζ ∗(z)�∗

s ρ̃41] = 0, (A1c)

i

(
∂

∂t
+ d21

)
ρ̃21 + 1

2
ζ ∗(z)�∗

c ρ̃31 − 1

2
ζ (z)�sρ̃24 − 1

2
ζ (z)�pρ̃23 = 0, (A1d)

i

(
∂

∂t
+ d31

)
ρ̃31 + 1

2
ζ (z)�cρ̃21 − 1

2
ζ (z)�sρ̃34 + 1

2
ζ (z)�p(ρ̃11 − ρ̃33) = 0, (A1e)

i

(
∂

∂t
+ d41

)
ρ̃41 − 1

2
ζ (z)�pρ̃43 + 1

2
ζ (z)�s(ρ̃11 − ρ̃44) = 0, (A1f)

i

(
∂

∂t
+ d32

)
ρ̃32 + 1

2
ζ (z)�c(ρ̃22 − ρ̃33) + 1

2
ζ (z)�pρ̃12 = 0, (A1g)

i

(
∂

∂t
+ d42

)
ρ̃42 − 1

2
ζ (z)�cρ̃43 + 1

2
ζ (z)�sρ̃12 = 0, (A1h)

i

(
∂

∂t
+ d43

)
ρ̃43 + 1

2
ζ (z)�sρ̃13 − 1

2
ζ ∗(z)�∗

c ρ̃42 − 1

2
ζ ∗(z)�∗

pρ̃41 = 0, (A1i)

where d21 = (�p − �c) + iγ21, d31 = �p + iγ31, d41 = �s + iγ41, d32 = �c + iγ32, d42 = (�c + �s − �p) + iγ42, and d43 =
(�s − �p) + iγ43. The definition of the atomic decay rates is given in Sec. III.
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APPENDIX B: DETAILS OF DERIVATION OF EQ. (48)

In this Appendix, we give some steps of the nonlinear Schrödinger equation derivation; the asymptotic expansions of the Bloch
equations for the lth order read

i

(
∂

∂t0
+ 	21

)
ρ̃

(l)
22 − i	42ρ̃

(l)
44 − i	32ρ̃

(l)
33 + 1

2

(
ζ ∗(z)�∗

c ρ̃
(l)
32 − ζ (z)�cρ̃

(l)
23

) = A(l), (B1)

i

(
∂

∂t0
+ 	33

)
ρ̃

(l)
33 − i	43ρ̃

(l)
44 + 1

2

(
ζ (z)�cρ̃

(l)
23 − ζ ∗(z)�∗

c ρ̃
(l)
32 + ζ (z)�(l)

p ρ̃
(0)
13 − ζ ∗(z)�(l)

p ρ̃
(0)
31

) = B(l), (B2)

i

(
∂

∂t0
+ 	44

)
ρ̃

(l)
44 + 1

2

(
ζ (z)�cρ̃

(l)
14 − ζ ∗(z)�∗

c ρ̃
(l)
41

) = C(l), (B3)

i

(
∂

∂t0
+ d21

)
ρ̃

(l)
21 + 1

2
ζ ∗(z)�∗

c ρ̃
(l)
31 − 1

2
ζ (z)�sρ̃

(l)
24 − 1

2
ζ (z)�(l)

p ρ̃
(0)
23 = D(l), (B4)

i

(
∂

∂t0
+ d31

)
ρ̃

(l)
31 + 1

2
ζ (z)�cρ̃

(l)
21 − 1

2
ζ (z)�sρ̃

(l)
34 − 1

2
ζ (z)�(l)

p

(
ρ̃

(0)
11 − ρ̃

(0)
33

) = e(l), (B5)

i

(
∂

∂t0
+ d41

)
ρ̃

(l)
41 + 1

2
ζ (z)�s

(
ρ̃

(l)
11 − ρ̃

(l)
44

) − 1

2
ζ (z)�(l)

p ρ̃
(0)
43 = F (l), (B6)

i

(
∂

∂t0
+ d32

)
ρ̃

(l)
32 + 1

2
ζ (z)�c

(
ρ̃

(l)
22 − ρ̃

(l)
33

) + 1

2
ζ (z)�(l)

p ρ̃
(0)
12 = G(l), (B7)

i

(
∂

∂t0
+ d42

)
ρ̃

(l)
42 − 1

2
ζ (z)�cρ̃

(l)
43 + 1

2
ζ (z)�sρ̃

(l)
12 = H (l), (B8)

i

(
∂

∂t0
+ d43

)
ρ̃

(l)
43 + 1

2
ζ (z)�sρ̃

(l)
13 − 1

2
ζ ∗(z)�∗

c ρ̃
(l)
42 − 1

2
ζ ∗(z)�∗(l)

p ρ̃
(0)
41 = I (l), (B9)

where we have assumed the multiple scale time and position expansions as
∂

∂t
= ∂

∂t0
+ ε

∂

∂t1

and
∂

∂x
= ∂

∂x0
+ ε

∂

∂x1
+ ε2 ∂

∂x2
.

We mentioned that this assumption is compatible to that of the formalism extended in [50]. The asymptotic expansion of the
Bloch equation can also be written as

i

(
∂

∂x0
+ 1

neffc

∂

∂t0

)
�(l)

p + κ13
〈
ρ̃

(l)
13

〉 = Q(l). (B10)

In our formalism for linear analyses l = 1, we seek a solution of the form �(1)
p = F exp(iφ), where φ = K(ω)x − ωt = K(ω)x0 −

ωt0; F is the yet to be determined probe field envelope that is assumed to be slowly varying variables x2, x1, and t1. The right-hand
side of Eqs. (B1)–(B9) for the various orders can be obtained as A(1) = B(1) = C(1) = D(1) = E(1) = F (1) = G(1) = H (1) = I (1) =
0 and Q(1) = 0. In the second order we have A(2) = C(2) = 0, B(2) = ζ ∗(z)�∗(1)

p ρ̃
(1)
31 − ζ (z)�(1)

p ρ̃
(1)
13 , H (2) = −i∂ρ̃

(1)
42 /∂t1 and other

elements can be expressed as follows:

D(2) = −i
∂ρ̃

(1)
21

∂t1
+ 1

2
ζ (z)�(1)

p ρ̃
(1)
23 , (B11)

E(2) = −i
∂ρ̃

(1)
31

∂t1
− 1

2
ζ (z)�(1)

p

(
ρ̃

(1)
11 − ρ̃

(1)
33

)
, (B12)

F (2) = −i
∂ρ̃

(1)
41

∂t1
+ 1

2
ζ (z)�(1)

p ρ̃
(1)
43 , (B13)

G(2) = −i
∂ρ̃

(1)
32

∂t1
− 1

2
ζ (z)�(1)

p ρ̃
(1)
12 , (B14)

I (2) = −i
∂ρ̃

(1)
43

∂t1
+ 1

2
ζ ∗(z)�∗(1)

p ρ̃
(1)
41 , (B15)

Q(2) = −i

(
∂

∂x1
+ 1

neffc

∂

∂t1

)
�(1)

p . (B16)
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By substituting Eqs. (B11)–(B16) into Eqs. (B1)–(B10) and solving these equations in terms of �(2)
p , it is straightforward to obtain

L̂�(2)
p = S(2), i.e.,

L̂�(2)
p = iZ eiφ

(
∂F

∂x1
+ ∂K(ω)

∂ω

∂F

∂t1

)
, (B17)

where the expressions for Z and L̂ are omitted since they are lengthy. The solvability condition in this order can be readily
obtained as follows: (

∂F

∂x1
+ ∂K(ω)

∂ω

∂F

∂t1

)
= 0. (B18)

This expression denotes that the linear surface polariton can be propagated with Vg = [∂K(ω)/∂ω]−1; however, this order does
not give any information about the pulse shape of the surface polaritons. As a result, with the first and second order we go to the
third order (l = 3). In this order the right-hand side of Eqs. (B1)–(B9) can be expressed as follows: A(3) = −i∂ρ̃

(2)
22 /∂t1, C(3) =

−i∂ρ̃
(2)
44 /∂t1, B(3) = ζ ∗(z)(�∗(2)

p ρ̃
(1)
31 + �∗(1)

p ρ̃
(2)
31 ) − ζ (z)(�(2)

p ρ̃
(1)
13 + �(1)

p ρ̃
(2)
13 ), and H (3) = −i∂ρ̃

(2)
42 /∂t1 and other coefficients can

be written as

D(3) = −i
∂ρ̃

(2)
21

∂t1
+ 1

2
ζ (z)

(
�(2)

p ρ̃
(1)
23 + �(1)

p ρ̃
(2)
23

)
, (B19)

E(3) = −i
∂ρ̃

(2)
31

∂t1
− 1

2
ζ (z)

[
�(2)

p

(
ρ̃

(1)
11 − ρ̃

(1)
33

) + �(1)
p

(
ρ̃

(2)
11 − ρ̃

(2)
33

)]
, (B20)

F (3) = −i
∂ρ̃

(2)
41

∂t1
+ 1

2
ζ (z)

(
�(2)

p ρ̃
(1)
43 + �(1)

p ρ̃
(2)
43

)
, (B21)

G(3) = −i
∂ρ̃

(2)
32

∂t1
− 1

2
ζ (z)

(
�(2)

p ρ̃
(1)
12 + �(1)

p ρ̃
(2)
12

)
, (B22)

I (3) = −i
∂ρ̃

(2)
43

∂t1
+ 1

2
ζ ∗(z)

(
�∗(2)

p ρ̃
(1)
41 + �∗(1)

p ρ̃
(2)
41

)
, (B23)

Q(3) = −i

(
∂

∂x1
+ 1

neffc

∂

∂t1

)
�(2)

p − i
∂

∂x2
�(1)

p . (B24)

The substitution of Eqs. (B19)–(B24) into Eqs. (B1)–(B10) and solving the resultant equations in terms of �(3)
p leads to the

operator equations: L̂�(3)
p = S(3), i.e.,

L̂�(3)
p = Z eiφ

(
i
∂F

∂x2
− K2

2

∂2F

∂t2
1

+ W |F |2F
)

. (B25)

The solvability condition of Eq. (B25) (i.e., �(3)
p = 0) gives Eq. (48).

APPENDIX C: COEFFICIENTS OF THE FIRST-ORDER PERTURBATIVE SOLUTION

The coeffietients of the first-order perturbative solution can be expressed as follows:

a
(1)
21 = [(d31 + ω)D∗

c − |ζ (z)�s|2(d24 + ω)]ρ̃∗(0)
32 + Dpρ̃

∗(0)
41 + ζ (z)�c

[
Dc − |ζ (z)�s|2

(
ρ̃

(0)
11 − ρ̃

(0)
33

)]
(d13 − d42){Dcs + (d42 − d13)[Dc(d12 + ω) − |ζ (z)�s|2(d43 + ω)]} , (C1)

a
(1)
42 = ζ (z)�sD32ρ̃

∗(0)
32 − ζ (z)�cD41ρ̃

∗(0)
41 + ζ (z)2�c�s(d43 − d12)

(
ρ̃

(0)
11 − ρ̃

(0)
33

)
(d13 − d42){Dcs + (d42 − d13)[Dc(d12 + ω) − |ζ (z)�s|2(d43 + ω)]} , (C2)

a
(1)
43 =

Dpρ̃
(0)
32 + [Ds(d13 + ω) − Dc(d42 + ω)]ρ̃(0)

41 + ζ (z)�sX
(
ρ̃

(0)
11 − ρ̃

(0)
33

)
(d13 − d42){Dcs + (d42 − d13)[Dc(d12 + ω) − |ζ (z)�s|2(d43 + ω)]} , (C3)

where

Dp = ζ (z)2�c�s(d24 − d31),

X = |ζ (z)�c|2 − |ζ (z)�s|2 + (d12 + ω)(d42 + ω),

D32 = |ζ (z)�c|2 − |ζ (z)�s|2 + (d13 + ω)(d43 + ω),

D41 = |ζ (z)�c|2 − |ζ (z)�s|2 + (d12 + ω)(d13 + ω). (C4)
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APPENDIX D: COEFFICIENTS OF THE SECOND-ORDER PERTURBATIVE SOLUTION

The explicit forms of the density matrix coefficients (a(2)
j l ) in the second order read

a
(2)
22 = J1J2

(
a

(1)
31 − a

∗(1)
31

) + γ43J2X41ζ (z)�s

(
a

(1)
43 − a

∗(1)
43

) + X32ζ
∗(z)�cJ3

(
a

(1)
21 − a

∗(1)
21

)
	4γ31|ζ (z)�c|2X32 + X14|ζ (z)�s|2[γ32γ43 − 2iX32(γ31 + γ32)|ζ (z)�c|2]

, (D1)

a
(2)
33 = J1X32|ζ (z)�c|2

(
a

(1)
31 − a

∗(1)
31

) − X41X32g43|ζ (z)|2ζ (z)�s�c
[
�c

(
a

(1)
21 − a

∗(1)
21

) − �sg43
(
a

(1)
43 − a

∗(1)
43

)]
	4γ31|ζ (z)�c|2X32 + X14|ζ (z)�s|2[γ32γ43 − 2iX32(γ31 + γ32)|ζ (z)�c|2]

, (D2)

a
(2)
44 = X14J2|ζ (z)�s|2

(
a

(1)
31 − a

∗(1)
31

) + X41X32g43|ζ (z)|2ζ (z)�s�c
[
�c

(
a

(1)
21 − a

∗(1)
21

) − �sg43
(
a

(1)
43 − a

∗(1)
43

)]
	4γ31|ζ (z)�c|2X32 + X14|ζ (z)�s|2[γ32γ43 − 2iX32(γ31 + γ32)|ζ (z)�c|2]

, (D3)

where

J1 =	44 − 2iX41|ζ (z)�s|2, J2 = γ32 − 2iX32|ζ (z)�c|2, (D4)

J3 =X32ζ (z)�c[γ32	44 − iX14(2γ31 + γ43)|ζ (z)�s|2].

The other matrix elements can be directly observed with the second-order perturbation of the Bloch equations as follows:

a
(2)
41 = 1

2d41

[
ζ (z)�s

(
a

(2)
44 − a

(2)
11

) + ζ (z)�pa
(1)
43

]
,

a
(2)
32 = 1

2d32

[
ζ (z)�c

(
a

(2)
33 − a

(2)
22

) − ζ ∗(z)�∗
s a

(1)
12

]
. (D5)

Moreover, other matrix elements in the second-order approximation can be obtained from the matrix⎛
⎜⎜⎜⎜⎝

ρ̃
(2)
21

ρ̃
(2)
31

ρ̃
∗(2)
42

ρ̃
(2)
43

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ω − d21
ζ ∗(z)�∗

c

2
−ζ (z)�s

2 0
ζ (z)�c

2 ω − d31 0 −ζ (z)�s

2
−ζ ∗(z)�∗

s

2 0 ω − d∗
42

ζ ∗(z)�∗
c

2

0 −ζ ∗(z)�∗
s

2
ζ (z)�c

2 ω − d∗
43

⎞
⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎝

−i ∂
∂t1

ρ̃
(1)
21

−i ∂
∂t1

ρ̃
(1)
31

−i ∂
∂t1

ρ̃
∗(1)
42

−i ∂
∂t1

ρ̃
∗(1)
43

⎞
⎟⎟⎟⎟⎠. (D6)

APPENDIX E: EXPLICIT SOLUTION OF THE HIGHER-ORDER SP AKHMEDIEV BREATHERS SOLUTION

The coefficient appearing in Eq. (71) can be obtained by the following expressions:

m∗
12 = 2eis ′

D1
{α1[cos(2Ar ) − cosh(2Ai)] + α2[cos(2Br ) + cosh(2Bi)] sinh(C) − 4ilJ cosh(F)}, (E1)

s12 = 2eis ′

D1
{α3[cosh(2Ai) − cos(2Ar )] + α4[cos(2Br ) + cosh(2Bi)] sinh(F∗) − 4ilJ cosh(C∗)}, (E2)

where J = sinh(A) cosh(C∗) with

α1 = ν2 − ν1 + i(l1 − l2), α2 = ν1 − ν2 + i(l1 − l2),

α3 = ν2 − ν1 + i(l1 + l2), α4 = ν2 − ν1 + i(l2 − l1). (E3)

Moreover, in obtaining the above formula, we assumed

Ar = ξr + (�rτ/τ0 + ϑi)/2 − π/4, Ai = ξi + (�iτ/τ0 − ϑr )/2,

Cr = ξ ′
r + (�′

r τ/τ0 + ϑ ′
i )/2 − π/4, Ci = ξ ′

i + (�′
iτ/τ0 − ξ ′

r )/2,

Br = −(ξr + π/4) + (�rτ/τ0 + ϑi)/2, Bi = −ξi + (�iτ/τ0 − ϑr )/2,

Fr = −(ξ ′
r + π/4) + (�′

rτ/τ0 + ϑ ′
i )/2, Fi = −ξ ′

i + (�′
iτ/τ0 − ϑ ′

r )/2,

D1 = cosh(2Ai) − cos(2Ar ) + cosh(2Bi) + cos(2Br ). (E4)
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