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Mechanism of stochastic switching in single-atom absorptive bistability
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We analyze a single-atom cavity QED model to isolate the dynamic mechanism of stochastic switching between
regions of state space associated with mean-field attractors of absorptive bistability. We present evidence from
simulations that such switching is correlated with variations in the timings of atomic spontaneous emission events,
and we interpret this finding in terms of the dynamics of the coupled intracavity field and atomic dipole. Somewhat
surprisingly, both upward and downward (in intracavity photon number) switching transitions may be induced by
rapid succession of several atomic emissions. Based on our results we propose an implementation of bidirectional
“toggle” control for a single-atom optical latch.
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I. INTRODUCTION

Cavity nonlinear optics provides a rich physical paradigm
for theoretical analyses and proof-of-concept experiments in
ultra-low-energy all-optical switching [1–3]. Attojoule-scale
switching energies can be achieved realistically in the spe-
cialized setting of cavity quantum electrodynamics (cavity
QED), but in this regime of small intracavity photon numbers
quantum noise exerts a strong influence on device operation
[4,5]. One of the elementary physical phenomena enabling
such logic devices is absorptive optical bistability, which has
been studied extensively in the semiclassical (mean field) limit
of cavity QED [6] as well as the single-atom strong-coupling
quantum regime [7,8]. Quantum noise-induced switching be-
tween metastable states has been observed in single-atom
cavity QED experiments [5] with quantitative details well
accounted for by first-principles theory. In the related context
of dispersive optical bistability a coherent feedback strategy
for suppressing quantum noise-induced switching—which
represents a fundamental error process for ultra-low-energy
photonic logic—has been analyzed theoretically [9]. However,
for single-atom absorptive bistability no comparable control
schemes have yet been proposed. Our aim in this paper is to
develop an intuitive understanding of the quantum dynamics
of stochastic switching in order to facilitate future work in
quantum control. As a first step in the latter direction we
suggest a way to achieve bidirectional “toggle” control of
switching in single-atom absorptive bistability, which has no
direct counterpart in the classical limit.

II. THEORETICAL MODELS

The quantum model we use is built upon the driven Jaynes-
Cummings Hamiltonian [10], which models the interaction
between a single mode of an optical cavity having a resonant
frequency ωc and a two-level atom with ground state |g〉,
excited state |e〉, and transition frequency ωa . For an atom-field
coupling constant g and an external coherent driving field with
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frequency ωl and amplitude E (by properly choosing the time
origin we can assume E is real) coupled to the cavity mode, the
Hamiltonian in the rotating wave approximation written in a
frame rotating at the driving frequency ωl is given by (h̄ = 1)

H = �ca
†a + �aσ+σ− + ig(a†σ− − aσ+) + iE(a† − a)

(1)

where �a = ωa − ωl and �c = ωc − ωl . In Eq. (1), a is
the annihilation operator for the chosen cavity mode (which
we will refer to as “cavity field” below) and σ− = |g〉〈e| =
(σx − iσy)/2 is the atomic lowering operator. In addition to the
coherent dynamics governed by (1) there are two dissipative
channels for the system: the atom may spontaneously emit into
modes other than the chosen cavity mode at a rate 2γ⊥, and
photons may leak out of the cavity mirror at a rate 2κ . Assuming
only these two incoherent processes the overall dynamics can
be described by the following stochastic Schrödinger equation
[10]:

i
d

dt
|ψ〉 = Heff|ψ〉 (2)

with the collapse operators

C1 =
√

2κa, C2 =
√

2γ⊥σ− (3)

and the effective non-Hermitian Hamiltonian:

Heff = H − i

2

∑
k

C
†
kCk

= �ca
†a + �aσ+σ− + ig(a†σ− − aσ+) + iE(a† − a)

−iκa†a − iγ⊥σ+σ−. (4)

The continuous evolution of the stochastic Schrödinger equa-
tion (2) is interrupted by quantum jumps in which the state
vector |ψ〉 collapses to

|ψ〉 �→ Ck|ψ〉
‖Ck|ψ〉‖ , (5)

the probability of the collapse in an interval dt being given
by ‖Ck|ψ〉‖2dt . This makes the time evolution of |ψ(t)〉
a multidimensional stochastic process. Such a time series
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of |ψ(t)〉 is known as a quantum trajectory of the system
evolution. The time series of |ψ(t)〉 may be used to find the
trajectory for the expectation of any operator O acting on the
system Hilbert space using the following formula:

〈O〉 = 〈ψ(t)|O|ψ(t)〉
〈ψ(t)|ψ(t)〉 . (6)

Apart from the stochastic process perspective there is also
a statistical ensemble description of the system dynamics,
which is described by the following unconditional master
equation [10]:

ρ̇ = −i[H,ρ] + κ(2aρa† − a†aρ − ρa†a)

+ γ⊥(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−) (7)

the density-matrix solution of which corresponds to the
(stochastic) ensemble average of all possible quantum
trajectories. The master equation (7) can also be used to
find the dynamical equations for the expectation of any
operator O acting on the system Hilbert space using the
formula ˙〈O〉 = Tr[Oρ̇]. The simplest set of operators that
can approximately describe the system state is {a,σ−,σz}.
Applying the above trace formula we obtain

˙〈a〉 = −(κ + i�c)〈a〉 + g〈σ−〉 + E,

˙〈σ−〉 = −(γ⊥ + i�a)〈σ−〉 + g〈aσz〉,
˙〈σz〉 = −2γ⊥(1 + 〈σz〉) − 2g(〈a†σ−〉 + 〈aσ+〉). (8)

The above operator expectation equations (8) also apply to
the case of N noninteracting atoms each coupled to the same
cavity mode with the same coupling constant g. In this case the
atomic operators are the sums of those of individual atoms [8]:

σ− =
N∑

j=1

σ
j
−, σz =

N∑
j=1

σ j
z . (9)

Note that the moment evolution equations (8) are not
closed as they contain expectations of operator products. A
common practice in the quantum optics community to close
the equations is to simply factorize the operator products,
e.g., 〈a†σ−〉 ≈ 〈a†〉〈σ−〉, which corresponds to taking the
thermodynamic limit of many weakly excited atoms, hence
the correlations between the atomic operators and the field
operator average to zero [6,7] (see also [11,12] for alternative
derivations). The closed equations after factorization are the
well-known Maxwell-Bloch equations (MBEs):

˙〈a〉 = −(κ + i�c)〈a〉 + g〈σ−〉 + E,

˙〈σ−〉 = −(γ⊥ + i�a)〈σ−〉 + g〈a〉〈σz〉,
˙〈σz〉 = −2γ⊥(1 + 〈σz〉) − 2g(〈a†〉〈σ−〉 + 〈a〉〈σ+〉). (10)

Under the resonance condition �c = �a = 0 (we will always
assume this resonance condition in the following) 〈a〉 and 〈σ−〉
are real, thus the above MBEs can be re-written using the fol-
lowing physical observables: cavity field amplitude quadrature
x = (a + a†)/2, and Pauli matrices σx = (σ+ + σ−) and σz:

˙〈x〉 = −κ〈x〉 + g

2
〈σx〉 + E,

˙〈σx〉 = −γ⊥〈σx〉 + g〈x〉〈σz〉,
˙〈σz〉 = −2γ⊥(1 + 〈σz〉) − 2g〈x〉〈σx〉. (11)

To visualize the atom-field interaction it is useful to rewrite
the driving terms of the atomic operator expectation equations
in the form of the classical equation of motion for a magnetic
moment in a static magnetic field:

d

dt

⎛
⎝

〈σx〉
0

〈σz〉

⎞
⎠ = d

dt

S = 2g 
S × 
B

= 2g

⎛
⎝

〈σx〉
0

〈σz〉

⎞
⎠ ×

⎛
⎝

0
−〈x〉

0

⎞
⎠ (12)

where 
S = (〈σx〉 0 〈σz〉)T and 
B = (0 −〈x〉 0)T . This shows
that the atomic pseudospin undergoes precession in the xz

plane driven by the cavity field acting as a pseudomagnetic
field. This spin precession representation of the atomic
dynamics provides a useful intuitive picture for deciphering
the mechanism of stochastic switching in single-atom
absorptive bistability.

III. STOCHASTIC SWITCHING INDUCED BY ATOMIC
SPONTANEOUS EMISSION

Stochastic switching refers to the following phenomenon:
for an absorptive bistable parameter set identified by the
Maxwell-Bloch equations the quantum trajectory simulation
would show that the system has two preferred states with low-
and high-field amplitude, respectively, resembling absorptive
bistability; however, unlike in the limiting case described by
the Maxwell-Bloch equations the system does not stay in one
of the two states forever; instead it frequently jumps between
them as is illustrated in Fig. 1 below. This observation has been
confirmed by our recent experiment [5].

Since the automatic switching is a stochastic process, to
search for the underlying physical mechanism we should
obviously focus on the stochastic processes contained in our
theoretical model, which are the atomic spontaneous emission

FIG. 1. A typical quantum trajectory simulation result for the
evolution of the field amplitude quadrature expectation 〈x〉 for an
absorptive bistable parameter set identified by the Maxwell-Bloch
equations.
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FIG. 2. The statistics of spontaneous emission, photon leakage,
and 〈x〉 and 〈σx〉 conditioned upon low-to-high state transitions,
where the origin of the x axis is defined as the moment the system goes
from low-intensity to in-transit state and the position of the counting
window is defined as the moment we start counting; the time unit of
the x axis is chosen to be the mean time the system takes to complete
the low-to-high state transitions (termed “mean jump-up duration” in
the plot) and the counting window width is set to be 1/16 of the time
unit.

and photon leakage out of the cavity mirror. It is intuitive that
intrinsic field fluctuation due to photon leakage could induce
transitions between the two metastable states as is suggested
by the dispersive bistability in a Kerr-nonlinear cavity [9].
However, it is not clear whether the atomic spontaneous
emission also contributes to the automatic switching or, if it
does, how it operates.

The numerical evidence for the active role of the atomic
spontaneous emission in inducing the switching is based on the
quantum trajectory simulation defined above [10]. In particular
we used the quantum optics toolbox [13] to generate quantum
trajectories. We then used the three-state hidden Markov
model to classify all the data points of the trajectory into
three groups: (1) low-intensity state points, (2) in-transit points,
and (3) high-intensity state points based on the corresponding
observable expectation triplet (〈x〉,〈σx〉,〈σz〉) and defined the
occurrence of switching as the moment at which the system

FIG. 3. The statistics of spontaneous emission, photon leakage,
and 〈x〉 and 〈σx〉 conditioned upon high-to-low state transitions,
where the origin of the x axis is defined as the moment the system goes
from high-intensity to in-transit state and the position of the counting
window is defined as the moment we start counting; the time unit of
the x axis is chosen to be the mean time the system takes to complete
the high-to-low state transitions (termed “mean jump-down duration”
in the plot) and the counting window width is set to be 1/16 of the
time unit.

FIG. 4. Graphical representation of spontaneous emission inter-
rupting the atomic pseudospin precession in which the thick red
arrow represents the atomic pseudospin whereas the thin blue arrow
represents the cavity field acting as a pseudomagnetic field. (a) 〈σx〉
undergoes rotation mediated by 〈x〉 before spontaneous emission.
(b) 〈σx〉 is reset to zero upon spontaneous emission. (c) 〈σx〉 recovers
via the rotation mediated by 〈x〉 after spontaneous emission.

goes from low(high)-intensity state to in-transit state followed
by the system going from in-transit state to high(low)-intensity
state and staying in the destination state for a reasonably
long time. With this we collected the statistics of spontaneous
emission, photon leakage, and the observable expectation
triplet conditioned upon the occurrence of switching using a
counting window with a suitable width. Moreover we slid the
counting window from the occurrence of switching backward
in time just like rewinding the film to see what happened
that precedes the switching. The conditioned statistics against
the time the counting window is positioned for low-to-high
transitions are plotted in Fig. 2 below. As we can see from the
plot, there is excessive spontaneous emission preceding the
onset of low-to-high transitions.

This excessive spontaneous emission is also observed in the
statistics conditioned upon high-to-low transitions as is shown
in Fig. 3 below.

It seems like excessive spontaneous emission is a precursor
to the automatic switching. More careful examination of the
effect of spontaneous emission on the above-mentioned atomic
pseudospin precession reveals that excessive spontaneous
emission is not just a precursor to the automatic switching
but actually its cause. The excessive emission induces the
switching by weakening or strengthening the dipole moment
and hence the dipole radiation depending on whether the speed
of precession is slow or fast.

FIG. 5. Illustration of excessive spontaneous emission weakening
the dipole moment when the speed of the atomic pseudospin preces-
sion is slow.
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FIG. 6. Illustration of excessive spontaneous emission strength-
ening the dipole moment when the speed of the atomic pseudospin
precession is fast.

Whenever a spontaneous emission occurs the atomic pseu-
dospin is reset to pointing vertically downward in the Bloch
sphere (〈σz〉 = −1) and the dipole moment is reset to zero
(〈σx〉 = 0 and recall that we are considering the resonant case,
thus 〈σy〉 ≡ 0). After the emission, the atomic pseudospin
continues precessing and because of the out of phase relation
between the cavity field and the dipole moment the cavity
field drives the pseudospin back towards its position before the
occurrence of spontaneous emission, i.e., the dipole moment
recovers. Figure 4 below helps to visualize the consequence of
spontaneous emission on the atomic pseudospin precession.

Therefore at low-intensity state the cavity field is weak, thus
the speed of precession is slow, hence the recovery is slow. But
once the dipole moment is recovered it will remain strong for
a long time because it produces strong dipole radiation that
reduces the cavity field and hence the speed of precession. As
a result excessive spontaneous emission leads to weaker dipole
moment and dipole radiation as is illustrated by Fig. 5 below.

In contrast, at high-intensity state the cavity field is strong,
thus the speed of precession is fast, therefore the recovery
is immediate. But once the dipole moment is recovered it
will quickly precess to the opposite sign and complete many
revolutions if there is no spontaneous emission to interrupt

FIG. 7. Bin average of 〈σx〉 vs the number of spontaneous emis-
sions histogram for the low-intensity segments.

FIG. 8. Bin average of 〈σx〉 vs the number of spontaneous emis-
sions histogram for the high-intensity segments.

the cycling. As a consequence the dipole moment averages to
almost zero when there are few emissions. This is illustrated
in Fig. 6 below.

As a verification for the above hypothesis we randomly
chose a trajectory and divided it into time segments of
equal length and for each segment we counted the number
of spontaneous emissions. After that we evaluated for each
segment the time average of 〈x〉 and classified a segment as
a low-intensity segment if its 〈x〉 average is smaller than a
chosen limit or high-intensity segment if its 〈x〉 average is
greater than a chosen limit. The final step consists of making a
histogram for both the set of low-intensity segments and that of
high-intensity segments based on the number of spontaneous
emissions that occurred within the segment, and evaluating for
each of the histogram bins the average of 〈σx〉. The resulted
histograms on the bin average of 〈σx〉 versus the number of
spontaneous emissions for both the low-intensity segments
and the high-intensity segments are plotted in Figs. 7 and 8
below, which show clearly the dipole moment weakening and
strengthening by excessive spontaneous emission.

FIG. 9. A schematic of a two-cavity optical flip-flop consisting
of an absorptive bistable cavity to produce the two logic states and a
Purcell cavity to inducing state switching via the Purcell effect.
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FIG. 10. Cavity enhanced spontaneous emission induces low-to-
high transition in the absorptive bistable cavity by turning off the
detuning of the Purcell cavity (the square-well green curve).

IV. FLIP-FLOP CONTROL VIA SPONTANEOUS
EMISSION ENHANCEMENT

With the above understanding of the switching mechanism
via spontaneous emission, we proposed an implementation of
flip-flop control in the context of single-atom cavity quan-
tum electrodynamics via spontaneous emission enhancement,
which provides further corroboration to the above hypothe-
sized mechanism. The idea is straightforward: if excessive
spontaneous emission can lead to state transitions then when
a state transition is desired what we need to do is just to artifi-
cially introduce excessive spontaneous emission, and there is
a well-known method to enhance spontaneous emission—the
Purcell effect [14]. Thus suppose we have some means to
alter the cavity detuning (with respect to the atomic resonance
frequency)—either by some kind of electro-optic mechanism
or by Kerr effect with a control beam—then we can realize
state transition in the first cavity, the absorptive bistable cavity,
by reducing to zero the detuning of the second cavity, the cavity
for spontaneous emission enhancement (which we can call the
Purcell cavity). The schematic of such a flip-flop is given in
Fig. 9. Figures 10 and 11 below illustrate the flip-flop control
via turning off the detuning of the Purcell cavity, where the
detunings are chosen such that the effective decay rates are
almost the same as the spontaneous emission rate 2γ⊥.

An added advantage of this flip-flop control is that, for
conventional flip-flops the required input to trigger bit flip from

FIG. 11. Cavity enhanced spontaneous emission induces high-
to-low transition in the absorptive bistable cavity by turning off the
detuning of the Purcell cavity (the square-well green curve).

“0” to “1” is different from that to trigger bit flip from “1” to
“0”; however, for our proposal the same input, which is turning
off the detuning of the Purcell cavity, can be used to trigger
both “0” to “1” and “1” to “0” bit flips.

V. SUMMARY AND CONCLUSION

In this paper we have elucidated the mechanism of exces-
sive spontaneous emission inducing the automatic switching
between the two metastable states in the quantum analog of
absorptive bistability, which is weakening or strengthening the
dipole moment, thus dipole radiation under weak or strong
cavity field. The difference in the consequence of excessive
spontaneous emission results from the difference in the speed
of the atomic pseudospin precession driven by the cavity
field. Based on this understanding we proposed a flip-flop
control of an absorptive bistable cavity via cavity enhanced
spontaneous emission using a second cavity with tunable
detuning, which provides a physical basis for designing ultra-
low-energy optical information processing logic devices.
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