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Dyakonov waves in biaxial anisotropic crystals
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We present the general analytical theory for Dyakonov surface waves at the interface of a biaxial anisotropic
dielectric with an isotropic medium. We demonstrate that these surface waves can be divided into two distinct
classes, with qualitatively different spatial behavior. We obtain explicit expressions for the Dyakonov waves’
dispersion and the parameter ranges for their existence.
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I. INTRODUCTION

Electromagnetic surface waves, strongly localized near the
interface of two different media, play an important role in
many areas of science and technology—from optical mi-
croscopy [1] and biosensing [2] to nano-optical tweezing [3]
and photonic integrated circuits [4]. Electomagnetic surface
waves are responsible for such phenomena as superlensing
[5,6], enhanced Raman scattering [7,8], and extraordinary light
transmission through subwavelength holes [9], While there
exists a number of different kinds of surface electromagnetic
waves, such as e.g., surface plasmons at the interface of a metal
and a dielectric [10] or Tamm-Shockeley states [11–13] at
the boundary of a photonic crystal [14–16], a new class of
surface electromagnetic modes has recently gained consider-
able attention [17–23]. These Dyakonov surface waves exist at
the interface of an isotropic and anisotropic dielectric media.
They can be supported by transparent optical materials and
thus do not suffer from the metallic absorption that plagues
surface plasmons [24]. Compared to the Tamm-Shockley state,
a Dyakonov wave does not require any periodic patterning
of the material forming the system, with the resulting light
scattering due to the inevitable disorder as a result of an
imperfect fabrication of such lattice.

The presence of Dyakonov waves at the isotropic-
anisotropic interface has been firmly established in the ex-
periment [23] and a number of adequate theoretical methods
exists for their quantitative description [18,19,21]. However,
due to the inevitable complexity of the boundary conditions
at the interface of a fully anisotropic dielectric, the resulting
theoretical description generally leads to a system of nonlinear
equations that must be solved numerically. While this may be
considered a straightforward task, Dyakonov waves are usually
extended over many wavelengths [21] and are therefore close to
the propagation wave threshold—which makes the numerical
solution more challenging. What is even more important,
with the theoretical “toolbox” limited to numerical methods,
the root-finding algorithm may even miss an entire class of
possible solutions.

In this work, we present a complete analytical solution for
the Dyakonov surface waves at the interface of an isotropic
and a biaxial dielectric medium. We show that, depending on
the magnitudes of the dielectric permittivity components in the
system, the interface can simultaneously support two different

classes of surface waves, with qualitatively different spatial
behavior.

II. MODEL

We consider the interface of an isotropic dielectric with the
permittivity ε0, with a biaxial anisotropic medium, with the
permittivity tensor

ε =

⎛
⎜⎝

εx 0 0

0 εy 0

0 0 εz

⎞
⎟⎠. (1)

We furthermore assume that one of the symmetry directions
of the anisotropic crystal (which will be referred to as the
axis z in our coordinate system—see Fig. 1) is normal to the
surface, as this is generally the case for a high-quality interface.
While a nonorthogonal orientation of ẑ with respect to the
plane of surface is possible, this would lead to a relatively high
density of surface defects—thus making the theory for surface
waves at an ideal planar interface irrelevant for most practical
applications. For convenience, the coordinate system origin
z = 0 is chosen at the plane of the interface—see Fig. 1.

In this work, we focus on guided surface waves with the
in-plane momentum q ≡ (qx,qy),

E(r,t) = Eq(z) exp(iqxx + iqyy − iωt), (2)

B(r,t) = Bq(z) exp(iqxx + iqyy − iωt), (3)

where

Eq(|z| → ∞) → 0, Bq(|z| → ∞) → 0. (4)

III. ELECTROMAGNETIC WAVES IN A BIAXIAL MEDIUM

For an evanescent wave that decays away from the z = 0
interface, we have

Eq(z) = e · exp (−κz), (5)

Bq(z) = b · exp (−κz). (6)

Note that, for a complex κ , the expressions (5) and (6) also
describe the propagating waves in the medium.
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FIG. 1. Schematics of the coordinate system at the planar inter-
face of a transparent isotropic medium (orange, bottom) and biaxial
anisotropic dielectric (green area, top).

Substituting (2) and (3) with (5) and (6) into Maxwell’s
equations, we obtain

bx = c

ω
(qyez − iκey), (7)

by = c

ω
(iκex − qxez), (8)

bz = c

ω
(qxey − qyex), (9)

and

M

⎛
⎜⎝

ex

ey

ez

⎞
⎟⎠ = 0, (10)

where

M ≡

⎛
⎜⎝

�x(κ) qxqy iκqx

qxqy �y(κ) iκqy

iκqx iκqy �z(κ)

⎞
⎟⎠, (11)

and

�x(κ) = εx

(
ω

c

)2

− q2
y + κ2, (12)

�y(κ) = εy

(
ω

c

)2

− q2
x + κ2, (13)

�z(κ) = εz

(
ω

c

)2

− q2
x − q2

y . (14)

From (10) we find the electrical field components in terms of
the amplitude a,

ex = iκqx

(
q2

y − �y(κ)
)
a, (15)

ey = iκqy

(
q2

x − �x(κ)
)
a, (16)

ez = (
�x(κ) · �y(κ) − q2

xq
2
y

)
a, (17)

which together with (7)–(9) define the entire electromagnetic
field (e, b) in (5) and (6).

Also, from Eq. (10) we obtain

det[M] = 0, (18)

which yields

εzκ
4 +

[
εz(εx + εy)

(
ω

c

)2

− (εx + εz)q
2
x

− (εy + εz)q
2
y

]
κ2 +

[
εz

(
ω

c

)2

− q2
x − q2

y

]

×
[
εxεy

(
ω

c

)2

− εxq
2
x − εyq

2
y

]
= 0. (19)

Equation (19) is a quadratic equation for κ2, with the straight-
forward solution

κ2
± = 1

2

{
εx+εz

εz

q2
x + εy + εz

εz

q2
y − (

εx + εy

)(ω

c

)2

±
√

D

}
,

(20)

where the discriminant

D =
[

(εx − εy)

(
ω

c

)2

+ εz − εx

εz

q2
x + εy − εz

εz

q2
y

]2

+ 4
(εx − εz)(εy − εz)

ε2
z

q2
x q2

y . (21)

When the discriminant is positive, there are three distinct
possibilities for the nature of the waves supported by the
anisotropic dielectric. If the right-hand side of Eq. (20) is
positive for κ2

+ and κ2
−, both waves with the “in-plane”

momentum q ≡ (qx,qy) are evanescent. In the opposite case,
when the right-hand side of Eq. (20) is negative in both cases,
the corresponding two waves are propagating. Finally, when
it’s positive for one choice of the sign in (20) and negative
for the other, we find that for the given in-plane momentum
q the dielectric interface supports one propagating and one
evanescent wave.

As follows from Eq. (21), the discriminant is positive-
definite (for any q) in each of the following cases: (i) any
uniaxial dielectric (εx = εy or εx = εz or εy = εz), (ii) εz <

min[εx,εy], and (iii) εz > max[εx,εy].
The boundaries that separate different portions of the

(qx,qy) phase space that respectively support only the prop-
agating waves, or only the evanescent fields, or a mixture of
evanescent and propagating waves, are given by

q2
x + q2

y = εz

(
ω

c

)2

(22)

and

q2
x

εy

+ q2
y

εx

=
(

ω

c

)2

. (23)

This behavior is illustrated in Fig. 2.
However, if

min[εx,εy] < εz < max[εx,εy], (24)
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FIG. 2. “Phase space” for the waves with “in-plane” momentum q [see Eqs. (5) and (6)] supported by an anisotropic dielectric. Panels
(a), (b), and (c) correspond to a uniaxial dielectric, with εx = εy > εz (a), εx = εz < εy (b), and εx = εz > εy (c), respectively. Panels (d) and
(e) represent the case of a biaxial dielectric, correspondingly with εz < εx < εy (d) and εx < εy < εz (e). The red line [the inner boundary in
(a),(b),(d) and the outer boundary in (c),(e)] corresponds to Eq. (22) and the green line [the outer boundary in (a),(b),(d) and the inner boundary in
(c),(e)] represents Eq. (23). The dielectric permittivity tensor components satisfy (a) εx = εy = 3.5εz, (b) εx = εz = 3.5εy , (c) εx = εz = εy/4,
(d) εx = 2εz and εy = 3.5εz, (e) εx = εz/4, and εy = εz/2.

the discriminant in Eq. (21) can, and does, become negative
for certain ranges of the values of qx and qy . In this case, κ± is
complex, with nonzero values for both its real and imaginary
parts. These “ghost waves,” recently described in Ref. [25],
combine the oscillatory behavior of the propagating waves with
the exponential decay characteristic of the evanescent fields
and represent the third class of the waves that can be supported
by a transparent dielectric medium.

When the inequality (24) is satisfied, the boundaries of the
portion of the (qx,qy) phase space of the ghost modes are
defined by the four equations

√
|εx − εz|

εz

qx ±
√∣∣εy − εz

∣∣
εz

qy ±
√∣∣εy − εx

∣∣ω
c

= 0. (25)

Figure 3 shows the phase space of a biaxial anisotropic dielec-
tric that supports ghost waves. Note its nontrivial structure near
the point corresponding to the intersection of the boundaries
described by Eqs. (22) and (23) in the magnified view of its
panel (b).

When the permittivity εz in the normal-to-the-interface
direction approaches the value of one of the in-plane permit-
tivities εx or εy , the ghost regions in the phase space collapse
to increasingly narrow strips parallel to either the qx (when
εz → εx) or qy (for εz → εy) axis. This “collapse” is however
relatively slow, and substantial ghost regions are still present

even when the permittivity is within 1% of the critical value,
as seen in Fig. 4.

Most importantly, ghost regions have substantial presence in
actual biaxial anisotropic crystals. This is illustrated in Fig. 5,
where we show the phase space for the sodium nitrite NaNO2,
with the dielectric permittivity tensor components [26] εx =
1.806, εy = 2.726, and εz = 1.991.

While Eqs. (7)–(17) adequately describe the general case
of a dielectric crystal with arbitrary degree of anisotropy, the
isotropic limit εx → εy → εz → ε0 is singular, as here both
κ+ and κ− are identical,

κ+(εx,εy,εz → ε0) = κ−(εx,εy,εz → ε0) = κ0, (26)

with

κ0 = q2
x + q2

y − ε0

(
ω

c

)2

, (27)

and direct substitution of (26) and (27) into (15)–(17) and (7)–
(9) yields

ex,ey,ez,bx,by,bz → 0a0, (28)

with a0 → ∞. This uncertainty can be removed if we explicitly
introduce s and p polarizations, correspondingly with e(s)

z = 0

and b
(p)
z = 0:

e(s)
x = qyas, (29)
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2 propagating waves 1 propagating & 1 evanescent 2 evanescent waves 2 ghost waves

(a) (b) (c) 

FIG. 3. Phase space for the waves with in-plane momentum q [see Eqs. (5) and (6)], supported by a biaxial anisotropic dielectric with
εx < εz < εy . Note the presence of the ghost waves in the regions bounded by four orange (straight) lines defined by Eq. (25). As in Fig. 2,
the red (gray) line corresponds to Eq. (22), and the green (light gray) line represents Eq. (23). Panels (a) and (b) show the “full” and the
“magnified” view of the phase space. Panel (c) displays real-space field profiles for a propagating wave (oscillatory violet curve, calculated for
qx = √

εz ω/c, qy = 0.5
√

εz ω/c), an evanescent wave (monotonic cyan curve, calculated for qx = 1.01
√

εz ω/c, qy = 0), and a ghost wave
(decaying oscillatory orange curve, calculated for qx = √

εz ω/c, qy = 0.525
√

εz ω/c). Here εx/εz = 0.5 and εy/εz = 2.

e(s)
y = −qxas, (30)

e(s)
z = 0, (31)

b(s)
x = icκ0

ω
qxas, (32)

b(s)
y = icκ0

ω
qyas, (33)

b(s)
z = −cq2

ω
as, (34)

and

e(p)
x = qxap, (35)

e(p)
y = qyap, (36)

FIG. 4. Phase space for a biaxial anisotropic material for εz → εx

(a) and εz → εy (b). In both cases εy/εx = 4, while the z component of
the permittivity εz is such that εz/εx = 1.01 (a) and εz/εy = 0.99525
(b). The phase-space color code is the same as in Figs. 2 and 3. Note
the presence of relatively large ghost regions even though εz in both
cases is within 1% from its limiting values.

e(p)
z = iq2

κ0
ap, (37)

b(p)
x = iωε0

cκ0
qyap, (38)

b(p)
y = − iωε0

cκ0
qxap, (39)

b(p)
z = 0. (40)

Here

q ≡
√

q2
x + q2

y , (41)

while as and ap are the scaled amplitudes of the s- and p-
polarized waves, respectively.

FIG. 5. Phase space for sodium nitrite, with εx = 1.806, εy =
2.726, and εz = 1.991.
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IV. DYAKONOV WAVE

Assuming that the interface at z = 0 separates the transpar-
ent isotropic medium with the permittivity ε0 at z < 0 from
biaxial anisotropic dielectric with the permittivity tensor (1),
for the guided surface wave with the in-plane momentum
q = (qx,qy) we obtain

Eq(z) =
{ (

ases + apes

)
eκ0z, z < 0,

a+e+e−κ−z + a−e+e−κ−z, z > 0
(42)

and

Bq(z) =
{ (

asbs + apbs

)
eκ0z, z < 0,

b+e+e−κ−z + b−e+e−κ−z, z > 0,
(43)

where [note the sign change κ0 → −κ0 from (29)–(40) to (44)–
(47) as the evanescent field for z < 0 behaves as exp (+κ0z)]

es = (qy, −qx, 0), (44)

bs = − c

ω

(
iκ0qx,iκ0qy, q2

x + q2
y

)
, (45)

ep =
(

qx, qy,− i

κ0

(
q2

x + q2
y

))
, (46)

bp = iωε0

cκ0
(−qy, qx, 0) (47)

and

e± = (
iκ± qx

(
q2

y − �y(κ±)
)
, iκ± qy

(
q2

x − �x(κ±)
)
,

�x(κ±)�y(κ±) − q2
xq

2
y

)
, (48)

b± = c

ω

(
qy

(
εy�x(κ±) − εxq

2
x

)
− qx

(
εx�y(κ±) − εyq

2
y

)
, iqxqyκ±

(
εy − εx

))
. (49)

With nonmagnetic (μ = 1) dielectric materials at both sides
of the interface, at z = 0 we have the continuity of all three
components of the magnetic field Bq, and the continuity of
Ex , Ey , and Dz ≡ εzEz. However, as follows from (9), the
continuity of both tangential components of the electric field
immediately implies the continuity of Bz. Furthermore, since

εzEz ∝ [curlB]z ∝ qxBy − qyBx, (50)

the continuity of Dz = εzEz is a direct consequence of the
continuity of the tangential magnetic field. Therefore, out of six
boundary conditions here only four are actually independent,
consistent with the four independent amplitudes as , ap, a+,
and a−.

Imposing the continuity of Ex , Ey , εzEz, and ∂zBz ∝
(qxBy + qyBx), we obtain

N

⎛
⎜⎜⎜⎝

as

ap

a+
a−

⎞
⎟⎟⎟⎠ = 0, (51)

where the matrix N is defined as

N =

⎛
⎜⎜⎜⎜⎜⎝

iqy

qx
i κ+

(
q2

y − �+
y

)
κ−

(
q2

y − �−
y

)
− iqx

qy
i κ+

(
q2

x − �+
x

)
κ−

(
q2

x − �−
x

)
0 iq2ε0

κ0εz
�+

x �+
y − q2

xq
2
y �−

x �−
y − q2

xq
2
y

iq2κ0

qxqy
0

(
εy − εx

)ω2κ2
+

c2

(
εy − εx

)ω2κ2
−

c2

⎞
⎟⎟⎟⎟⎟⎠,

(52)

with

�±
x,y ≡ �x,y(κ±). (53)

Introducing the new variable ζ± corresponding to the z com-
ponents of the amplitudes of the electric field in the anisotropic
material (e+)z and (e−)z,

ζ± = (
�±

x �±
y − q2

xq
2
y

)
a±, (54)

from (51) and (52) we obtain

P(ω; q)

(
ζ+
ζ−

)
= 0, (55)

where the matrix P is defined by

P(ω; q) =
(

α+ α−
β+ β−

)
(56)

and

α± = εz

ε0
+ κ±

κ0

(
ω
c

)2(
εxq

2
y + εyq

2
x

) − q2
(
q2 − κ2

±
)

�±
x �±

y − q2
xq

2
y

,

(57)

β± = κ±
κ0 + κ±

�±
x �±

y − q2
xq

2
y

. (58)

The dispersion of the surface wave is then given by

det[P(ω; q)] = 0, (59)

which yields

κ0(κ+ + κ−)

{
εxεy

ε0

((
ω

c

)2

− q2
x

εy

− q2
y

εx

)
− κ+κ−

}

+ κ+κ−

{
(εx + εy)

(
ω

c

)2

− ε0 + εx

ε0
q2

x − ε0 + εy

ε0
q2

y

}

+
{

εxεy

ε0
κ2

0

((
ω

c

)2

− q2
x

εy

− q2
y

εx

)
− κ2

+κ2
−

}
= 0. (60)

Equation (42) uniquely defines the dispersion relation of the
Dyakonov surface wave ω(q) and is the primary result of this
section.

For a guided surface wave, all its components, in both the
isotropic and anisotropic sides of the interface, must decay
away from the boundary. For z < 0, this implies that

q >
√

ε0
ω

c
. (61)

At the same time, in the anisotropic medium the waves with
the in-plane momentum q can belong to either the evanescent
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or ghost subclasses—see Sec. II. From Eqs. (22) and (23) we
therefore obtain

q >
√

εz

ω

c
(62)

and

q2
x

εy

+ q2
y

εx

>

(
ω

c

)2

. (63)

Equations (61), (62), and (63) substantially reduce the range
of the momentum and frequency that needs to be explored in
the numerical solution of Eq. (60). Furthermore, as shown in
Ref. [21] (see also Appendix A), the Dyakonov surface wave
only exists when

min(εx,εy) � εz < ε0 < max(εx,εy). (64)

While the numerical solution of Eq. (42) is generally
straightforward, for small-to-moderate anisotropy, the surface
waves are known [21,22] to be relatively weakly guided,

κ0 � ω/c, (65)

which turns numerical root finding into a challenging numeri-
cal problem [21]. In the next section we will therefore develop
the method for the analytical solution of Eq. (60).

V. ANALYTICAL SOLUTION FOR THE SURFACE
WAVE DISPERSION

Despite its relative complexity, Eq. (60) is not transcenden-
tal, but only contains algebraic functions. As a result, it can be
reduced to a polynomial equation. Furthermore, as we show
in the present section, the resulting polynomial equation is of
the fourth order, and therefore allows a complete analytical
solution.

Choosing the y direction at the one corresponding to the
largest permittivity in the plane of the interface,

εy > εx, (66)

we introduce the new variable

u = εxεy

ε0

(
q2

x

εy

+ q2
y

εx

−
(

ω

c

)2
)

. (67)

Note that, as follows from (63), u > 0. Then

κ2
+κ2

− = ε0

εz

(
q2 − εz

(
ω

c

)2
)

u (68)

and

κ+ + κ− =
[
q2 + ε0

εz

u −
(

εx + εy − εxεy

εz

)(
ω

c

)2

+ 2

√√√√ε0

εz

(
εz

(
ω

c

)2

− q2

)
u

⎤
⎦

1/2

. (69)

We can then express Eq. (60) as

κ0(κ+ + κ−)(u + κ+κ−) = Â κ+κ− + B̂, (70)

where

Â =
(

εx + εy − εxεy

εz

)(
ω

c

)2

− q2 − ε0

εz

u (71)

and

B̂ = −κ2
0 u − κ2

+κ2
−. (72)

We then square both sides of Eq. (79), which yields

Ĝ κ+κ− = F̂ , (73)

where

Ĝ = ε0

{(
εxεy

ε0
− εx − εy + ε0

)(ω

c

)2

+
[(

εx

ε0
+ εy − ε0

εz

− εxεy

ε2
0

)
q2

x

+
(

εy

ε0
+ εx − ε0

εz

− εxεy

ε2
0

)
q2

y

]}
, (74)

= 2ε0

{(
1 − ε0

εz

)
u + κ2

0

(
εx + εy − ε0

εz

− εxεy

ε2
0

)

+
(

1

ε0
− 1

εz

)[
ε2

0 − ε0
(
εx + εy

) + εxεy

](ω

c

)2
}
, (75)

and

F̂ = −ε0

(
1 − ε0

εz

){(
ε2

(ω

c

)2
− u

)2

− ε0

(
1 − ε0

εz

)(ω

c

)2
u

}

+ κ2
0

{
ε0

[
ε2

2

εz

+
(

1 − ε0

εz

)
(ε1 + 2ε2)

](ω

c

)2

−
(

ε1 + ε0

εz

(ε0 + 2ε2) − ε3
0

ε2
z

)
u

}

− κ4
0

{
ε0

εz

(ε1 + 2ε2)

}
, (76)

with

ε1 = ε0 − εx − εy + εxεy

εz

(77)

and

ε2 = εx + εy − ε0 − εxεy

ε0
= (ε0 − εx)

(
εy − ε0

)
ε0

. (78)

Note that, in addition to the solutions of the original equation
(60), the new Eq. (73) contains spurious roots corresponding to
Âκ+κ− + B̂ < 0. We therefore need to constrain the solutions
of (73) with the inequality

Â κ+κ− + B̂ > 0. (79)

Together, Eqs. (73) and (79) are equivalent to the original
equation (60).

Sinceu > 0 andq >
√

εzω/c [see Eqs. (22), (23), and (67)],
from Eq. (68) we find

κ+κ− = κz

√
ε0

εz

u, (80)
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where

κz =
√

q2 − εz(ω/c)2. (81)

Substituting (80) into (73), we obtain

κzĜ

√
ε0

εz

u = F̂ . (82)

Introducing the new dimensionless variable

χ ≡ c

ω
κz, (83)

we can express Eq. (82) in the form

a4χ
4 + a3χ

3 + a2χ
2 + a1χ + a0 = 0, (84)

where

a4 = ε0

εz

(ε1 + 2 ε2), (85)

a3 =
√

εxεy

εz

û2ε0

(
εx + εy − ε0

εz

− εxεy

ε2
0

)
, (86)

a2 = −ε0ε
2
2

εz

+ ε0(ε1 + 2ε2)

(
1 − ε0

εz

)

+ û
εxεy

ε0

[
ε1 + 2

ε0ε2

εz

+ ε2
0

εz

(
1 − ε0

εz

)]
, (87)

a1 = 2

(
1 − ε0

εz

)√
ε3
xε

3
y

εz

û

(
1 − εz

ε0
+ û

)
, (88)

a0 =
(

1 − ε0

εz

)
εxεy

ε0
û
(
ε1εz + εxεyû

)
, (89)

and

û ≡ ε0

εxεy

(
c

ω

)2

u =
(

c

ω

)2
(

q2
x

εy

+ q2
y

εx

)
− 1. (90)

The expression (84) is a quartic equation for χ , and allows an
immediate analytical solution via the Ferrari formula [27], so
that

χ = F(û; ε0,εx,εy,εz). (91)

Then, introducing the polar angle θ that defines the direction
of the in-plane momentum q,

qx = q cos θ, (92)

qy = q sin θ, (93)

from (67) and (91) we obtain

ω

c
= q√

εz + F2(û)
, (94)

sin θ = ±
√

εxεy∣∣εy − εx

∣∣
(

û + 1

εz + F2(û)
− 1

εy

)
, (95)

which parametrically defines the function ω(q,θ ).
In general, a quartic equation like (84) has four distinct

roots. However, in our case χ should satisfy a number of ad-
ditional constraints. Aside from being a positive real quantity,
it must also exceed the value of

√
ε0 − εz,

χ >
√

ε0 − εz, (96)

since decay of the surface wave away from the interface implies

κ0 = ω

c

√
χ2 + εz − ε0 > 0. (97)

As we prove in Appendix B, Eq. (84) only has no more than
a single real positive solution that satisfies (96), so there is no
ambiguity in choosing the correct root. We therefore obtain

F = − a3

4a4
+ s1S + s2

2

√
−4S2 − 2p̂ − s1 · q̂

S
, (98)

where

p̂ = a2

a4
− 3

8

a2
3

a2
4

, (99)

q̂ = a3
3 − 4a2a3a4 + 8a1a

2
4

8a3
4

, (100)

S = 1

2

√
−2

3
p̂ + 1

3a4

(
Q + �0

Q

)
, (101)

Q =
3

√√√√�1 +
√

�2
1 − 4�3

0

2
, (102)

�0 = a2
2 − 3a1a2 + 12a0a4, (103)

�1 = 2a3
2 − 9a1a2a3 + 27a0a

2
3 + 27a2

1a4 − 72a0a2a4,

(104)

s1,2 = ±1. (105)

While the choice of s1 and s2 in Eq. (105) that leads to
a positive real root that satisfies Eq. (96) is unique, such a
solution only exists in a limited range of angles θ . Furthremore,
the resulting solution must be tested against the inequality (79)
to remove the spurious roots. As a result, for the angular range
of θ that supports the Dyakonov surface wave, we obtain (see
Appendix C)

θ1 < |θ | < θ2 or π − θ2 < |θ | < π − θ1, (106)

where, assuming εy > εx ,

θ1 = arcsin

{[
εxεy

εy − εx

(
ε1 + 2ε2

(ε1 + 2ε2) + ε2
2

− 1

εy

)]1/2
}

(107)

and

θ2 = arcsin

⎧⎨
⎩

⎡
⎣
⎛
⎝1 −

√
1 + 4εz(ε0 − εx)

(
εy − ε0

)
ε2

0 (ε0 − εz)

⎞
⎠

× ε0

2εz

ε0 − εz

εy − εx

+ εy − ε0

εy − εx

]1/2
}

. (108)

Here, θ1 and θ2 correspond to κ− = 0 and κ0 = 0, respectively.
At the same time, θ1 corresponds to the boundary of the
inequality (63), while θ2 represents the “edge” of the inequality
(79)—see Appendix C. Within the angle range (106) for any
direction θ and the frequency ω, there is one and only one
surface wave, described by the parametric equations (94) and
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FIG. 6. In-plane wave number of the Dyakonov surface wave
(in units of ω/c) vs the propagation direction angle θ in biaxial
materials, for the interfaces of (a) potassium titanyl phosphate (KTP)
with aluminium oxynitride (AlON) and (b) arsenic trisulfide with
aluminum arsenide. The corresponding refractive indices are [28] as
follows. KTP: nx = 1.7614, ny = 1.8636, nz = 1.7704; AlON: n0 =
1.79; arsenic trisulfide: nx = 2.4, ny = 3.02, nz = 2.81; aluminum
arsenide: n0 = 2.87.

(95) with the function F(û,ε0,εx,εy,εz) from Eq. (98), while
for any angle outside this range, there is no surface wave.

In Fig. 6 we plot the surface wave dispersion for the
interface of potassium titanyl phosphate (KTP) and aluminium
oxynitride (AlON) (a) and arsenic trisulfide with aluminum
arsenide (b). The results of the present work can also be applied
to uniaxial materials, as illustrated in Fig. 7 for calcite and CdF2

(a) and lithium niobate (LiNbO3) and KTaO3(b).
Following Ref. [21], it is also instructive to project the

surface wave dispersion onto the wave-vector space (qx,qy)
that we studied in Sec. II. In Fig. 8 we show this projection for
the surface wave at the interface of isotropic aluminum arsenide
and biaxial arsenic trisulfide. As expected, the magenta curve
that represents the Dyakonov surface wave terminates at the
boundaries corresponding to κ0 = 0 (blue line) and κ− = 0
(green line). Note that, depending on the wave vector of the
surface wave, it could be observed both in the “evanescent”
and “ghost” portions of the phase space [see panel (c)].

FIG. 7. In-plane wave number of the Dyakonov surface wave
(in units of ω/c) vs the propagation direction angle θ in uniaxial
materials, for the interfaces of (a) calcite with CdF2 and (b) lithium
niobate and KTaO3. The corresponding refractive indices are [28] as
follows. Calcite: nx = nz = 1.486, ny = 1.658; CdF2: n0 = 1.562;
lithium niobate: nx = nz = 2.156, ny = 2.232; KTaO3:n0 = 2.2.

VI. TWO CLASSES OF DYAKONOV SURFACE WAVES

Near the boundary of an isotropic medium with a uniaxial
dielectric, the Dyakonov surface wave is formed by evanescent
waves on both sides of the interface. However, for a biaxial
dielectric that supports both the evanescent and the ghost waves
(see Sec. II), the localized surface wave can be formed from
either the evanescent or from ghost waves, depending on its in-
plane momentum. As a result, for the interface of an isotropic
medium with a biaxial medium, we can have two different types
of the Dyakonov surface wave. A “conventional” Dyakonov
surface wave, as originally described by Dyakonov in 1988
[18], monotonically decays on both sides of the interface, while
the ghost surface wave together with the exponential decay also
shows oscillatory behavior in the anisotropic medium—see
Fig. 9.

Note that, depending on the magnitude of the permittivity
of the isotropic medium ε0 (εz < ε0 < εy), at a single fre-
quency the isotropic–biaxial interface can either support both
the conventional and the ghosts mode patterns, or only the
conventional modes. The corresponding critical value εc of the
permittivity ε0 is given by the equation (see Appendix D)

(εc − εz)
2

(
5εz − 3(εx + εy) + εxεy

εz

)

+ (εc − εz)
[
ε2
x + 4εxεy + ε2

y − 8εz(εx + εy) + 10ε2
z

]
+ 3εz(εy − εz)(εz − εx)

+ 2

εz

((εc − εz)
2 + εz[2(εx + εy) − 5εz])

×√
εz(εy − εz)(εz − εx)(εc − εz) = 0, (109)

which for εx < εz < εy always has a single solution in the
interval εz < εc < εy .

In scaled variables εc/εz, εz/εx , and εy/εz, the solution of
Eq. (109) can be expressed as

εc

εz

= G
(

εz

εx

,
εy

εz

)
. (110)

We plot this function in Fig. 10.
For εc < ε0 < εy , the Dyakonov surface waves that are sup-

ported by the interface of isotropic and biaxial dielectric media
belong to the conventional class for all allowed propagation
angles. However, if εz < ε0 < εc, for the propagation angle θ

in the range θ1 < |θ | < θ3 and π − θ3 < |θ | < π − θ1 we find
conventional Dyakonov waves, while for θ3 < |θ | < θ2 and
π − θ2 < |θ | < π − θ3 the surface modes belong to the ghost
class—see Fig. 8(c). Here, the angle θ3 only depends on the
dielectric permittivities of the media forming the interface, and
is defined as the solution of the system of equations (60) and
(25), where the latter are taken with the positive signs.

VII. DISCUSSION

The key feature of the Dyakonov surface waves that makes
them an ideal platform for experiments on nonlinear optics
and strong coupling is their inherent “lossless” nature. While
the residual linear absorption in the dielectric as well as light
scattering due to surface roughness can never be completely
avoided, the corresponding contributions to the effective mode
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FIG. 8. Dyakonov surface wave in (qx,qy) coordinates for the aluminum arsenide–arsenic trisulfide interface. The surface wave is shown
by the magenta line (dark gray line at higher values of qy). The red (gray) line corresponds to Eq. (22), the green (light-gray) line represents
Eq. (23), the blue line (dark gray line at lower values of qy) corresponds to Eq. (61), and the orange (straight) lines show the ghost region
boundaries from Eq. (25). The phase-space color code is the same as in Figs. 1–4. Panels (b) and (c) show the magnified portions of the phase
space that supports the Dyakonov surface wave. Note that, as clearly seen in panel (c), the surface wave is supported by both the evanescent
and the ghost regions of the phase space.

loss can be dramatically reduced, as demonstrated in Mie
resonance experiments with the measured Q factors on the
order of 1010 [29].

FIG. 9. Dyakonov surface waves at the arsenic trisulfide (nx =
2.4, ny = 3.02, nz = 2.81)–aluminum arsenide (n0 = 2.87) inter-
face: “conventional” (a),(b) vs “ghost” (c),(d), in linear (a),(c) and
logarithmic (b),(d) scale. Red (light gray) and blue (dark gray)
curves correspond to the projections of the in-plane electric field
Eτ = (Ex,Ey) onto the parallel (blue, dark gray) and perpendicular
(red, light gray) to the in-plane momentum q directions. The in-plane
propagation angle θ is equal to 24◦ (a),(b) and 26◦ (c),(d). The biaxial
arsenic trisulfide is on the right of the interface z = 0, and the isotropic
aluminum arsenide fills the half-space z < 0. Note the contrast of the
simple exponential decay of the conventional Dyakonov waves in the
biaxial medium [see panel (b)] with the oscillatory behavior of the
ghost surface waves (d).

As a result, with an evanescent coupling (from, e.g., a
high-index prism) to the isotropic-biaxial interface, one can
observe an enormous increase of the field intensity at this
boundary, only limited by the effective loss due to system im-
perfections (surface and bulk disorder, etc.) and ultimately by
the nonlocality of the dielectric response [30] [corresponding
to the variations of the dielectric permittivity on the order of
(a0/λ)2 ∼ 10−6, where a0 is on the order of the atomic size
and λ is the wavelength].

For the applications to nonlinear optics, however, the
effective “selection rules” such as the phase-matching con-
ditions[31,32] are defined by the spatial variation of the

FIG. 10. Critical value εc of the isotropic medium, in units of εz

vs εz/εx εy/εz. The dielectric permittivity components of the biaxial
medium satisfy εx < εz < εy .
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corresponding optical modes. The qualitative difference be-
tween the ghost and the conventional surface waves, respec-
tively with and without oscillations away from the interface,
that can be simultaneously supported by the same isotropic-
biaxial interface at the same frequency, will therefore have
dramatic effect on the nonlinear-optical phenomena in this
system [25].

VIII. CONCLUSIONS

In summary, we have developed a complete analytical the-
ory of Dyakonov surface waves at the interface of an isotropic
medium with a biaxial anisotropic dielectric. As opposed to
earlier work on this subject, our approach does not require
any numerical root finding and offers substantial advantage
in the description of the surface waves near the propagation
threshold. We have also presented a detailed description of the
ghost waves that combine the properties of propagating and
evanescent solutions and of the corresponding surface modes
supported by these ghost waves.
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APPENDIX A

Some of the necessary conditions for the existence of the
Dyakonov wave in (64) can be immediately obtained from the
general structure of Eq. (60) and its constituents. Equation (63)
immediately implies that both the first and the last terms in the
curly brackets in Eq. (60) are negative definite; therefore,

ε0 + εx

ε0
q2

x + ε0 + εy

ε0
q2

y < (εx + εy)

(
ω

c

)2

. (A1)

Since

εx

ε0
q2

x + εy

ε0
q2

y = εxεy

ε0

(
q2

x

εy

+ q2
y

εx

−
(

ω

c

)2
)

+ εxεy

ε0

(
ω

c

)2

>
εxεy

ε0

(ω

c

)2
, (A2)

from (61) and (A1) we obtain

εx + εy > ε0 + εxεy

ε0
, (A3)

which implies that

min(εx,εy) < ε0 < max(εx,εy). (A4)

Similarly, from (62), (A1), and (A2)

εx + εy > εz + εxεy

ε0
(A5)

or

εz < max(εx,εy) − min(εx,εy)

(
1 − max(εx,εy)

ε0

)
< max(εx,εy). (A6)

APPENDIX B

First, we consider the number of real positive solutions of
Eq. (84). Since

ε1 + 2ε2 = (ε0 − εx)(εy − ε0)

ε0
+ εxεy

(
1

εz

− 1

ε0

)
> 0,

(B1)

with our choice of εx < εy [see (66)] the requirement (64)
reduces to

εx � εz < ε0 < εy, (B2)

and therefore

a4 > 0. (B3)

Similarly, since û > 0,

a1 < 0 (B4)

and

a3 =
√

εxεy

ε0
û2ε0

(
εx + εy − ε0

εz

− εxεy

ε2
0

)

= 2

εz

√
εxεy

ε0
û

(
(ε0 − εx)(εy − ε0) + εxεy

ε0
(ε0 − εz)

)
> 0. (B5)

Therefore, regardless of the sign of a2, the number of sign
changes of the polynomial a4χ

4 + a3χ
3 + a2χ

2 + a1χ + a0

is equal to one if a0 < 0 and to two if a0 > 0. According to
Descartes’ rule of signs [33], Eq. (84) has no more than one
positive real root in the former case and no more than two
positive real roots in the latter. So, in general, Eq. (84) has no
more than two positive real roots.

However, the solution of Eq. (84) must also satisfy the
inequality (96). Introducing the new variable

ξ ≡ χ − √
ε0 − εz, (B6)

to satisfy (96) we need ξ > 0. From (84) we obtain

a4 ξ 4 + b3 ξ 3 + b2 ξ 2 + b1 ξ + b0 = 0, (B7)

where

b3 = a3 + 4a4
√

ε0 − ε1, (B8)

b2 = a2 + 3a3
√

ε0 − εz + 6a4(ε0 − εz), (B9)

b1 = a1 + 2a2
√

ε0 − εz + 3a3(ε0 − εz) + 4a4(ε0 − εz)
3/2,

(B10)

b0 = a0 + a1
√

ε0 − εz + a2(ε0 − εz)

+ a3(ε0 − εz)
3/2 + a4(ε0 − εz)

2. (B11)

From (B3) and (B5)

b3 > 0. (B12)

For b0 we obtain

b0 = −ε0 − εz

ε0εz

(
εxεyû + ε0

√
εxεy

εz

(ε0 − εz)û

− (ε0 − εx)(εy − ε0)

)2

< 0. (B13)

013818-10



DYAKONOV WAVES IN BIAXIAL ANISOTROPIC CRYSTALS PHYSICAL REVIEW A 98, 013818 (2018)

If either b1 > 0, b2 > 0 or b1 < 0, b2 < 0 or b1 < 0, b2 >

0, then the number of sign changes of the polynomial
a4χ

4 + a3χ
3 + a2χ

2 + a1χ + a0 is equal to one, and therefore
Eq. (B7) has no more than one real positive root. It is if and
only if b1 > 0, b2 < 0 that Eq. (B7) can in principle have two
positive real roots.

For b1 > 0, b2 < 0, from Eqs. (B9) and (B10) we obtain

a2 + 3a3
√

ε0 − εz + 6a4(ε0 − εz) < 0, (B14)

a1 + 2a2
√

ε0 − εz + 3a3(ε0 − εz) + 4a4(ε0 − εz)
3/2 > 0.

(B15)

Then

a2 < −3a3
√

ε0 − εz − 6a4(ε0 − εz) (B16)

and

3a3(ε0 − εz) + 4a4(ε0 − εz)
3/2 > −a1 − 2a2

√
ε0 − εz

> −a1 + 2(ε0 − εz)
(
3a3 + 6a4

√
ε0 − εz

)
, (B17)

which yields

−3a3 − 8a4
√

ε0 − εz > − a1

ε0 − εz

. (B18)

With a1 < 0, a3 > 0, and a4 > 0, and ε0 > εz [see (64)],
the left-hand side of (B18) is negative, while the right-hand
side is positive. The system of the inequalities (B14),(B15)
is therefore inconsistent and the case b1 > 0, b2 < 0 cannot
be realized. Therefore, Eq. (B7) cannot have more than one
positive real root and Eq. (84) cannot have more than one real
solution with χ >

√
ε0 − εz.

APPENDIX C

We define θ1 as the propagation angle that corresponds to the
limiting case of the inequality (63). In terms of our parameter
û defined by Eqs. (67) and (90), the bound (63) corresponds to

û(θ1) = u(θ1) = 0, (C1)

which together with (68) implies that

κ−(θ1) = 0. (C2)

Since

a0(û = 0) = a1(û = 0) = a3(û = 0) = 0, (C3)

we obtain

F(û = 0) =
√

−a2(û = 0)

a4(û = 0)

=
√

ε0 − εz + ε2
2

ε1 + 2ε2
. (C4)

Substituting (C1) into (95), we obtain

sin2 θ1 = εxεy

εy − εx

(
εa + 2ε2

ε0(ε1 + 2ε2) + ε2
2

− 1

εy

)
, (C5)

leading to our definition of θ1 in Eq. (107).

Since we defined the x and y directions with εy > εx , the
inequality (63) then implies

θ1 < |θ | < π/2 (C6)

or

π/2 < |θ | < π − θ1. (C7)

The angle θ2 is defined as the propagation direction of the
surface wave corresponding to the limiting case of (79) when
the latter turns into the exact equality

Â(θ2)κ+(θ2)κ−(θ2) + B̂(θ2) = 0. (C8)

Substituting (C8) into (70), we find that either

κ0(θ2) = 0 (C9)

or

−εxεy

ε0
û(θ2)

(
ω

c

)2

= κ+(θ2)κ−(θ2). (C10)

Since for θ in the range defined by Eqs. (C6) and (C7) we find
û > 0, and Eq. (C10) therefore cannot be satisfied—so that
(C9) is the only option. Then, substituting (C9) into Eq. (60),
we obtain(

ε2 − εxεy

ε0
û(θ2)

) (
ω

c

)2

= κ+(θ2)κ−(θ2). (C11)

From (68) we obtain

κ+(θ2)κ−(θ2) =
(

ω

c

)2√
εxεy

εz

(ε0 − εz)û(θ2). (C12)

Substituting (C12) into (C11), we find

û(θ2) = ε0ε2

εxεy

+ ε2
0 (ε0 − εz)

2εxεyεz

×
⎛
⎝1 −

√
1 + 4εz(ε0 − εx)

(
εy − ε0

)
ε2

0 (ε0 − εz)

⎞
⎠. (C13)

From (90) and (C9)

û(θ2) = ε0

εy

cos2 θ2 + ε0

εx

sin2 θ2 − 1. (C14)

Substituting (C13) into (C14) and using (78), we find

sin2 θ2 = εy − ε0

εy − εx

+ ε0

2εz

ε0 − εz

εy − εx

×
⎛
⎝1 −

√
1 + 4εz(ε0 − εx)

(
εy − ε0

)
ε2

0 (ε0 − εz)

⎞
⎠. (C15)

To satisfy Eq. (79), we therefore need

0 < |θ | < θ2 (C16)

or

π − θ2 < |θ | < π. (C17)

Together, Eqs. (C6), (C7) and (C16), (C17) are equivalent to
(106).
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APPENDIX D

The critical angle θ1 corresponds to the point where the
isofrequency curve of the Dyakonov surface wave in the
(qx,qy) space terminates at the line (23). We can show that
the ghost boundary in the first quadrant,

√
εz − εx

εz

qx +
√

εy − εz

εz

qy = √
εy − εx

ω

c
, (D1)

can never cross this point. An assumption that such an inter-
section point (q(1)

x ,q(1)
y ), that satisfies both (23) and (D1), may

exist leads to the equation

(
q(1)

x − εy

ω

c

√(
εy − εz

)
(εz − εx)

εz

(
εy − εx

)
)2

+
(

ω

c

)2 ε2
y

εz

(εz − εx)2

(εy − εx)2
= 0, (D2)

which cannot be satisfied for any εx < εz < εy . As a result, in
the first quadrant (qx > 0, qy > 0) the ghost boundary is either
always above or always below the curve of Eq. (23). The ellipse
of Eq. (23) intersects the positive half of the qy axis at the
point of

√
εx ω/c, while for the ghost boundary (D1) the cor-

responding crossing point is at
√

εz(εy − εx)/(εz − εx) ω/c >√
εx ω/c. In the first quadrant of the q space the ghost boundary

is therefore always above the elliptical curve of Eq. (23).
As a result, this boundary, and thus the θ1 “edge” of the
isofrequency curve of the Dyakonov surface wave, is always
in the conventional regime, with the field characterized by the
exponential decay on both sides of the interface.

As a result, for the system to support the ghost surface
waves, the ghost boundary (D1) must cross the isofrequency
curve of the Dyakonov waves, Eq. (60). The onset of the ghost
regime then corresponds to the case when the ghost boundary
intersects the isofrequency curve precisely at its end at the
angle θ2.

As follows from Eq. (C9), the critical angle θ2 corresponds
to the point where the isofrequency line of the Dyakonov
surface wave in the (qx,qy) space terminates at the circle

q2
x + q2

y = ε0
ω2

c2
. (D3)

For the intersection point (q(2)
x ,q(2)

y ) of (D3) with the ghost
boundary (D1) in the first quadrant we obtain

q(2)
x = ω

c

√
εz(εz − εx) + √

(εy − εz)(ε0 − εz)

εy − εx

, (D4)

q(2)
y = ω

c

√
εz(εy − εz) + √

(εz − εx)(ε0 − εz)

εy − εx

. (D5)

Substituting (D4) and (D5) into (60) and using (68), we obtain

(ε0 − εz)
2

(
5εz − 3(εx + εy) + εxεy

εz

)

+ (ε0 − εz)
(
ε2
x + 4εxεy + ε2

y − 8εz(εx + εy) + 10ε2
z

)
+ 3εz(εy − εz)(εz − εx)

+ 2

εz

((εc − εz)
2 + εz[2(εx + εy) − 5εz])

×√
εz(εy − εz)(εz − εx)(ε0 − εz) = 0, (D6)

which defines the permittivity of the dielectric media corre-
sponding to the onset of ghost surface waves in the system
phase space.
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