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by any scatterer of size k0d � 1/10
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We extend the usual multipolar theory of linear Rayleigh and Raman scattering to include the second-order
correction. These terms promise a wealth of information about the shape of a scatterer and yet are insensitive to
the scatterer’s chirality. Our extended theory might prove especially useful for analyzing samples in which the
scatterers have nontrivial shapes but no chiral preference overall, as the zeroth-order theory offers little information
about shape and the first-order correction is often quenched for such samples. A basic estimate suggests that our
extended theory can be applied to a scatterer as large as k0d ∼ 1/10 with less than ∼0.1% error resulting from
the neglect of the third- and higher-order corrections. Our results are entirely analytical.
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I. INTRODUCTION

Light scattering is an all-pervasive phenomenon. Together
with light absorption, it is largely responsible for the appear-
ance of the material world [1,2]. Theoretical understanding of
light scattering is sufficiently advanced to enable determina-
tions of the nature of interstellar dust [3], radar [4], studies
of the structures of viruses [5], and the measurement of the
salinity of seawater [6], to name but a few applications. There
is much still to be explored, however, and the study of light
scattering remains at the cutting edge of research [7–15].

One can distinguish between different types of light scatter-
ing [1,16–21]. This paper is concerned with one of the simplest
and most common of these: a two-photon process in which a
quantum of light collides with an electrically neutral scatterer
[22]. Nonlinear light-scattering processes, involving three or
more photons, are also possible and are proving increasingly
useful [8,9,22]. We do not consider these here, however: our
interest is emphatically in linear light scattering.

If the aforementioned collision is elastic, it is usually
referred to as Rayleigh scattering for k0d � 1 [16,23,24]
or Willis-Tyndall scattering for 1/10 < k0d < 10 [25], with
d a characteristic length of the scatterer and k0 the wave
number of the incident photon. If the collision is inelastic
[19], it is referred to as combination [20] or Raman scattering
[21]. For k0d � 1, light scattering is often treated using
the zeroth-order Rayleigh theory (or its extension to Raman
scattering), in which multipolar expansions for the scatterer
are truncated at electric-dipole order. The first-order correction
to this theory was introduced relatively recently [26,27] and
has proved extremely useful in the laboratory for the analysis
of chiral molecules [2,5,28–30], as it discriminates between
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left and right. For 1/10 < k0d < 10, elastic light scattering by
scatterers with sufficiently simple shapes can be treated using
the mathematical machinery of (analytical) Mie theory [1,25].
Numerical approaches are usually used instead for scatterers
with more complicated shapes [3], although a semianalytical
extension of Mie theory has recently been put forward [7,13].

In this paper, we introduce the second-order correction
to the zeroth-order Rayleigh and Raman theory. These terms
promise a wealth of information about the shape of a scatterer
and yet are insensitive to the scatterer’s chirality (left versus
right) if the scatterer happens to be chiral. Our extended
theory might prove especially useful for analyzing samples
in which the scatterers have nontrivial shapes but no chiral
preference overall. Consider, for example, a racemic sample
of chiral molecules, as might be produced in a symmetric
chemical reaction using achiral precursors [31]. The zeroth-
order theory offers little information about the shapes of
the molecules and the first-order correction is quenched by
virtue of there being equal numbers of left- and right-handed
molecules. The second-order correction, however, can still be
exploited as an incisive probe of the shapes of the molecules.
Our extended theory might also help bridge the perceived
divide between small scatterers (k0d � 1) and medium-sized
scatterers (1/10 < k0d < 10): a basic estimate suggests that
the zeroth-order theory together with its first- and second-order
corrections can be applied to a scatterer as large as k0d ∼ 1/10,
with less than ∼0.1% error resulting from the neglect of the
third- and higher-order corrections. Let us emphasize here that
our results are entirely analytical.

In what follows, we imagine ourselves to be in an inertial
frame of reference with time t ; right-handed Cartesian coordi-
nates x, y, and z with associated unit vectors x̂, ŷ, and ẑ; and
spherical coordinates r , θ , and φ with associated unit vectors
r̂, θ̂θθ , and φ̂φφ. The SI system of units is adopted and the Einstein
summation convention [32] is to be understood, with subscripts
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a, b, c, . . . running over x, y, and z. Complex quantities are
indicated using tildes, except where otherwise stated.

II. GENERAL CALCULATION

Our aim in this paper is to introduce the second-order
correction to the zeroth-order Rayleigh and Raman theory as
simply as possible. We focus our attention, therefore, upon a
semiclassical model in which a single scatterer is illuminated
by weak, quasimonochromatic light that has been “switched
on” slowly at some distant time in the past. The scatterer
could represent a small molecule in vacuum [2], for example.
We make no specific assumptions about the scatterer, except
that it is smaller than around one-tenth of the wavelength
of the illuminating light and is localized near the spatial
origin (x = y = z = 0), so that we can perform converging
multipolar expansions about the spatial origin. The relationship
of the “local multipole approach” [26,27] used in this paper to
the “distributed dipole approach” [3] is examined in Ref. [33].

The electric and magnetic fields of the illuminating light at
the spatial origin have the following forms:

E ≈ Re(Ẽe−iω0t ), (1)

B ≈ Re(B̃e−iω0t ), (2)

with ω0 = ck0 the angular frequency of the illuminating light.
The illuminating light induces oscillations in the charge and
current distributions of the scatterer and these oscillations are
themselves the source of electromagnetic radiation: scattered
light. The electric and magnetic fields of the scattered light
have the following forms:

e ≈ Re(ẽe−iωt ) (3)

b ≈ Re(b̃e−iωt ), (4)

with ω = ck the angular frequency of the scattered light. This
is equal to ω0 for Rayleigh scattering, or ω0 − ωf i for a Raman-
scattering transition f ← i, where ωf i is the angular frequency
of the transition. In this paper, we use a parameter λ = 1 to help
us keep track of order in our multipolar expansions. The powers
of λ quoted by us have their origins in Taylor expansions.
Each term in one of these expansions has an additional spatial
derivative (of the illuminating light or scattered light) and
length scale (the position of some constituent of the scatterer
relative to the chosen origin of multipolar expansion) relative
to the term before it. We thus associate each power of λ with a
factor of ∼(k0d) ∼ (kd) � (1/10), where d is a characteristic
length of the scatterer, as above. Far from the scatterer (kr � 1),

ẽa ≈ μ0ω
2eikr

4πr
(δab − r̂a r̂b)

×
(

λ0μ̃b + λ1 1

c
εbcdM̃cr̂d − λ1 ik

3
	̃bcr̂c

− λ2 ik

2c
εbcdM̃cer̂er̂d − λ2 k2

6
Q̃bcd r̂cr̂d

)
, (5)

b̃a ≈ 1

c
εabcr̂bẽc, (6)

where μ̃a , 	̃ab, and Q̃abc are the induced electric-dipole,
electric-quadrupole, and electric-octupole moments of the
scatterer, and M̃a and M̃ab are the induced magnetic-dipole
and magnetic-quadrupole moments. These results, (5) and (6),
constitute an extension of those given in Ref. [2] to include
terms of the order of λ2 and can be regarded as a special
case of the results given in Ref. [34], particular to harmonic
oscillations. The induced multipole moments of the scatterer
are related to the illuminating light by the scatterer’s property
tensors:

λ0μ̃a ≈ λ0α̃abẼb + λ1 1
3 Ãa,bc∂cẼb + λ1G̃abB̃b

+ λ2 1
6 B̃a,bcd∂d∂cẼb + λ2 1

2 D̃
(m)
a,bc∂cB̃b, (7)

λ1M̃a ≈ λ1G̃abẼb + λ2 1
3 D̃a,bc∂cẼb + λ2χ̃abB̃b, (8)

λ1	̃ab ≈ λ1 ˜Ac,abẼc + λ2C̃ab,cd∂dẼc + λ2D̃c,abB̃c, (9)

λ2M̃ab ≈ λ2D̃ (m)
c,abẼc, (10)

λ2Q̃abc ≈ λ2B̃d,abcẼd . (11)

These results, (7)–(11), also constitute an extension of those
given in Ref. [2] to include terms of the order of λ2. Explicit
quantum-mechanical expressions for multipole moments and
property tensors are given in Appendix A, where we also
show how the property tensors reduce under certain special
circumstances.

We consider the Stokes parameters sξ (ξ ∈ {0,1,2,3}) of the
scattered light, which can be written succinctly as follows:

sξ = f̃ξabẽa ẽ
∗
b, (12)

with

f̃0ab = θ̂a θ̂b + φ̂aφ̂b, (13)

f̃1ab = θ̂a θ̂b − φ̂aφ̂b, (14)

f̃2ab = −θ̂aφ̂b − φ̂aθ̂b, (15)

f̃3ab = −iθ̂aφ̂b + iφ̂aθ̂b. (16)

Note that f̃ξab = f̃ ∗
ξba , which ensures that the sξ are real.

Furthermore f̃0ab, f̃1ab, and f̃2ab are symmetric in a and b

and purely real, whereas f̃3ab is antisymmetric in a and b and
purely imaginary.

Working to order λ2, we substitute (5) with (7)–(11) into
(12) and find that the Stokes parameters of the scattered light
take the following form:

sξ ≈ λ0s
(0)
ξ + λ1s

(1)
ξ + λ2s

(2)
ξ , (17)

with the s
(0)
ξ , the s

(1)
ξ , and the s

(2)
ξ as defined below.

The zeroth-order theory is embodied by the following:

s
(0)
ξ = sα−α

ξ , (18)

with

sα−α
ξ = KRe

(
1
2 α̃abα̃

∗
cd f̃ξacẼbẼ

∗
d

)
(19)
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and

K = μ2
0ω

4

8π2r2
, (20)

as is well known [2,22]. The zeroth-order theory is already
sufficient to account in a basic way for the polarization,
depolarization, and color of the light from the sky [16,23,24],
for example.

The first-order correction is due to interference between
light waves scattered via the familiar property tensor α and
light waves scattered via the optical activity property tensors
A and G, as embodied by the following:

s
(1)
ξ = sα−A

ξ + sα−G
ξ , (21)

with

sα−A
ξ = KRe

(
1

3
α̃abÃ

∗
c,def̃ξacẼb∂dẼ

∗
e

+ ik

3
α̃ab

˜A ∗
c,def̃ξadẼbẼ

∗
c r̂e

)
, (22)

sα−G
ξ = KRe

(
α̃abG̃

∗
cd f̃ξacẼbB̃

∗
d

+ 1

c
α̃abG̃

∗
cdεecf f̃ξaeẼbẼ

∗
d r̂f

)
, (23)

as is also well known [2,22]. The first-order correction ac-
counts for the leading-order contributions to optical activity
in an isotropic sample of chiral molecules [26,27]. Natural
Raman optical activity has been developed into an incisive
spectroscopic tool for chiral scatterers both large and small
[2,5,28–30]. In contrast, natural Rayleigh optical activity has
been reported for a handful of large chiral biological structures,
including octopus sperm [35], but has thus far proved elusive
for small chiral molecules [2], in spite of potential applications
such as the robust assignment of absolute configuration [36].
The difficulties here might be partially overcome using struc-
tured light [37,38]. Interestingly, orientated achiral molecules
can also exhibit natural optical activity via the first-order
correction, embodied by the s

(1)
ξ [2], and partially orientated

chiral molecules can exhibit natural optical activity via the
zeroth-order theory, embodied by the s

(0)
ξ [39].

We find that the second-order correction is due to mutual
interference between light waves scattered via the optical activ-
ity property tensors A and G, together with equally important
contributions due to interference between light waves scattered
via the familiar property tensor α and light waves scattered
via the more exotic property tensors B, C, D, Dm, and χ , as
embodied by the following:

s
(2)
ξ = sA−A

ξ + sG−A
ξ + sG−G

ξ

+ sα−B
ξ + sα−C

ξ + sα−D
ξ + sα−Dm

ξ + s
α−χ

ξ , (24)

with

sA−A
ξ = KRe

(
1

18
Ãa,bcÃ

∗
d,ef f̃ad∂bẼc∂eẼ

∗
f

+ ik

9
Ãa,bc

˜A ∗
d,ef f̃ae∂bẼcẼ

∗
d r̂f

+ k2

18
˜Aa,bc

˜A ∗
d,ef Ẽaf̃ξber̂cẼ

∗
d r̂f

)
, (25)

sG−A
ξ = KRe

(
1

3
G̃abÃ

∗
c,def̃ξacB̃b∂dẼ

∗
e

+ 1

3c
G̃abÃ

∗
c,deεf agr̂gẼb∂dẼ

∗
e f̃ξf c

+ ik

3
G̃ab

˜A ∗
c,def̃ξad B̃bẼ

∗
c r̂e

+ ik

3c
G̃ab

˜A ∗
c,deεf agf̃ξf d r̂gẼbẼ

∗
c r̂e

)
, (26)

sG−G
ξ = KRe

(
1

2
G̃abG̃

∗
cd f̃ξacB̃bB̃

∗
d

+ 1

c
G̃abG̃

∗
cd f̃ξaeεecf B̃bẼ

∗
d r̂f

+ 1

2c2
G̃abG̃

∗
cdεaef εcghf̃ξegẼbẼ

∗
d r̂f r̂h

)
(27)

the optical activity cross terms, and

sα−B
ξ = KRe

(
1

6
α̃abB̃

∗
c,def f̃ξacẼb∂d∂eẼ

∗
f

− k2

6
α̃abB̃

∗
c,def f̃ξadẼbẼ

∗
c r̂er̂f

)
, (28)

sα−C
ξ = KRe

(
ik

3
α̃abC̃

∗
cd,ef f̃ξacẼbr̂d∂eẼ

∗
f

)
, (29)

sα−D
ξ = KRe

(
ik

3
α̃abD̃

∗
c,def̃ξadẼbB̃

∗
c r̂e

+ 1

3c
α̃abD̃

∗
c,def̃ξaf Ẽb∂dẼ

∗
e εf cgr̂g

)
, (30)

sα−Dm

ξ = KRe

(
1

2
α̃abD̃

(m)∗
c,de f̃ξacẼb∂eB̃

∗
d

+ ik

2c
α̃abD̃

(m)∗
c,de f̃ξaf ẼbẼ

∗
c εf dgr̂er̂g

)
, (31)

s
α−χ

ξ = KRe

(
1

c
α̃abχ̃

∗
cd f̃ξaeẼbB̃

∗
d εecf r̂f

)
(32)

the exotic interference terms. The second-order correction is
described explicitly here and is the central result of this paper.
Accounted for by the s

(2)
ξ are the “terms in G2 and A2” alluded

to in [2]. Light scattering to second order has also been touched
upon in Ref. [33], where the possibility of new rotational
Raman lines with zero background is highlighted.

It is important to note that each of the optical activity
property tensors A and G and each of the exotic property
tensors B, C, D, Dm, and χ is implicitly dependent upon our
choice of origin for multipolar expansions: they differ when
calculated about different origins. In Appendix B, we show
that our physical predictions (based upon the complete Stokes
parameters sξ of the scattered light, with all terms of the order
of λ0, λ1, and λ2 considered simultaneously) are nevertheless
independent of our choice of origin for multipolar expansions,
as they should be.

As mentioned earlier, a basic estimate based on the orders
of the Taylor expansions reveals that s

(0)
ξ ∼ (k0d)−1s

(1)
ξ ∼

(k0d)−2s
(2)
ξ . . . . This suggests that even for a scatterer

with k0d ∼ 1/10, the second-order correction will yield a
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modification of only ∼1% to the zeroth-order theory. That is to
say, exploitation of the second-order correction in the labora-
tory will demand precision measurements. This estimate also
implies that neglect of the third- and higher-order corrections
gives rise to �0.1% error for k0d � 1/10, which suggests that
the zeroth-order theory together with its first- and second-order
corrections might serve as a precise alternative to numerical
approaches for k0d � 1/10.

To better appreciate the validity of such estimates, note
first the well-established fact [2,5,28–30,36] that the first-order
correction, which has contributions of the form α × A and
α × G, is typically smaller than the zeroth-order theory, which
has contributions of the form α × α, by the predicted factor
of ∼(k0d). It follows immediately [from A ∼ (k0d)α and
G ∼ (k0d)α] that the optical activity cross terms, which have
contributions of the form A × A, A × G, and G × G, will
typically be smaller than the first-order correction by the same
factor of ∼(k0d). One expects the order of magnitude of the
exotic interference terms to be similar because a change in
the choice of origin for multipolar expansion intermixes these
with the optical activity cross terms, as shown in Appendix B.
Preliminary calculations performed by us using a dynamic
coupling model [40] support these claims.

The results we have given thus far are rather general. They
might be applied to Rayleigh or Raman scattering, on or off
resonance, for any scatterer in any orientation. Moreover, they
can be extended to account for the presence of static fields,
by considering distortions of the property tensors [2,22]. Let
us also emphasize that our results can be applied for different
forms of (quasimonochromatic) illuminating light: plane-wave
illumination, considered below, is but one possibility. Illumi-
nation by more exotic forms of light could open the door
to new possibilities, one example of which is highlighted in
Sec. IV. Evanescent fields play important roles in scattering-
type near-field optical microscopy techniques [10] and it has
recently been shown that illumination by standing waves yields
new possibilities for optical activity [37,38], to give two more
examples of non-plane-wave illumination in light scattering.

III. PLANE-WAVE ILLUMINATION
AND ROTATIONAL AVERAGING

A scattering experiment often involves a Gaussian beam of
light illuminating a fluid sample. The Stokes parameters sξ of
the scattered light are measured as a function of the Stokes
parameters Sξ (ξ ∈ {0,1,2,3}) of the illuminating light and the
scattering angle θ . With such a setup in mind, we now consider
the following specific example.

With regards to the illuminating light, we consider a plane
wave propagating in the +z direction:

Ẽ = (Ẽ0x x̂ + Ẽ0y ŷ), (33)

B̃ = 1

c
(−Ẽ0y x̂ + Ẽ0x ŷ). (34)

We define the Stokes parameters Sξ of the illuminating light
as follows:

S0 = Ẽ0xẼ
∗
0x + Ẽ0yẼ

∗
0y, (35)

S1 = Ẽ0xẼ
∗
0x − Ẽ0yẼ

∗
0y, (36)

S2 = −(Ẽ0xẼ
∗
0y + Ẽ0yẼ

∗
0x), (37)

S3 = −i(Ẽ0xẼ
∗
0y − Ẽ0yẼ

∗
0x). (38)

We also average over all possible orientations of the scatterer,
with this average denoted using angular brackets. With regards
to the observation geometry, we choose φ = π/2 which re-
stricts us to the y > 0 region of the y − z plane, with

r̂ = sin θ ŷ + cos θ ẑ, (39)

θ̂θθ = cos θ ŷ − sin θ ẑ, (40)

φ̂φφ = −x̂. (41)

Note that this choice does not limit the generality of the results
below.

Writing down the rotationally averaged Stokes parameters
〈sξ 〉of the scattered light in terms of the Stokes parametersSξ of
the incident light involves calculating the rotational averages
of (25)–(32) and using (33)–(41). Some of the terms in the
second-order correction, embodied here by the 〈s(2)

ξ 〉, have the
same dependences on the Sξ and the scattering angle θ as
terms in the zeroth-order theory, embodied here by the 〈s(0)

ξ 〉.
We therefore consider the 〈s(0)

ξ 〉 and the 〈s(2)
ξ 〉 simultaneously.

The general results are listed in Appendix C. For the special
case of Rayleigh scattering of far-off-resonance light by a
time-reversible scatterer (see Appendix A 3), they reduce to
the following forms:〈

s
(0)
0

〉 + 〈
s

(2)
0

〉 = K[S0(A + cos θB′ + cos2 θC + cos3 θD′′)

+ S1 sin2 θ (E + cos θF′′)], (42)〈
s

(0)
1

〉 + 〈
s

(2)
1

〉 = K[S1(G + cos θH′ + cos2 θI + cos3 θJ′′)

+ S0 sin2 θ (K + cos θL′′)], (43)〈
s

(0)
2

〉 + 〈
s

(2)
2

〉 = KS2(M′ + cos θN + cos2 θO′), (44)〈
s

(0)
3

〉 + 〈
s

(2)
3

〉 = KS3(P′ + cos θQ + cos2 θR′). (45)

Explicit expressions for the coefficients A, . . . , R′ are listed
in Appendix D. Note that 〈s(0)

0 〉 + 〈s(2)
0 〉 and 〈s(0)

1 〉 + 〈s(2)
1 〉 are

independent of S2 and S3, and that 〈s(0)
2 〉 + 〈s(2)

2 〉 and 〈s(0)
3 〉 +

〈s(2)
3 〉 are independent of S0 and S1. Furthermore, for θ = 0

and θ = π , we obtain 〈s(0)
0 〉 + 〈s(2)

0 〉 ∝ S0, 〈s(0)
1 〉 + 〈s(2)

1 〉 ∝ S1,
〈s(0)

2 〉 + 〈s(2)
2 〉 ∝ S2, and 〈s(0)

3 〉 + 〈s(2)
3 〉 ∝ S3.

The coefficients A, . . . , R′ can be grouped into three types by
their dependence on different subsets of the property tensors.
The unprimed coefficients (A, C, E, G, I, K, N, and Q) each have
contributions of the following types: α − α, A − A, G − A,
G − G, α − B, and α − Dm. The singly primed coefficients
(B′,H′,M′,O′,P′, andR′) each have contributions of the following
types: A − A, G − A, G − G, α − C, α − D, and α − χ . Note
that there are no contributions of the α − α type here: the
singly primed coefficients are of pure second-order character.
Finally, the doubly primed coefficients (D′′, F′′, J′′, and L′′) each
have contributions of the types A − A and α − C. Note that
the doubly primed coefficients are also of pure second-order
character.
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The first-order correction, embodied here by the 〈s(1)
ξ 〉,

is of a rather different character to the zeroth-order theory
and its second-order correction, embodied here by the 〈s(0)

ξ 〉
and the 〈s(2)

ξ 〉. In particular, it has different, optically active
dependencies upon the Stokes parameters Sξ of the incident
light. In contrast, each of the coefficientsA, . . . ,R′ is unchanged
when the scatterer is inverted through the spatial origin. That
is to say, the rotationally averaged zeroth-order theory and
its second-order correction are independent of the scatterer’s
chirality: they do not discriminate between left and right. For
a particularly clear discussion of the 〈s(1)

ξ 〉, see [41].

IV. OUTLOOK

In this paper, we have focused upon a single scatterer. Our
results are most relevant to elastic light scattering in samples
for which the scatterers can be regarded as independent and in
which multiple scattering is not important (a rarefied medium
such as an ideal gas being the prototypical example) and to
inelastic light scattering at essentially all sample densities,
again provided that multiple scattering is not important [1,2]. It
remains to incorporate our results into more realistic, sample-
specific theories, where the motions of the scatterers, local
field corrections, and other subtleties are taken into account.
This is especially important for small scatterers and/or long
wavelengths, as the second-order correction will be especially
small in such cases.

An obvious next step is to explore potential applications.
A group-theoretical analysis of the coefficients A, . . . ,R′ could
prove useful here, as it might facilitate a better understanding
of their dependence upon the shape and other properties of
a scatterer (we already know that A, . . . ,R′ are independent
of a scatterer’s chirality, for example). One might hope to
find a measurable combination of A, . . . ,R′ that distinguishes
between chirality and achirality to directly probe the chirality
of scatterers in racemic mixtures, or a combination that is
uniquely sensitive to icosahedral scatterers for the purposes of
virus detection, for example. It is also necessary to identify ex-
perimental arrangements optimized towards the second-order
correction, as the signatures of interest will invariably be small.
Spatially structured light could prove useful here. Consider the
rotational average of our results for a scatterer located in the
node of a linearly polarized standing wave, for example: there
is no scattering to zeroth order (as E = 0) or first order (as
the illuminating light is achiral [37,38]) and the second-order
correction describes the scattered light to leading order.

It is natural, perhaps, to inquire about the third-order
correction to the zeroth-order Rayleigh and Raman theory,
although a basic estimate reveals that this will be smaller still
than the second-order correction by a factor of ∼k0d. It seems
that some progress in this direction has already been made,
however: we believe that the novel diamagnetic light scattering
described in Ref. [11] can be regarded as part of an anticipated
χ − χ contribution to the third-order correction.
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APPENDIX A: EXPLICIT QUANTUM-MECHANICAL
EXPRESSIONS

In this Appendix, we give explicit quantum-mechanical ex-
pressions for multipole moments and property tensors. We also
show how the latter reduce under certain special circumstances.

Let us suppose that the scatterer is a molecule in vacuum: an
electrically neutral collection of electrons and nuclei, bound to-
gether by electromagnetic interactions. We treat the kth particle
(electron or nucleus) as a pointlike object of rest mass mk , mean
position r̂k = rk , canonical momentum p̂k = −ih̄∇∇∇k , electric
chargeqk , and magnetic-dipole moment m̂k = γk ŝk , withγk the
gyromagnetic ratio and ŝk = h̄σσσ k/2 the mean spin, where σσσ k

is a pseudovector of Pauli matrices. We indicate dependencies
upon position r = xx̂ + yŷ + zẑ but refrain from indicating
dependencies on time t , for the sake of notational simplicity.

Working to order 1/c0, the molecular Hamiltonian is

Ĥ = Ĥ0 + V̂ , (A1)

with

Ĥ0 =
∑

k

p̂2
k

2mk

+
∑

k

∑
k′ �=k

qkqk′

8πε0|r̂k − r̂k′ | (A2)

the unperturbed molecular Hamiltonian, and

V̂ =
∑

k

qk�(r̂k) −
∑

k

qk

2mk

[p̂k · A(r̂k) + A(r̂k) · p̂k]

−
∑

k

m̂k · B(r̂k) +
∑

k

q2
k

2mk

A2(r̂k) (A3)

the interaction Hamiltonian, where �(r) and A(r) are the scalar
and magnetic-vector potentials of the illuminating light, the
electric and magnetic fields of which follow as

E(r) = −∇∇∇�(r) − Ȧ(r), (A4)

B(r) = ∇∇∇ × A(r). (A5)

For a detailed discussion of the relativistic properties of a
molecule to order 1/c2, see [42]. We imagine that the energy
spectrum of the molecule in isolation is known,

Ĥ0|s〉 = h̄ωs |s〉, (A6)

with |s〉 the unperturbed energy eigenstates and h̄ωs the
associated energy eigenvalues.

Working to order λ2, we now choose the following poten-
tials [28,34]:

�(r) ≈ λ−1� − λ0raEa − λ1 1
2 rarb∂bEa

− λ2 1
6 rarbrc∂c∂bEa, (A7)

Aa(r) ≈ −λ1 1
2εabcrbBc − λ2 1

3εabcrbrd∂dBc, (A8)

with � = �(r = 0), for example. Substituting (A7) and (A8)
into (A3) yields the following multipolar expansion about the
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spatial origin:

V̂ ≈ −λ0μ̂aEa − λ1m̂aBa − λ1 1
3	̂ab∂bEa

− λ2 1
2 m̂ab∂bBa − λ2 1

6Q̂abc∂c∂bEa, (A9)

with the multipole moments μ̂a , m̂a , 	̂ab, m̂ab, and Q̂abc as
defined below. We have neglected nonlinear terms in Eq. (A9),
as our interest is in linear light scattering.

1. Multipole moments

We define the (components of the) electric-dipole mo-
ment μ̂a , the canonical magnetic-dipole moment m̂a , the
mechanical magnetic-dipole moment M̂a , the symmetric and
traceless electric-quadrupole moment 	̂ab, the canonical
magnetic-quadrupole moment m̂ab, the mechanical magnetic-
quadrupole moment M̂ab, and the electric-octupole mo-
ment Q̂abc of the molecule about the spatial origin as
follows [2,34,43]:

μ̂a =
∑

k

qkr̂ka, (A10)

m̂a =
∑

k

qk

2mk

(
εabcr̂kbp̂kc + 2mkγk

qk

ŝka

)
, (A11)

M̂a =
∑

k

qk

2

(
εabcr̂kbv̂kc + 2γk

qk

ŝka

)
, (A12)

	̂ab =
∑

k

qk

2
(3r̂ka r̂kb − δabr̂kcr̂kc), (A13)

m̂ab =
∑

k

qk

mk

[
r̂kb

(
1

3
εacd r̂kcp̂kd + mkγk

qk

ŝka

)

+
(

1

3
εacd r̂kcp̂kd + mkγk

qk

ŝka

)
r̂kb

]
, (A14)

M̂ab =
∑

k

qk

[
r̂kb

(
1

3
εacd r̂kcv̂kd + γk

qk

ŝka

)

+
(

1

3
εacd r̂kcv̂kd + γk

qk

ŝka

)
r̂kb

]
, (A15)

Q̂abc =
∑

k

qkr̂ka r̂kbr̂kc, (A16)

with

v̂k = 1

mk

[p̂k − qkA(r̂k)] (A17)

the velocity of the kth particle. Working to the order of λ2, we
use (A8) to deduce that

λ1M̂a = λ1m̂a − λ1
∑

k

q2
k

2mk

εabcr̂kbAc(r̂k)

≈ λ1m̂a + λ2χ̂
(d)
ab Bb, (A18)

λ2M̂ab = λ2m̂ab − λ2
∑

k

2q2
k

3mk

εacd r̂kbr̂kcAd (r̂k)

≈ λ2m̂ab, (A19)

with

χ̂
(d)
ab =

∑
k

q2
k

4mk

(r̂ka r̂kb − δabr̂kcr̂kc) (A20)

the diamagnetic susceptibility of the molecule about the spatial
origin. It will prove useful in Appendix B to recognize, in
addition to (7)–(11), the following:

λ1Ña ≈ λ1G̃ (n)
ab Ẽb + λ2 1

3D̃
(n)
a,bc∂cẼb + λ2χ̃

(n)
ab B̃b, (A21)

λ1Q̃ab ≈ λ1 ˜A (Q)
c,abẼc + λ2C̃

(Q)
ab,cd∂dẼc + λ2D̃ (Q)

c,abB̃c, (A22)

with the property tensors G̃ (n)
ab , D̃

(n)
a,bc, χ̃

(n)
ab , ˜A (Q)

a,bc, C̃
(Q)
ab,cd , and

D̃ (Q)
a,bc defined identically to the property tensors G̃ab, D̃a,bc, χ̃ab,
˜Aa,bc, C̃ab,cd , and D̃a,bc, but with m̂a replaced by the canonical

orbital magnetic-dipole moment n̂a of the molecule about the
spatial origin in the former three and 	̂ab replaced by the
symmetric but not traceless electric-quadrupole moment Q̂ab

of the molecule about the spatial origin in the latter three, where

n̂a =
∑

k

qk

2mk

εabcr̂kbp̂kc, (A23)

Q̂ab =
∑

k

qkr̂ka r̂kb. (A24)

Working to order λ2, we can again use (A8) to relate the
mechanical orbital magnetic-dipole moment N̂a of the
molecule about the spatial origin to n̂a ,

λ1N̂a = λ1
∑

k

qk

2
εabcr̂kbv̂kc

= λ1n̂a − λ1
∑

k

q2
k

2mk

εabcr̂kbAc(r̂k)

≈ λ1n̂a + λ2χ̂
(d)
ab Bb, (A25)

which is distinct from (A18).

2. Property tensors

A simple quantum-mechanical treatment akin to that given
in Refs. [2,34,43] gives the following explicit forms for the
molecule’s property tensors:

α̃ab = 1

h̄

∑
s

(
μ

f s
a μsi

b

ω̃si − ω0
+ μ

f s

b μsi
a

ω̃∗
sf + ω0

)
, (A26)

Ãa,bc = 1

h̄

∑
s

(
μ

f s
a 	si

bc

ω̃si − ω0
+ 	

f s

bc μsi
a

ω̃∗
sf + ω0

)
, (A27)

˜Aa,bc = 1

h̄

∑
s

(
	

f s

bc μsi
a

ω̃si − ω0
+ μ

f s
a 	si

bc

ω̃∗
sf + ω0

)
, (A28)

G̃ab = 1

h̄

∑
s

(
μ

f s
a msi

b

ω̃si − ω0
+ m

f s

b μsi
a

ω̃∗
sf + ω0

)
, (A29)

G̃ab = 1

h̄

∑
s

(
m

f s
a μsi

b

ω̃si − ω0
+ μ

f s

b msi
a

ω̃∗
sf + ω0

)
, (A30)

B̃a,bcd = 1

h̄

∑
s

(
μ

f s
a Qsi

bcd

ω̃si − ω0
+ Q

f s

bcdμ
si
a

ω̃∗
sf + ω0

)
, (A31)
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B̃a,bcd = 1

h̄

∑
s

(
Q

f s

bcdμ
si
a

ω̃si − ω0
+ μ

f s
a Qsi

bcd

ω̃∗
sf + ω0

)
, (A32)

C̃ab,cd = 1

3h̄

∑
s

(
	

f s

ab	si
cd

ω̃si − ω0
+ 	

f s

cd 	si
ab

ω̃∗
sf + ω0

)
, (A33)

D̃a,bc = 1

h̄

∑
s

(
m

f s
a 	si

bc

ω̃si − ω0
+ 	

f s

bc msi
a

ω̃∗
sf + ω0

)
, (A34)

D̃a,bc = 1

h̄

∑
s

(
	

f s

bc msi
a

ω̃si − ω0
+ m

f s
a 	si

bc

ω̃∗
sf + ω0

)
, (A35)

D̃
(m)
a,bc = 1

h̄

∑
s

(
μ

f s
a msi

bc

ω̃si − ω0
+ m

f s

bc μsi
a

ω̃∗
sf + ω0

)
, (A36)

D̃ (m)
c,ab = 1

h̄

∑
s

(
m

f s

abμsi
c

ω̃si − ω0
+ μ

f s
c msi

ab

ω̃∗
sf + ω0

)
, (A37)

χ̃ab = 〈f |χ̂ (d)
ab |i〉 + 1

h̄

∑
s

(
m

f s
a msi

b

ω̃si − ω0
+ m

f s

b msi
a

ω̃∗
sf + ω0

)
,

(A38)

with

ω̃f i = ωf i − 1
2 i�f i (A39)

a complex transition angular frequency, where μsi
a = 〈s|μ̂a|i〉,

for example. We have dropped explicit state exclusions from
the summations [2] and refrained from using tildes for po-
tentially complex matrix elements, for the sake of notational
simplicity.

3. Reduced property tensors

For the special case of Rayleigh scattering of far-off-
resonance light by a time-reversible scatterer ω = ω0, we
approximate the property tensors by the following forms:

α̃ab = αab, (A40)

Ãa,bc = Aa,bc, (A41)

˜Aa,bc = Aa,bc, (A42)

G̃ab = −iG′
ab, (A43)

G̃ab = iG′
ba, (A44)

C̃ab,cd = Cab,cd , (A45)

B̃a,bcd = Ba,bcd , (A46)

B̃a,bcd = Ba,bcd , (A47)

D̃a,bc = −iD′
a,bc, (A48)

D̃a,bc = iD′
a,bc, (A49)

D̃
(m)
a,bc = −iD

(m)′
a,bc, (A50)

D̃ (m)
a,bc = iD

(m)′
a,bc, (A51)

χ̃ab = χab, (A52)

with, for a molecule in particular,

αab = 2

h̄

∑
s

ωsi

ω2
si − ω2

0

Re
(
μis

a μsi
b

)
, (A53)

Aa,bc = 2

h̄

∑
s

ωsi

ω2
si − ω2

0

Re
(
μis

a 	si
bc

)
, (A54)

G′
ab = − 2

h̄

∑
s

ω0

ω2
si − ω2

0

Im
(
μis

a msi
b

)
, (A55)

Ba,bcd = 2

h̄

∑
s

ωsi

ω2
si − ω2

0

Re
(
μis

a Qsi
bcd

)
, (A56)

Cab,cd = 2

3h̄

∑
s

ωsi

ω2
si − ω2

0

Re
(
	is

ab	
si
bc

)
, (A57)

D′
a,bc = − 2

h̄

∑
s

ω0

ω2
si − ω2

0

Im
(
mis

a 	si
bc

)
, (A58)

D
(m)′
a,bc = − 2

h̄

∑
s

ω0

ω2
si − ω2

0

Im
(
μis

a msi
bc

)
, (A59)

χab = 〈i|χ̂ (d)
ab |i〉 + 2

h̄

∑
s

ωsi

ω2
si − ω2

0

Re
(
mis

a msi
b

)
. (A60)

Again, we have dropped explicit state exclusions from the
summations [2] and refrained from using tildes for potentially
complex matrix elements.

4. Reduced property tensors for a scatterer
with spherical symmetry

For a scatterer with spherical symmetry, the reduced prop-
erty tensors described above reduce further to the following
forms:

αab = δabα, (A61)

Aa,bc = 0, (A62)

G′
ab = δabG

′, (A63)

Ba,bcd = (δabδcd + δacδbd + δadδbc)B, (A64)

Cab,cd = [2δabδcd − 3(δacδbd + δadδbc)]C, (A65)

D′
a,bc = 0, (A66)

D
(m)′
a,bc = εabcD

′(m), (A67)

χab = δabχ, (A68)

with the scalars α, G′, B, C, D
′(m), and χ dependent upon the

precise nature of the scatterer, of course. Deviations away from
the forms seen in Eqs. (A61)–(A68) encode information about
the shape of the scatterer.

APPENDIX B: ORIGIN INDEPENDENCE

In this Appendix, we show that our physical predictions are
independent of our choice of origin for multipolar expansions,
as they should be. The calculations here are rather intricate and
we focus our attention, therefore, upon Rayleigh scattering
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of far-off-resonance light by a time-reversible scatterer (see
Appendix A 3).

Elsewhere in this paper, we have chosen the origin of our
multipolar expansions to coincide with the spatial origin. Here
we choose a different origin for our multipolar expansions,
located at position a (sufficiently close to the spatial origin to
ensure converging multipolar expansions). We use a prime to
indicate that a quantity is defined relative to a. This should
cause no confusion, except perhaps in the case of the reduced
property tensors G′

ab, D′
a,bc, and D

(m)′
a,bc, which are defined

relative to the spatial origin and already have a prime (as per the
conventional notation): we denote the corresponding quantities
defined relative to a as (G′

ab)′, (D′
a,bc)′, and (D(m)′

a,bc)′.
In place of (A7) and (A8), we choose

�′(r) ≈ λ−1�′ − λ0r ′
aE

′
a − λ1 1

2 r ′
ar

′
b∂bE

′
a

− λ2 1
6 r ′

ar
′
br

′
c∂c∂bE

′
a, (B1)

A′
a(r) ≈ −λ1 1

2εabcr
′
bB

′
c − λ2 1

3εabcr
′
br

′
d∂dB

′
c, (B2)

with r′ = r − a and �′ = �′(r = a), for example. Note that
(B1) and (B2) differ from (A7) and (A8) by a gauge transfor-
mation. In place of (A9), we obtain the following multipolar
expansion about a:

V̂ ′ ≈ −λ0μ̂′
aE

′
a − λ1m̂′

aB
′
a − λ1 1

3 	̂′
ab∂bE

′
a

− λ2 1
2 m̂′

ab∂bB
′
a − λ2 1

6Q̂′
abc∂c∂bE

′
a, (B3)

with the primed multipole moments μ̂′
a , m̂′

a , 	̂′
ab, m̂′

ab, and
Q̂′

abc defined identically to the unprimed multipole moments
μ̂a , m̂a , 	̂ab, m̂ab, and Q̂abc, but with the position r̂k translated
as r̂′

k = r̂k − a. Thus,

μ̂′
a =

∑
k

qkr̂
′
ka, (B4)

m̂′
a =

∑
k

qk

2mk

(
εabcr̂

′
kbp̂kc + 2mkγk

qk

ŝka

)
, (B5)

for example. It follows that

μ̂′
a = μ̂a, (B6)

m̂′
a = m̂a − 1

2
εabcab

i

h̄
[Ĥ0,μ̂c], (B7)

	̂′
ab = 	̂ab − 3

2
aaμ̂b − 3

2
abμ̂a + δabacμ̂c, (B8)

m̂′
ab = m̂ab + 2

3
εacdabac

i

h̄
[Ĥ0,μ̂d ]

− 2abm̂a − 1

3
εacdac

i

h̄
[Ĥ0,Q̂bd ] + 2

3
δabacn̂c, (B9)

Q̂′
abc = Q̂abc + aaabμ̂c + aaacμ̂b + abacμ̂a

− aaQ̂bc − abQ̂ac − acQ̂ab. (B10)

Note that Q̂ab and n̂a have emerged naturally here, as antici-
pated in Appendix A 1. Working to order λ2, we use (B2) to
deduce that the primed mechanical magnetic-dipole moment

of the molecule is

λ1M̂ ′
a = λ1

∑
k

qk

2
εabcr̂

′
kbv̂

′
kc

= λ1m̂′
a − λ1

∑
k

q2
k

2mk

εabcr̂
′
kbA

′
c(r̂k)

≈ λ1m̂′
a + λ2

(
χ̂

(d)
ab

)′
B ′

b, (B11)

with

(
χ̂

(d)
ab

)′ =
∑

k

q2
k

4mk

(r̂ ′
ka r̂

′
kb − δabr̂

′
kcr̂

′
kc) (B12)

the primed diamagnetic susceptibility of the molecule.
Working to order λ2 and linear order in the illuminating

light, we find that the expectation values of the primed
multipole moments have the following forms:

λ0〈� ′|μ̂′
a|� ′〉 ≈ λ0〈i|μ̂′

a|i〉 + λ0Re(μ̃′
ae

−iω0t ), (B13)

λ1〈� ′|M̂ ′
a|� ′〉 ≈ λ1〈i|m̂′

a|i〉 + λ1Re(M̃ ′
ae

−iω0t ), (B14)

λ1〈� ′|	̂′
ab|� ′〉 ≈ λ1〈i|	̂′

ab|i〉 + λ1Re(	̃′
abe

−iω0t ), (B15)

λ2〈� ′|M̂ ′
ab|� ′〉 ≈ λ2〈i|m̂′

ab|i〉 + λ2Re(M̃ ′
abe

−iω0t ), (B16)

λ2〈� ′|Q̂′
abc|� ′〉 ≈ λ2〈i|Q̂′

abc|i〉 + λ2Re(Q̃′
abce

−iω0t ), (B17)

with

λ0μ̃′
a ≈ λ0α′

abẼ
′
b + λ1 1

3A′
a,bc∂cẼ

′
b − λ1i(G′

ab)′B̃ ′
b

+ λ2 1
6B ′

a,bcd∂d∂cẼ
′
b − λ2 1

2 i(D(m)
a,bc)′∂cB̃

′
b, (B18)

λ1M̃ ′
a ≈ λ1i(G′

ba)′Ẽ′
b − λ2 1

3 i(D′
a,bc)′∂cẼ

′
b + λ2χ ′

abB̃
′
b,

(B19)

λ1	̃′
ab ≈ λ1A′

c,abẼ
′
c + λ2C ′

ab,cd∂dẼ
′
c + λ2i(D′

c,ab)′B̃ ′
c,

(B20)

λ2M̃ ′
ab ≈ λ2i

(
D

(m)′
c,ab

)′
Ẽ′

c, (B21)

λ2Q̃′
abc ≈ λ2B ′

d,abcẼ
′
d , (B22)

where the primed reduced property tensors α′
ab, A′

a,bc, (G′
ab)′,

B ′
a,bcd , (D(m)

a,bc)′, (D′
a,bc)′, χ ′

ab, and C ′
ab,cd are defined identically

to the unprimed reduced property tensors αab, Aa,bc, G′
ab,

Ba,bcd , D
(m)
a,bc, D′

a,bc, χab, and Cab,cd , but with primed rather
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than unprimed multipole moments. Thus,

α′
ab = 2

h̄

∑
s

ωsi

ω2
si − ω2

0

Re(〈i|μ̂′
a|s〉〈s|μ′

b|i〉), (B23)

(G′
ab)′ = − 2

h̄

∑
s

ω0

ω2
si − ω2

0

Im(〈i|μ̂′
a|s〉〈s|m̂′

b|i〉), (B24)

for example, where once more we have dropped explicit state
exclusions from the summations [2] and refrained from using
tildes for potentially complex matrix elements.

It follows that

α′
ab = αab, (B25)

A′
a,bc = Aa,bc − 3

2
abαac − 3

2
acαab + δbcadαad, (B26)

(G′
ab)′ = G′

ab + ω0

2
εbcdacαad, (B27)

B ′
a,bcd = Ba,bcd + abacαad + abadαac + acadαab

− abA
(Q)
a,cd − acA

(Q)
a,bd − adA

(Q)
a,bc, (B28)

C ′
ab,cd = Cab,cd + 3

4
aaacαbd + 3

4
aaadαbc + 3

4
abacαad

+ 3

4
abadαac − 1

2
δabacaeαde − 1

2
δabadaeαce

− 1

2
δcdaaaeαbe − 1

2
δcdabaeαae + 1

3
δabδcdaeaf αef

− 1

2
aaAb,cd − 1

2
abAa,cd − 1

2
acAd,ab − 1

2
adAc,ab

+ 1

3
δabaeAe,cd + 1

3
δcdaeAe,ab, (B29)

(D′
a,bc)′ = D′

a,bc + 3ω0

4
εadeabadαec + 3ω0

4
εadeacadαeb

− ω0

2
εadeadAe,bc − ω0

2
δbcεadeadaf αef

+ 3

2
abG

′
ca + 3

2
acG

′
ba − δbcadG

′
da, (B30)

(D(m)′
a,bc)′ = D

(m)′
a,bc − 2ω0

3
εbdeacadαae + ω0

3
εbdeadA

(Q)
a,ce

− 2acG
′
ab + 2

3
δbcadG

(n)′
ad , (B31)

χ ′
ab = χab + ω0

2
εacdacG

′
db + ω0

2
εbcdacG

′
da

+ ω2
0

4
εacdεbef acaeαdf . (B32)

Note that A
(Q)
a,bc and G

(n)′
ab have emerged naturally here, as

anticipated in Appendix A 1.
Working to order λ2, we substitute (B25)–(B32) into (B18)–

(B22) and Taylor expand the illuminating light about the spatial
origin as

λ0E′
a ≈ λ0Ea + λ1ab∂bEa + λ2 1

2abac∂c∂aEa, (B33)

for example. Comparing the results of this calculation with
(7)–(11), with the latter expressed in terms of reduced property

tensors using (A40)–(A52), we find that
μ̃′

a = μ̃a, (B34)

	̃′
ab = 	̃ab − 3

2
aaμ̃b − 3

2
abμ̃a + δabacμ̃c, (B35)

m̃′
a = m̃a + iω0

2
εabcabμ̃c, (B36)

M̃ ′
ab = M̃ab − 2iω0

3
εacdabacμ̃d − 2abM̃a

+ iω0

3
εacdacQ̃bd + 2

3
δabacÑc, (B37)

Q̃′
abc = Q̃abc − aaQ̃bc − abQ̃ac − acQ̃ab

+ aaabμ̃c + aaμ̃bac + μ̃aabac. (B38)

Note that Ña and Q̃ab have emerged naturally here, as antici-
pated in Appendix A 1.

Finally, a calculation analogous to that which gives (5)
and (6) [2,34], but with a chosen as the origin of multipolar
expansion, shows that the electric and magnetic fields of the
scattered light have the following forms:

e′ ≈ Re(ẽ′e−iωt ), (B39)

b′ ≈ Re(b̃′e−iωt ), (B40)

with

ẽ′
a ≈ μ0ω

2eik(r−r̂·a)

4πr
(δab − r̂a r̂b)

×
(

λ0μ̃′
b + λ1 1

c
εbcdM̃

′
cr̂d − λ1 ik

3
	̃′

bcr̂c

− λ2 ik

2c
εbcdM̃

′
cer̂er̂d − λ2 k2

6
Q̃′

bcd r̂cr̂d

)
, (B41)

b̃′
a ≈ 1

c
εabcr̂bẽ

′
c, (B42)

far from the scatterer. Working to the order of λ2, we substitute
(B34)–(B38) into (B41) and (B42) and Taylor expand the phase
factor as

eik(r−r̂·a) ≈ eikr
[
λ0 − λ1r̂ · a − λ2 1

2k2(r̂ · a)2], (B43)

giving

ẽ′
a − ẽa ≈ λ0�̃(0)

a + λ1�̃(1)
a + λ2�̃(2)

a , (B44)

with �̃(0)
a = �̃(1)

a = �̃(2)
a = 0. Thus, the scattered electric and

magnetic fields are independent of our choice of origin for
multipolar expansions, as they should be. It follows that

s ′
ξ = f̃ξabẽ

′
aẽ

′∗
b = sξ , (B45)

to the order of λ2. Thus, the Stokes parameters of the scat-
tered light are also independent of our choice of multipolar
expansions to order λ2, as they should be.

The calculations above illustrate the need to consider
all of the relevant multipole moments and property tensors
simultaneously: if any one of these is omitted, “physical”
predictions are obtained that depend upon our choice of origin
for multipolar expansions. These predictions are meaningless,
of course, as they are not unique.
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APPENDIX C: GENERAL EXPRESSIONS
FOR THE STOKES PARAMETERS AFTER

ROTATIONAL AVERAGING

In this Appendix, we list the rotationally averaged versions
of the s

(0)
ξ and the s

(2)
ξ for plane-wave illumination, as described

in Sec. III of the main text. We have calculated these results
using the procedure described in Ref. [22], where the rotational
average 〈Ta1...aN

〉 of a tensor Ta1...aN
of rank N is calculated as

follows:

〈
Ta1...aN

〉 = I
(N)
a1...aN a′

1...a
′
N
Ta′

1...a
′
N
, (C1)

with I
(4)
abcda′b′c′d ′ , I

(5)
abcdea′b′c′d ′e′ , and I

(6)
abcdef a′b′c′d ′e′f ′ as seen in

(A2.20), (A2.24), and (A2.26) of [22]. In some of the equations
below, we have refrained from including tildes and superscript
labels, for the sake of notational brevity. The results are quoted
in terms of isotropic combinations of property tensor compo-
nents, which are defined after each set of contributions. These
have been defined so that they all have the same dimensions
and are all real for the special case of Rayleigh scattering of
far-off-resonance light by a time-reversible scatterer.

Let us emphasise that no special assumptions have been
made here about the scatterer: the results below are rather
general.

The α − α terms are

〈
sα−α
ξ

〉 = KRe
(

1
40 Ãα−α

ξ

)
,

with

Ãα−α
0 = S0(−M1 + 14M2 − M3)

+ S0 cos2 θ (3M1 − 2M2 + 3M3)

+ S1 sin2 θ (3M1 − 2M2 + 3M3), (C2)

Ãα−α
1 = S1(−3M1 + 2M2 − 3M3)

+ S1 cos2 θ (−3M1 + 2M2 − 3M3)

+ S0 sin2 θ (−3M1 + 2M2 − 3M3), (C3)

Ãα−α
2 = S2 cos θ (−6M1 + 4M2 − 6M3), (C4)

Ãα−α
3 = S3 cos θ (10M1 − 10M3), (C5)

where

M̃α−α
1 = α̃aaα̃

∗
bb, (C6)

M̃α−α
2 = α̃abα̃

∗
ab, (C7)

M̃α−α
3 = α̃abα̃

∗
ba (C8)

are the relevant properties of the scatterer.
The A − A terms are

〈
sA−A
ξ

〉 = KRe
[

1
7560

(
ÃA−A

ξ + B̃A−A
ξ + C̃A−A

ξ

)]
, (C9)

with

ÃA−A
0 = S0(3M1 + 3M2) + S0 cos2 θ (−9M1 − 9M2)

+ S1 sin2 θ (9M1 + 9M2), (C10)

ÃA−A
1 = S1(−9M1 − 9M2) + S1 cos2 θ (−9M1 − 9M2)

+ S0 sin2 θ (9M1 + 9M2), (C11)

ÃA−A
2 = S2 cos θ (−18M1 − 18M2), (C12)

ÃA−A
3 = S3 cos θ (14M1 − 14M2), (C13)

B̃A−A
0 = S0 cos θ (24M3−60M4)+S0 cos3 θ (−40M3+16M4)

+ S1 sin2 θ cos θ (−40M3 + 16M4), (C14)

B̃A−A
1 = S1 cos θ (−32M3−4M4)+S1 cos3 θ (40M3 − 16M4)

+ S0 sin2 θ cos θ (40M3 − 16M4), (C15)

B̃A−A
2 = S2(−36M3 + 6M4) + S2 cos2 θ (44M3 − 26M4)

+ iS3 sin2 θ (28M3 + 14M4), (C16)

B̃A−A
3 = S3(28M3 + 14M4) + S3 cos2 θ (−84M3 − 42M4)

+ iS2 sin2 θ (−28M3 − 14M4), (C17)

C̃A−A
0 = S0(3M5 + 3M6) + S0 cos2 θ (−9M5 − 9M6)

+ S1 sin2 θ (−9M5 − 9M6), (C18)

C̃A−A
1 = S1(−9M5 − 9M6) + S1 cos2 θ (−9M5 − 9M6)

+ S0 sin2 θ (−9M5 − 9M6), (C19)

C̃A−A
2 = S2 cos θ (−18M5 − 18M6), (C20)

C̃A−A
3 = S3 cos θ (14M5 − 14M6), (C21)

where

M̃A−A
1 = ω2

0

c2
Ãa,abÃ

∗
c,bc, (C22)

M̃A−A
2 = ω2

0

c2
Ãa,bcÃ

∗
b,ac, (C23)

M̃A−A
3 = ω0ω

c2
Ãa,ab

˜A ∗
c,bc, (C24)

M̃A−A
4 = ω0ω

c2
Ãa,bc

˜A ∗
b,ac, (C25)

M̃A−A
5 = ω2

c2
˜Aa,ab

˜A ∗
c,bc, (C26)

M̃A−A
6 = ω2

c2
˜Aa,bc

˜A ∗
b,ac (C27)

are the relevant properties of the scatterer.
The G − A terms are〈
sG−A
ξ

〉 = KRe
[

1
360

(
ÃG−A

ξ + B̃G−A
ξ + C̃G−A

ξ + D̃G−A
ξ

)]
,

(C28)
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with

ÃG−A
0 = S0(2M1 − 4M2) + S0 cos2 θ (−6M1 + 12M2)

+ S1 sin2 θ (−2M1 + 4M2), (C29)

ÃG−A
1 = S1(2M1 − 4M2) + S1 cos2 θ (2M1 − 4M2)

+ S0 sin2 θ (6M1 − 12M2),

ÃG−A
2 = S2 cos θ (4M1 − 8M2), (C30)

ÃG−A
3 = S3 cos θ (−12M1), (C31)

B̃G−A
0 = S0 cos θ (−12M4), (C32)

B̃G−A
1 = S1 cos θ (−8M3 + 4M4), (C33)

B̃G−A
2 = S2(−4M3 + 2M4) + S2 cos2 θ (−4M3 + 2M4)

+ iS3 sin2 θ (−4M3 + 2M4), (C34)

B̃G−A
3 = S3(−4M3 + 2M4) + S3 cos2 θ (12M3 − 6M4)

+ iS2 sin2 θ (−12M3 + 6M4), (C35)

C̃G−A
0 = S0 cos θ (12M5), (C36)

C̃G−A
1 = S1 cos θ (−4M5 + 8M6), (C37)

C̃G−A
2 = S2(−2M5 + 4M6) + S2 cos2 θ (−2M5 + 4M6)

+ iS3 sin2 θ (−6M5 + 12M6), (C38)

C̃G−A
3 = S3(−2M5 + 4M6) + S3 cos2 θ (6M5 − 12M6)

+ iS2 sin2 θ (−2M5 + 4M6), (C39)

D̃G−A
0 = S0(4M7 − 2M8) + S0 cos2 θ (−12M7 + 6M8)

+ S1 sin2 θ (−12M7 + 6M8), (C40)

D̃G−A
1 = S1(4M7 − 2M8) + S1 cos2 θ (4M7 − 2M8)

+ S0 sin2 θ (4M7 − 2M8), (C41)

D̃G−A
2 = S2 cos θ (8M7 − 4M8),

D̃G−A
3 = S3 cos θ (12M8), (C42)

where

M̃G−A
1 = iω0

c2
εabcÃ

∗
a,bdG̃cd , (C43)

M̃G−A
2 = iω0

c2
εabcÃ

∗
a,bdG̃dc, (C44)

M̃G−A
3 = iω

c2
εabc

˜A ∗
a,bdG̃cd , (C45)

M̃G−A
4 = iω

c2
εabc

˜A ∗
a,bdG̃dc, (C46)

M̃G−A
5 = iω0

c2
εabcÃ

∗
a,bd G̃cd , (C47)

M̃G−A
6 = iω0

c2
εabcÃ

∗
a,bd G̃dc, (C48)

M̃G−A
7 = iω

c2
εabc

˜A ∗
a,bd G̃cd , (C49)

M̃G−A
8 = iω

c2
εabc

˜A ∗
a,bd G̃dc (C50)

are the relevant properties of the scatterer.
The G − G terms are〈

sG−G
ξ

〉 = KRe
[

1
120

(
ÃG−G

ξ + B̃G−G
ξ + C̃G−G

ξ

)]
, (C51)

with

ÃG−G
0 = S0(−M1 + 14M2 − M3)

+ S0 cos2 θ (3M1 − 2M2 + 3M3)

+ S1 sin2 θ (−3M1 + 2M2 − 3M3), (C52)

ÃG−G
1 = S1(3M1 − 2M2 + 3M3)

+ S1 cos2 θ (3M1 − 2M2 + 3M3)

+ S0 sin2 θ (−3M1 + 2M2 − 3M3), (C53)

ÃG−G
2 = S2 cos θ (6M1 − 4M2 + 6M3), (C54)

ÃG−G
3 = S3 cos θ (10M1 − 10M3), (C55)

B̃G−G
0 = S0 cos θ (−20M4 + 20M6), (C56)

B̃G−G
1 = S1 cos θ (−12M4 + 8M5 − 12M6), (C57)

B̃G−G
2 = S2(−6M4 + 4M5 − 6M6)

+ S2 cos2 θ (−6M4 + 4M5 − 6M6)

+ iS3 sin2 θ (−6M4 + 4M5 − 6M6), (C58)

B̃G−G
3 = S3(2M4 − 28M5 + 2M6)

+ S3 cos2 θ (−6M4 + 4M5 − 6M6)

+ iS2 sin2 θ (6M4 − 4M5 + 6M6), (C59)

C̃G−G
0 = S0(−M7 + 14M8 − M9)

+ S0 cos2 θ (3M7 − 2M8 + 3M9)

+ S1 sin2 θ (3M7 − 2M8 + 3M9), (C60)

C̃G−G
1 = S1(3M7 − 2M8 + 3M9)

+ S1 cos2 θ (3M7 − 2M8 + 3M9)

+ S0 sin2 θ (3M7 − 2M8 + 3M9), (C61)

C̃G−G
2 = S2 cos θ (6M7 − 4M8 + 6M9), (C62)

C̃G−G
3 = S3 cos θ (10M7 − 10M9), (C63)

where

M̃G−G
1 = 1

c2
G̃aaG̃

∗
bb, (C64)

M̃G−G
2 = 1

c2
G̃abG̃

∗
ab, (C65)
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M̃G−G
3 = 1

c2
G̃abG̃

∗
ba, (C66)

M̃G−G
4 = 1

c2
G̃aaG̃

∗
bb, (C67)

M̃G−G
5 = 1

c2
G̃abG̃

∗
ab, (C68)

M̃G−G
6 = 1

c2
G̃abG̃

∗
ba, (C69)

M̃G−G
7 = 1

c2
G̃aaG̃

∗
bb, (C70)

M̃G−G
8 = 1

c2
G̃abG̃

∗
ab, (C71)

M̃G−G
9 = 1

c2
G̃abG̃

∗
ba (C72)

are the relevant properties of the scatterer.
The α − B terms are〈

sα−B
ξ

〉 = KRe
[

1
5040

(
Ãα−B

ξ + B̃α−B
ξ

)]
, (C73)

with

Ãα−B
0 = S0(6M1 − 36M2 + 6M3 − 16M4)

+ S0 cos2 θ (−18M1 − 4M2 − 18M3 + 48M4)

+ S1 sin2 θ (−10M1 + 4M2 − 10M3 + 8M4),

(C74)

Ãα−B
1 = S1(10M1 − 4M2 + 10M3 − 8M4)

+ S1 cos2 θ (10M1 − 4M2 + 10M3 − 8M4)

+ S0 sin2 θ (18M1 + 4M2 + 18M3 − 48M4),

(C75)
Ãα−B

2 = S2 cos θ (20M1 − 8M2 + 20M3 − 16M4), (C76)

Ãα−B
3 = S3 cos θ (−28M1 + 28M3), (C77)

B̃α−B
0 = S0(6M5 + 6M6 − 36M7 − 16M8)

+ S0 cos2 θ (−18M5 − 18M6 − 4M7 + 48M8)

+ S1 sin2 θ (−18M5 − 18M6 − 4M7 + 48M8),

(C78)

B̃α−B
1 = S1(10M5 + 10M6 − 4M7 − 8M8)

+ S1 cos2 θ (10M5 + 10M6 − 4M7 − 8M8)

+ S0 sin2 θ (10M5 + 10M6 − 4M7 − 8M8),

(C79)

B̃α−B
2 = S2 cos θ (20M5 + 20M6 − 8M7 − 16M8),

B̃α−B
3 = S3 cos θ (−28M5 + 28M6), (C80)

where

M̃α−B
1 = ω0

c2
α̃aaB̃

∗
b,bcc,

M̃α−B
2 = ω0

c2
α̃abB̃

∗
a,bcc,

M̃α−B
3 = ω0

c2
α̃abB̃

∗
b,acc,

M̃α−B
4 = ω0

c2
α̃abB̃

∗
c,abc,

M̃α−B
5 = ω

c2
α̃aaB̃

∗
b,bcc,

M̃α−B
6 = ω

c2
α̃abB̃

∗
a,bcc,

M̃α−B
7 = ω

c2
α̃abB̃

∗
b,acc,

M̃α−B
8 = ω

c2
α̃abB̃

∗
c,abc

are the relevant properties of the scatterer.
The α − C terms are〈

sα−C
ξ

〉 = KRe
(

1
1260 Ãα−C

ξ

)
, (C81)

with

Ãα−C
0 = S0 cos θ (−6M1 + 30M2 − 12M3)

+ S0 cos3 θ (10M1 − 8M2 + 20M3)

+ S1 sin2 θ cos θ (10M1 − 8M2 + 20M3), (C82)

Ãα−C
1 = S1 cos θ (−6M1 + 2M2 + 16M3)

+ S1 cos3 θ (−10M1 + 8M2 − 20M3)

+ S0 sin2 θ cos θ (−10M1 + 8M2 − 20M3), (C83)

Ãα−C
2 = S2(2M1 − 3M2 + 18M3)

+ S2 cos2 θ (−18M1 + 13M2 − 22M3)

+ iS3 sin2 θ (−14M1 + 7M2 + 14M3), (C84)

Ãα−C
3 = S3(−14M1 + 7M2 + 14M3)

+ S3 cos2 θ (42M1 − 21M2 − 42M3)

+ iS2 sin2 θ (−14M1 + 7M2 + 14M3), (C85)

where

M̃α−C
1 = ωω0

c2
α̃aaC̃

∗
bc,bc, (C86)

M̃α−C
2 = ωω0

c2
α̃abC̃

∗
ac,bc, (C87)

M̃α−C
3 = ωω0

c2
α̃abC̃

∗
bc,ac (C88)

are the relevant properties of the scatterer.
The α − D terms are〈

sα−D
ξ

〉 = KRe
(

1
180 Ãα−D

ξ

)
, (C89)

with

Ãα−D
0 = S0 cos θ (−6M1 + 6M2 − 6M3), (C90)

Ãα−D
1 = S1 cos θ (−2M1 − 2M2 + 2M3 − 4M4), (C91)

Ãα−D
2 = S2(−M1 − M2 + M3 − 2M4)

+ S2 cos2 θ (−M1 − M2 + M3 − 2M4)
+ iS3 sin2 θ (M1 + M2 + 3M3 − 6M4), (C92)
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Ãα−D
3 = S3(M1 + M2 − M3 + 2M4)

+ S3 cos2 θ (−3M1 − 3M2 + 3M3 − 6M4)

+ iS2 sin2 θ (−3M1 − 3M2 − M3 + 2M4), (C93)

where

M̃α−D
1 = iω

c2
εabcα̃abD̃

∗
d,cd , (C94)

M̃α−D
2 = iω

c2
εabcα̃adD̃

∗
b,cd , (C95)

M̃α−D
3 = iω0

c2
εabcα̃adD̃

∗
b,cd , (C96)

M̃α−D
4 = iω0

c2
εabcα̃abD̃

∗
d,cd (C97)

are the relevant properties of the scatterer.
The α − Dm terms are〈

sα−Dm

ξ

〉 = KRe
[

1
120

(
Ãα−Dm

ξ + B̃α−Dm

ξ

)]
, (C98)

with

Ãα−Dm

0 = S0(M1 − 8M2 + 6M3 + M4 − 6M6)

+ S0 cos2 θ (−3M1 + 4M2 + 2M3 − 3M4 − 2M6)

+ S1 sin2 θ (M1 − 2M3 − M4 + 2M5 − 2M6),

(C99)

Ãα−Dm

1 = S1(−M1 + 2M3 + M4 − 2M5 + 2M6)

+ S1 cos2 θ (−M1 + 2M3 + M4 − 2M5 + 2M6)

+ S0 sin2 θ (3M1 − 4M2 − 2M3 + 3M4 + 2M6),

(C100)

Ãα−Dm

2 = S2 cos θ (−2M1 + 4M3 + 2M4 − 4M5 + 4M6),

(C101)

Ãα−Dm

3 = S3 cos θ (2M1 − 2M4 + 8M5), (C102)

B̃α−Dm

0 = S0(−M8 − M10 + 6M12)

+ S0 cos2 θ (3M8 + 3M10 + 2M12)

+ S1 sin2 θ (3M8 + 3M10 + 2M12), (C103)

B̃α−Dm

1 = S1(−M8 + 2M9 − M10 + 2M11 − 2M12)

+ S1 cos2 θ (−M8 + 2M9 − M10 + 2M11 − 2M12)

+ S0 sin2 θ (−M8 + 2M9 − M10 + 2M11 − 2M12),

(C104)

B̃α−Dm

2 = S2 cos θ (−2M8 + 4M9 − 2M10 + 4M11 − 4M12),

(C105)

B̃α−Dm

3 = S3 cos θ (−4M7 − 2M8 + 8M9 + 2M10 − 8M11),

(C106)

where

M̃α−Dm

1 = iω0

c2
εabcα̃abD̃

(m)∗
c,dd , (C107)

M̃α−Dm

2 = iω0

c2
εabcα̃abD̃

(m)∗
d,cd , (C108)

M̃α−Dm

3 = iω0

c2
εabcα̃abD̃

(m)∗
d,dc , (C109)

M̃α−Dm

4 = iω0

c2
εabcα̃adD̃

(m)∗
b,cd , (C110)

M̃α−Dm

5 = iω0

c2
εabcα̃adD̃

(m)∗
b,dc , (C111)

M̃α−Dm

6 = iω0

c2
εabcα̃adD̃

(m)∗
d,bc , (C112)

M̃α−Dm

7 = iω

c2
εabcα̃abD̃

(m)∗
c,dd , (C113)

M̃α−Dm

8 = iω

c2
εabcα̃abD̃

(m)∗
d,cd , (C114)

M̃α−Dm

9 = iω

c2
εabcα̃abD̃

(m)∗
d,dc , (C115)

M̃α−Dm

10 = iω

c2
εabcα̃adD̃

(m)∗
b,cd , (C116)

M̃α−Dm

11 = iω

c2
εabcα̃adD̃

(m)∗
b,dc , (C117)

M̃α−Dm

12 = iω

c2
εabcα̃adD̃

(m)∗
d,bc (C118)

are the relevant properties of the scatterer.
The general α − χ terms are〈

s
α−χ

ξ

〉 = KRe
(

1
60 Ã

α−χ

ξ

)
, (C119)

with

Ã
α−χ

0 = S0 cos θ (10M1 − 10M3), (C120)

Ã
α−χ

1 = S1 cos θ (−6M1 + 4M2 − 6M3), (C121)

Ã
α−χ

2 = S2(−3M1 + 2M2 − 3M3)

+ S2 cos2 θ (−3M1 + 2M2 − 3M3)

+ iS3 sin2 θ (3M1 − 2M2 + 3M3), (C122)

Ã
α−χ

3 = S3(−M1 + 14M2 − M3)

+ S3 cos2 θ (3M1 − 2M2 + 3M3)

+ iS2 sin2 θ (3M1 − 2M2 + 3M3), (C123)

where

M̃
α−χ

1 = 1

c2
α̃aaχ̃

∗
bb, (C124)

M̃
α−χ

2 = 1

c2
α̃abχ̃

∗
ab, (C125)

M̃
α−χ

3 = 1

c2
α̃abχ̃

∗
ba (C126)

are the relevant properties of the scatterer.
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APPENDIX D: EXPLICIT EXPRESSIONS
FOR THE COEFFICIENTS A, . . . ,R′

In this Appendix, we list explicit expressions for the
coefficients A, . . . , R′.

The unprimed coefficients are

A = 1

40
(−αaaαbb + 13αabαab)

+ k2
0

7560
(6Aa,abAc,bc + 6Aa,bcAb,ac)

+ k0

360c
(4εabcAa,bdG

′
cd − 8εabcAa,bdG

′
dc)

+ 1

120c2
(−2G′

aaG
′
bb + 24G′

abG
′
ab − 2G′

abG
′
ba)

+ k0

5040c
(12αaaBb,bcc − 60αabBa,bcc − 32αabBc,abc)

+ k0

120c

(
2εabcαadD

(m)′
b,cd − 12εabcαadD

(m)′
d,bc

)
, (D1)

C = 1

40
(3αaaαbb + αabαab)

+ k2
0

7560
(−18Aa,abAc,bc − 18Aa,bcAb,ac)

+ k0

360c
(−12εabcAa,bdG

′
cd + 24εabcAa,bdG

′
dc)

+ 1

120c2
(6G′

aaG
′
bb − 4G′

abG
′
ab + 6G′

abG
′
ba)

+ k0

5040c
(−36αaaBb,bcc − 44αabBa,bcc + 96αabBc,abc)

+ k0

120c

(−εabcαadD
(m)′
b,cd + 8εabcαadD

(m)′
d,bc

)
, (D2)

E = −K = 1

40
(3αaaαbb + αabαab)

+ k0

360c
(−8εabcAa,bdG

′
cd + 16εabcAa,bdG

′
dc)

+ k0

5040c
(−28αaaBb,bcc − 28αabBa,bcc + 56αabBc,abc)

+ k0

120c

(
4εabcαadD

(m)′
b,cd + 4εabcαadD

(m)′
d,bc

− 2εabcαadD
(m)′
b,dc

)
, (D3)

G = I = 1

40
(−3αaaαbb − αabαab)

+ k2
0

7560
(−18Aa,abAc,bc − 18Aa,bcAb,ac)

+ k0

360c
(4εabcAa,bdG

′
cd − 8εabcAa,bdG

′
dc)

+ 1

120c2
(6G′

aaG
′
bb − 4G′

abG
′
ab + 6G′

abG
′
ba)

+ k0

5040c
(20αaaBb,bcc + 12αabBa,bcc − 16αabBc,abc)

+ k0

120c

(−2εabcαadD
(m)′
b,cd − 4εabcαadD

(m)′
d,bc

+ 4εabcαadD
(m)′
b,dc

)
, (D4)

N = 1

40
(−6αaaαbb − 2αabαab)

+ k2
0

7560
(−36Aa,abAc,bc − 36Aa,bcAb,ac)

+ k0

360c
(8εabcAa,bdG

′
cd − 16εabcAa,bdG

′
dc)

+ 1

120c2
(12G′

aaG
′
bb − 8G′

abG
′
ab + 12G′

abG
′
ba)

+ k0

5040c
(40αaaBb,bcc + 24αabBa,bcc − 32αabBc,abc)

+ k0

120c

(−4εabcαadD
(m)′
b,cd − 8εabcαadD

(m)′
d,bc

+ 8εabcαadD
(m)′
b,dc

)
, (D5)

Q = 1

40
(10αaaαbb − 10αabαab)

+ k2
0

7560
(28Aa,abAc,bc − 28Aa,bcAb,ac)

+ k0

360c
(−24εabcAa,bdG

′
cd )

+ 1

120c2
(20G′

aaG
′
bb − 20G′

abG
′
ba)

+ k0

5040c
(−56αaaBb,bcc + 56αabBa,bcc − 32αabBc,abc)

+ k0

120c

(
4εabcαadD

(m)′
b,cd − 16εabcαadD

(m)′
b,dc

)
. (D6)

The singly primed coefficients are

B′ = k2
0

7560
(24Aa,abAc,bc − 60Aa,bcAb,ac)

+ k0

360c
(−24εabcAa,bdG

′
dc)

+ 1

120c2
(20G′

aaG
′
bb − 20G′

abG
′
ab)

+ k2
0

1260
(−6αaaCbc,bc + 28αabCac,bc)

+ ω0

180c2
(−12εabcαadD

′
b,cd )

+ 1

60c2
(10αaaχbb − 10αabχab), (D7)

H′ = k2
0

7560
(−3Aa,abAc,bc − 4Aa,bcAb,ac)

+ k0

360c
(−16εabcAa,bdG

′
cd + 8εabcAa,bdG

′
dc)

+ 1

120c2
(12G′

aaG
′
bb + 12G′

abG
′
ab − 8G′

abG
′
ba)
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+ k2
0

1260
(−6αaaCbc,bc + 18αabCac,bc)

+ k0

180c
(−4εabcαadD

′
b,cd )

+ 1

60c2
(−6αaaχbb − 2αabχab), (D8)

M′ = k2
0

7560
(−36Aa,abAc,bc + 6Aa,bcAb,ac)

+ k0

360c
(−8εabcAa,bdG

′
cd + 4εabcAa,bdG

′
dc)

+ 1

120c2
(6G′

aaG
′
bb + 6G′

abG
′
ab − 4G′

abG
′
ba)

+ k2
0

1260
(2αaaCbc,bc + 15αabCac,bc)

+ k0

180c
(−2εabcαadD

′
b,cd )

+ 1

60c2
(−3αaaχbb − αabχab), (D9)

O′ = k2
0

7560
(44Aa,abAc,bc − 26Aa,bcAb,ac)

+ k0

360c
(−8εabcAa,bdG

′
cd + 4εabcAa,bdG

′
dc)

+ 1

120c2
(6G′

aaG
′
bb + 6G′

abG
′
ab − 4G′

abG
′
ba)

+ k2
0

1260
(−18αaaCbc,bc − 9αabCac,bc)

+ k0

180c
(−2εabcαadD

′
b,cd )

+ 1

60c2
(−3αaaχbb − αabχab), (D10)

P′ = k2
0

7560
(28Aa,abAc,bc + 14Aa,bcAb,ac)

+ k0

360c
(−8εabcAa,bdG

′
cd + 4εabcAa,bdG

′
dc)

+ 1

120c2
(−2G′

aaG
′
bb − 2G′

abG
′
ab + 28G′

abG
′
ba)

+ k2
0

1260
(−14αaaCbc,bc + 21αabCac,bc)

+ k0

180c
(2εabcαadD

′
b,cd )

+ 1

60c2
(−αaaχbb + 13αabχab), (D11)

R′ = k2
0

7560
(−84Aa,abAc,bc − 42Aa,bcAb,ac)

+ k0

360c
(24εabcAa,bdG

′
cd − 12εabcAa,bdG

′
dc)

+ 1

120c2
(6G′

aaG
′
bb + 6G′

abG
′
ab − 4G′

abG
′
ba)

+ k2
0

1260
(42αaaCbc,bc − 63αabCac,bc)

+ k0

180c
(−6εabcαadD

′
b,cd )

+ 1

60c2
(3αaaχbb + αabχab). (D12)

Finally, the doubly primed coefficients are

D′′ = F′′ = −J′′ = −L′′

= k2
0

7560
(−40Aa,abAc,bc + 16Aa,bcAb,ac)

+ k2
0

1260
(10αaaCbc,bc + 12αabCac,bc). (D13)
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