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Absolute calibration of single-photon and multiplexed photon-number-resolving detectors
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Single-photon detectors are widely used in modern quantum optics experiments and applications. Like all
detectors, it is important for these devices to be accurately calibrated. A single-photon detector is calibrated by
determining its detection efficiency; the common method to measure this quantity requires comparison to another
detector. Here, we suggest a method to measure the detection efficiency of a single-photon detector without
requiring an external reference detector. Our method is valid for individual single-photon detectors as well as
multiplexed detectors, which are known to be photon number resolving. The method exploits the even-number
photon-statistics of a nonlinear source, as well as the nonlinear loss of a single-photon detector that occurs when
multiple photons are incident simultaneously. We have analytically modeled multiplexed detectors and used the
results to experimentally demonstrate the calibration of a single-photon detector without the need for an external
reference detector.
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I. INTRODUCTION

Information about the photon number is required for
applications in many diverse fields such as linear-optical
quantum computing [1,2], superresolution [3], supersensitive
microscopy [4], foundations of quantum mechanics [5], and
quantum key distribution [6]. To date, there are a few tech-
niques to measure photon-number [7]. One leading approach
is to use single-photon detectors (SPDs), either with splitters
to separate photons into different SPDs (spatial multiplexing)
or as an array of SPDs [8]. It is also known that one SPD can be
used if the splitters separate the photons into different time slots
(time multiplexing) [9]. The signal from all SPDs is summed
yielding the photon-number information. Though providing
this information, these multiplexing techniques are not con-
sidered as full photon-number-resolving (PNR) detectors due
to saturation of the elements [10]. We use “multiplexing PNR
detectors” as a general name for time multiplexing, spatial
multiplexing and array of SPDs throughout this paper.

To have precise photon number information of the measured
quantum state, the detector must be characterized, and in
particular its detection efficiency must be measured. Charac-
terization of the detection efficiency is here considered to be
calibration of the device. The common procedure to calibrate
SPDs is to use correlated photon pairs from a twin-beam state.
This method was first suggested in 1977 by Klyshko [11]
and demonstrated experimentally two years later [12]. Two
detectors are required for this method because the coincidence
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rate must be known to calculate the efficiencies. Recently, the
coincidence method was adapted to PNR detectors [13–16].

There are other methods to calibrate the detection efficiency
[17–20]. One such method utilizes a single SPD, which is
time-multiplexed to temporally separate the incident photons
[17]. Then, the detection efficiency is found as in the coinci-
dence method. Though technically Chen et. al. demonstrated
calibration with a single SPD, practically they calibrated by
coincidence counts, a measurement which requires more than
one detector or more than one detection time slot. Here, we
develop a model to characterize a multiplexing PNR detector,
and apply the analysis to calibration of a single SPD. Using the
photon statistics of the single-mode and two-mode squeezed
vacuum states (SMSV and TMSV, respectively) [21], we show
how the detection efficiency is found by the single counts only,
without coincidence counts as used in previous methods.

This paper is arranged as follows. A model for a general
multiplexing PNR detector is presented in Sec. II. In Sec. III we
limit the discussion to one SPD and show how the efficiency
can be measured using SMSV and TMSV light. The setup
to perform this calibration is also described there. Results of
the calibration procedures are presented in Sec. IV. There we
also compare between the use of SMSV and TMSV for the
calibration.

II. CHARACTERIZATION MODEL

Given a multiplexing PNR detector, there is a problem with
counting the photon number due to several internal effects
distorting the measurement statistics [22]. The incident photon
statistics can, however, be reconstructed if the distortion effects
are well quantified. We consider several detection parameters:
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efficiency, number of SPD elements (finite detector size), dark
count rate, and cross-talk rate. To date, there lacks an analytical
model for all of these effects. In particular, the combined effects
of finite-size with cross-talk are not well known [23]. Now, we
present an analytical model which incorporates all of these
effects.

A. Loss

When a photon hits the detector, there is a nonzero prob-
ability that either the avalanche process will not start or will
stop before a detection occurs [24]. This is an intrinsic property
of any realistic device, but can also be attributed to inefficient
light coupling to the device. In such a scenario the photon
is considered lost. The detection efficiency is then defined as
the probability for detecting a single-photon. We assume the
detection efficiency is uniform for all SPD elements and is
denoted by η. If n photons hit the detector, the probability for
m elements to be activated is given by a binomial distribution
[22]

M
η

loss(m,n) =
(

n

m

)
ηm(1 − η)n−m, (1)

where
(

n

m

) = n!
m!(n−m)! for n � m � 0 or zero otherwise. Here

we assume each photon hits a different element. This assump-
tion is not valid in general but will be later corrected for by
including the effects of finite detector size.

B. Finite-size

Each individual element of the multiplexing PNR detector
is an SPD. As such, the signal from each element does not
depend on the number of photons hitting it. Therefore, if
more than one photon hits an element, only one can be
detected, causing a nonlinear loss of photons and a distor-
tion of the incident photon statistics. The probability for m

photons to hit k different elements at an N -element detector,
is [25]

MN
FS(k,m) = 1

Nm

(
N

k

)
k!S(m,k), (2)

where S(m,k) = 1
k!

∑k
j=0(−1)k−j

(
k

j

)
jm are known as the Stir-

ling numbers of the second kind [26].

C. Dark-counts

After k elements fire due to photon detections, there are
still (N − k) elements which are free to be activated due to a
dark-count: a false event without a photon hit. This is typically
due to thermal electrons. We assume that each element has
equal probability d for this event to occur. If p is the total
number of elements that fire, including those elements which
report a dark count, then p − k is the number of elements that
fire due to a dark count event. The probability for (p − k)
elements to be activated due to dark-counts where (N − k)
elements are available is

Md
DC(p,k) =

(
N − k

p − k

)
dp−k(1 − d)N−p . (3)

D. Cross-talk

Cross-talk is an effect where a recombination of an electron
and a hole generates a photon and this photon is detected
in a nonactivated neighbor element [27]. All multiplexing
PNR detectors suffer from this effect, but it is not relevant
when the SPDs are distant and the cross-talk counts can be
temporally filtered. Where the detector is an SPD array, the
cross-talk counts cannot be filtered and the cross-talk effect
is relevant. Cross-talk is most likely to happen at nearest-
neighbor elements and we neglect other scenarios.

Up to date, a few cross-talk models are available [22,28–30].
Each has its own advantages and disadvantages, but none of
them takes into account the finite size of the detector. Thus,
we introduce an alternative model for the cross-talk. Until
this point, uniformity was the only assumption. Yet, to solve
analytically the cross-talk effect, more assumptions must be
made. The probability of cross-talk strongly depends on the
number of nonactivated neighbors, but it is impossible to know
how many nearest neighbors are available. Instead, we check
how many nearest neighbors are available on average, where
p elements already have been activated, and this number is
plugged in as the total effective number of nearest neighbors,
ENN = 4(1 − p

N
)N−√

N
N−1 . This linearly dependent formula is

reasonable as it is zero if all elements are not available (p = N ).
On the other limit, if all elements are available the ENN nears
four, a limit imposed by the rectangular detector’s edge. This
formula was derived simply by randomly choosing p elements
and counting their nearest neighbors, and then averaging many
different configurations.

Let us define x as the probability for cross-talk to one of
the available nearest neighbors. By assuming x � 1, terms
proportional to higher powers of x are neglected, in particular,
cross-talk generated by another cross-talk and more than one
cross-talk event per element. Thus, the probability for one
element to generate a cross-talk event to any available nearest
neighbors is 4x(1 − p

N
)N−√

N
N−1 and for p elements to generate

� cross-talk events is just a binomial combination. Thus,
under the mentioned assumptions, the probability for (s − p)
elements to be activated by cross-talks from p elements is

Mx̃
XT (s,p) =

(
p

s − p

)[
x̃
(

1 − p

N

)]s−p

×
[
1 − x̃

(
1 − p

N

)]2p−s

, (4)

where we define x̃ = 4x N−√
N

N−1 .

E. Detected probabilities

The real photon number probabilities ( �Preal) is related to the
detected photon number probabilities ( �Pdet) by

�Pdet = MXT × MDC × MFS × Mloss × �Preal, (5)

where MXT,MDC,MFS,Mloss are matrices quantifying the
cross-talk, dark-counts, finite-size, and loss effects, respec-
tively. The ordering of the loss and finite-size matrices is
important here, but we do not show a proof of the correct
ordering here. Instead, we observe that Eq. (5) agrees with
previous theoretical results that do not take matrix ordering
into account [9,25].
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We first calculate the detected statistics for an n-photon
Fock state, a state with a fixed number of n photons; then the
result can be generalized to any other state by averaging over
the real photon statistics. The probability for s detection events
to occur due to an incident n-photon Fock state after accounting
for all the distorting effects is

P n
det(s|η,d,N,x̃)

=
s∑

p=0

(
p

s − p

)[
x̃
(

1 − p

N

)]s−p[
1 − x̃

(
1 − p

N

)]2p−s

×
(

N

p

) p∑
j=0

(
p

j

)
(−1)p−j (1 − d)N−j

(
1 − η + jη

N

)n

.

(6)

This result is proven in Appendix A and agrees with previous
analytical results substituting x̃ = 0,d = 0 [25] and η = 1 [9].
The agreement between the results shows that the loss should
be operated before the finite-size effect as mentioned above.

The matrix �s,n = P n
det(s|η,d,N,x̃) is related to the positive

operator-valued measure (POVM) of the detector, �s , by �s =∑
n �s,n|s〉〈s|[31], where |s〉 represents an s-photon Fock

state. Here, �s,n is written using four parameters while in the
POVM description the number of parameters is as the number
of the matrix elements which usually is much greater than four.
The implication is that more parameters are needed to be found
experimentally. On the other hand, the POVM description does
not assume anything about the detection process as has been
done here.

III. EXPERIMENTAL SETUP FOR SPD CALIBRATION

The experimental setup is described in Fig. 1. Squeezed
light is generated by a spontaneous parametric down-
conversion (SPDC) process [21] from a 2-mm-thick β-BaB2O4

(BBO) crystal using a 390-nm doubled Ti:Sapphire pulsed
laser. In the first part, a collinear type-I SPDC is used to
generate a horizontally polarized SMSV state. And in the
second part, a non-collinear type-II SPDC is used to generate a
TMSV state. The two modes are set in orthogonal polarization
modes, and spatially overlapped by a polarizing beam splitter
(PBS). Then, the SV light is filtered spectrally by a 3-nm
bandpass filter (BPF) and spatially by a single mode fiber
(SMF), and attenuated by an adjustable neutral density filter
(NDF). The attenuated light is directed to the detector under test
(DUT). We note that a calibrated NDF is used as a convenient
method for a known attenuation. Any other self-calibrated
attenuation method can be used; for instance, the attenuation
of SMSV can be applied by a single rotating polarizer.

From this point we focus on a single SPD, i.e., for N = 1.
In this case, there are only two possibilities; there is either a
detection event or not. Mathematically it means s = 0 or 1 in
Eq. (6), and thus the cross-talk summation vanishes.

To calibrate an SPD, we have used both attenuated SMSV
and TMSV states. Although only one of these states can be
used, we show that both schemes will work for calibration
purposes. It is convenient to define the odds On

det(η,d,1,0) ≡
P n

det (s=1|η,d,1,0)
P n

det (s=0|η,d,1,0) of a detection event. We also replace η → ηt ,
where t is the transmission of the NDF, and henceforth η is the

FIG. 1. The experimental setup for (a) SMSV state and (b) TMSV
state. DM - dichroic mirror, PBS - polarizing beam splitter, BS -
beam splitter, HWP - half wave-plate, BPF - bandpass filter, NDF -
adjustable neutral density filter, DUT - detector under test. Note that
the detector denoted as “ref” is only for comparison to the coincidence
calibration procedure. See Fig. 4 and text for more details.

fixed efficiency and t is a variable. Following these changes,
Eq. (6) is now reduced to

OSMSV
det (ηt,d,1,0) =

(√
1 + (2 − ηt)ηn̄t

1 − d
− 1

)

≈
(
1 − ηt

2

)
ηn̄t + d

1 − d
, (7)

OTMSV
det (ηt,d,1,0) =

(
1 − ηt

2

)
ηn̄t + d

1 − d
. (8)

Here Eqs. (7) and (8) are for SMSV and TMSV states,
respectively. The approximation is the Taylor expansion for
n̄ � 1 and the full derivation is found in Appendix C.

Experimentally, the probability of detection is given by the
ratio of the number of single counts (or detection events) to the
number of pump pulses. This probability is measured while
varying the transmission of the NDF. The efficiency parameter
is then extracted from a second-order fit to Eq. (7) or Eq. (8).
Multiplexed PNRs can also be calibrated in a similar manner,
though we do not demonstrate it in this paper.

For comparison, the detection efficiency is also measured
by the coincidence method by adding another SPD (denoted
by “ref” in Fig. 1). For clarity, the beam path to the reference
detector is indicated by a dashed line. For the TMSV setup
a half-wave plate (HWP) is added, flipping the photon po-
larization to vertical polarization. After the PBS the photons
propagate to different detectors as both photons are vertically
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FIG. 2. The odds of a detection event as a function of the NDF
transmission for two separate detectors. Solid and empty symbols
denote data from using TMSV and SMSV, respectively. Solid and
dashed lines are fits to Eqs. (7) and (8), respectively. SPD #1 is
represented in blue circles and SPD #2 is represented in pink boxes.
Error bars are assumed to be due to Poissonian noise and intensity
fluctuations (see Fig. 6). The maximal error bar is 2.1 × 10−5 and is
smaller than the symbol size; 3.3 × 10−5, and thus not displayed.

polarized. For the SMSV setup a beamsplitter (BS) is added,
such that half of the time the photons are split to both detectors,
enabling to calibrate with the coincidence method. After the
BS the probability for detection is pi = p̃

4 (4ηi − η2
i ), where

i = a,b denotes the different SPDs, p̃ is the probability to
generate a pair, and pcoin = p̃

2 ηaηb is the probability for
coincidence. Using the experimental results of pa , pb, and

pcoin the efficiency is ηa = 2 pcoin

pb

1− 1
2

pcoin
pa

1− 1
4

pcoin
pa

pcoin
pb

≈ 2 pcoin

pb
, and the

expression for ηb is found by flipping a and b.

IV. EXPERIMENTAL RESULTS

The presented scheme is useful for evaluating the detection
efficiency of an SPD due to the unique photon statistics of the
SV light and the nonlinear loss, i.e., the inability of an SPD
to detect more than one photon. The nonlinear loss alters the
linear dependency of the single counts on the attenuation and
the detection efficiency is extracted from the curvature.

The SPD counts were accumulated for one second for
a range of 29 different attenuation values of the NDF. The
probability for a photon detection is measured by the single
counts divided by the total number of experiment runs. We
repeat the experiment for two separate SPDs using both SMSV
and TMSV to demonstrate the ability to calibrate detectors
of different efficiency. The results are presented in Fig. 2. In
each of the four measurements the data is fit to a second-order
polynomial, i.e., a2t

2 + a1t + a0. According to Eqs. (7) and
(8) the efficiency is η = −2 a2

a1
.

In Table I, the results for the efficiency calibration by the
presented method are summarized. Those results are compared
to the coincidence method showing good agreement between
the two methods, for all used detectors and for both experi-
mental setups. The measured efficiency is the total efficiency
of the setup, including in particular the detection efficiency of

TABLE I. The efficiencies measured by the presented single
detector method (η1) and the two detector coincidence method (η2).
Note that the SMSV efficiencies are lower than in the TMSV case due
to weaker coupling into the single-mode fiber.

SPD # SV light η1 η2

1 SMSV 11.3 ± 1.1% 11.8 ± 0.9%
2 SMSV 7.4 ± 0.9% 8.1 ± 0.9%
1 TMSV 17.4 ± 1.0% 17.3 ± 0.8%
2 TMSV 12.7 ± 0.9% 11.7 ± 0.8%

the detector and the coupling efficiency. The total efficiency
is ηT = ηdηs , where ηd is the detection efficiency of the
detector, and ηs is the overall transmission of the system. For
convenience, in the rest of the paper the T is omitted, i.e.,
η ≡ ηT . Here the total efficiency is presented and discussed,
and the other efficiencies are presented in Appendix C. The
coupling efficiency is lower in the SMSV setup due to weaker
coupling to single-mode fiber, which is probably caused by
spatial walk-off inside the nonlinear crystal. This inefficient
coupling is a loss factor well observed by both calibration
methods.

The method also predicts accurately the dark count proba-
bility. According to Eqs. (7) and (8) the dark count probability
equals approximately to the zero order coefficient (denoted
above by a0). As before to get the number of dark counts per
second, the probability is multiplied by the number of laser
cycles per second. Doing that, we get 320 ± 40 dark counts per
second for SPD #1 and 260 ± 30 for SPD #2. The dark count
rates are well fit for measurements by directly counting the
number of single detection events per second while covering
the detector.

To show the presented method is valid for any pump power,
we repeated the experiment using TMSV and SPD #1 for
different pump powers of the up-converted beam. The results
of this process are shown in Fig. 3. As before, we fit the
measurements to a second-order polynomial and the efficiency
is calculated from the polynomial coefficients.

The results for different pump powers are summarized in
Table II. A good agreement is shown between different pump
powers, where a standard deviation of 0.5% is found. The
standard deviation is consistent with the error values of the
detection efficiency which were calculated separately.

The presented method can also work with a much stronger
pump power where the squeezed light contains more than
two photons with substantial probability. As opposed to the
coincidence method where high photon numbers distort the

TABLE II. The efficiencies as measured by the presented method
(η1) with SPD #1 and TMSV light for different pump powers.

Pump power η1

145 mW 17.9 ± 0.8%
180 mW 16.5 ± 0.9%
215 mW 17.2 ± 0.8%
240 mW 16.8 ± 0.7%
250 mW 17.6 ± 0.7%
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FIG. 3. The odds of a detection event as a function of the NDF
transmission for SPD #1 when the pump power is varied. Green
diamonds are for pump power of 250 mW, pink downward triangles
for 240 mW, blue triangles for 215 mW, red circles for 180 mW,
and black boxes for 145 mW. Error bars are assumed to be due
to Poissonian noise and intensity fluctuations (see Fig. 6). The
maximal error bar is 2.1 × 10−5 and is smaller than the symbol size;
3.3 × 10−5, and thus not displayed.

result for the detection efficiency, our method takes into
account all the photon statistics including probabilities for high
photon numbers, and thus, can only be improved by the higher
signal-to-noise ratio.

The method incorporates squeezed light as its statistics
enables calibration. Yet, there might be better light sources
for calibration, but this optimization is left for future works.
Nevertheless, coherent states and thermal states (one mode of
TMSV) had been checked both theoretically and experimen-
tally and the results of the odds (On

det) showed no dependence
on the SPD efficiency.

The dead time of the detectors has a minor influence on the
results. Assuming a random process, the distribution of pulse
difference between consecutive events is P (n) = p × (1 −
p)n−1,n = 1 . . . ∞, where p is the probability for detection
event per pump pulse (assuming zero dead time). In our system
the laser cycle is 13 ns and the dead time is 50 ns. Thus,
the probability to miss an event due to the detector dead time
is

∑3
n=1 P (n) = 1 − (1 − p)3 ≈ 3p. The maximal probability

for an event is p ∼ 10−3, which means that the correction of
the dead time effect is less than one percent and comparable to
the experimental error.

If this effect is not negligible, it is another factor for
the nonlinear loss. Thus, this nonlinear loss would result in
measuring falsely higher detection efficiencies. As mentioned
in Sec. IV, the presented method uses the nonlinear loss of
multiple photon detection, assuming a single nonlinear loss
effect. The nonlinear loss causes the single photon counts to
deviate from a linear curve. This deviation enables to measure
the efficiency as η = −2 a2

a1
. During the dead time period,

the detector cannot detect new photons. Its efficiency in this
stage is actually zero. Thus, the larger the photon flux, the larger
the chance that more photons will not be detected, resulting in
a larger nonlinear response that is falsely translated by the fit

to a larger detected efficiency. This upward deviation of the
measured efficiency is larger for greater pump powers as the
photon flux is greater. Thus, the measured efficiency should
increase when the pump power increases, but Table II shows
no such dependence and therefore the dead time effect on
our results is negligible. Reducing the experimental errors and
observing this deviation will enable to measure the dead time
of the detector.

If a continuous wave (CW) laser would be used, the distri-
bution of time difference between consecutive events is P (t) =
1
t0
e−t/t0 , where t0 is the average time between consecutive

events. Then, the probability to miss an event due to detector
dead time is

∫ τ

0
1
t0
e−t/t0dt = 1 − e−τ/t0 , where τ is the dead

time of the detector. Thus, also for CW laser the influence of
the dead time is negligible if τ

t0
is small, and anyway can be

corrected.

V. SUMMARY

To summarize, we present a model to characterize a PNR
detector based on SPDs. This model predicts the detected
photon statistics in the presence of loss, finite size, dark
counts, and cross-talk. The model is valid also for a single
SPD. As an application for the model, we show that the
detection efficiency can be found by measuring the single
counts without coincidence counts, i.e., without a reference
detector. We experimentally measure the efficiency of two
different SPD detectors and successfully compare it to the
coincidence method.

APPENDIX A: PROBABILITY CALCULATION

We first replace the matrix products in Eq. (5) into summa-
tions and substitute the matrix values according to Eqs. (1) to
(4):

P n
det(s|η,d,N,x̃)

=
N∑

p=0

(
p

s − p

)[
x̃
(

1 − p

N

)]s−p[
1 − x̃

(
1 − p

N

)]2p−s

×
N∑

k=0

(
N − k

p − k

)
dp−k(1 − d)N−p

×
N∑

m=0

1

Nm

(
N

k

)
k!S(m,k)

(
n

m

)
ηm(1 − η)n−m. (A1)

Now, we focus on the two last lines in Eq. (A1). We notice that
m � n and k � p because the loss effect cannot increase the
photon number and dark-counts cannot decrease it. After re-
ordering the summations and substituting

(
N

k

)(
N−k

p−k

) = (
N

p

)(
p

k

)
we get

(
N

p

) n∑
m=0

1

Nm

(
n

m

)
ηm(1 − η)n−m

×
p∑

k=0

(
p

k

)
dp−k(1 − d)N−p

k∑
j=0

(−1)k−j

(
k

j

)
jm. (A2)
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We reorder the summations in the second line, use
(
p

k

)(
k

j

) =(
p

j

)(
p−j

k−j

)
and replace the summation index k → k − j , result-

ing in the second line to be

p∑
j=0

(
p

j

)
jm

p−j∑
k=0

(
p − j

k

)
(−1)kdp−k−j (1 − d)N−p. (A3)

The inner summation equals to (1 − d)N−j (−1)p−j . Substitut-
ing this in Eq. (A2) and reordering the summations, we get

(
N

p

) p∑
j=0

(
p

j

)
(1 − d)N−j (−1)p−j

×
n∑

m=0

(
n

m

)(
ηj

N

)m

(1 − η)n−m. (A4)

However, the second summation is a binomial expansion and
regrouping it restores the third line of Eq. (6). The second line
remains almost as is. The upper limit is changed to s, the total
number of activated elements, as p, the number of activated
elements by signal photon and dark counts, is limited by s.

APPENDIX B: CALCULATING SPD PROBABILITIES
FOR SV STATES

Substituting N = 1 in Eq. 6, i.e.,

P n
det(s|η,d,1,x̃) =

p∑
j=0

(
p

j

)
(−1)p−j (1− d)1−j (1− η + jη)n.

(B1)

The first summation in Eq. (6) vanishes as an SPD has no
neighbors to cross-talk to. We write the probabilities for no
detection and for one photon detection explicitly

P n
det(0|η,d,1,0) = (1 − d)(1 − η)n, (B2)

P n
det(1|η,d,1,0) = 1 − (1 − d)(1 − η)n. (B3)

The probability to have zero photon counts is just the proba-
bility to not detect n photons times the probability to not have
dark-counts. The probability to get one photon detection is
just the complementary probability. Next, we average over the
photon statistics of the SV state.

For a TMSV state any mode has photon statistics of P (n) =
(1 − x)xn where x is related to n̄, the average photon number,
by x = n̄

1+n̄
. After combining the two modes spatially the

probability for 2n-photons is PTMSV(2n) = (1 − x)xn [21]. We
average on the statistics and get

P TMSV
det (0|η,d,1,0) = (1 − d)(1 − x)

1 − x(1 − η)2
, (B4)

P TMSV
det (1|η,d,1,0) = 1 − (1 − d)(1 − x)

1 − x(1 − η)2
. (B5)

Taking the ratio of the two last equations gives
Eq. (8).

For a SMSV state the photon statistics is PSMSV(n) =
cos2 nπ

2
n!

2n[( n
2 )!]2

tanh rn

cosh r
, where r is the squeezed parameter [21].

FIG. 4. Detailed experimental setup. DM: dichroic mirror, PBS:
polarizing beam splitter, BS: beam splitter, HWP: half wave-plate,
BPF: bandpass filter, NDF: adjustable neutral density filter, DUT:
detector under test, SMF: single-mode fiber, MMF: multimode fiber,
BD: beam dump.

After the averaging we get

P SMSV
det (0|η,d,1,0) = (1 − d)

1√
1 + (2η − η2)n̄

, (B6)

P SMSV
det (1|η,d,1,0) = 1 − (1 − d)

1√
1 + (2η − η2)n̄

, (B7)

where n̄ = sinh2 r is the average photon number and the hyper-
bolic function identities, cosh ( tanh−1 r) = 1√

1−r2 , cosh2 r −
sinh2 r = 1, were used. Taking the ratio of the two last
equations yields Eq. (7).

APPENDIX C: DETAILED EXPERIMENTAL SETUP

Figure 4 shows the experimental setup with additional
technical details. A 150-fs pulsed Ti:Sapphire laser (MIRA 900
Coherent) with a 76-MHz repetition rate is frequency doubled
to a wavelength of 390 nm (not shown). The up-converted beam
is focused on a 2-mm-thick β-BaB2O4 (BBO) crystal. More
than 99% of the up-converted beam is filtered by a dichroic
mirror (DM) for the collinear setup (SMSV) or spatially for the
noncollinear setup (TMSV). The remaining pump photons are

TABLE III. The detection efficiency ηd , the transmission of the
optics, TO , the coupling efficiency ηc, the overall transmission of the
system ηs = TO ηc, and the efficiency measured by the single detector
method η1 = ηsηd .

SPD # SV light ηd ηs TO ηc η1

1 SMSV 60 ± 5% 16 ± 2% ∼80% 20 ± 3% 11.3 ± 1.1%
2 SMSV 60 ± 5% 16 ± 2% ∼80% 20 ± 3% 7.4 ± 0.9%
1 TMSV 60 ± 5% 24 ± 3% ∼80% 30 ± 4% 17.4 ± 1.0%
2 TMSV 60 ± 5% 24 ± 3% ∼80% 30 ± 4% 12.7 ± 0.9%

013811-6



ABSOLUTE CALIBRATION OF SINGLE-PHOTON AND … PHYSICAL REVIEW A 98, 013811 (2018)

FIG. 5. The average number of incident photons as a function of
the pump power.

unguided by the fibers. We verified prior to the experimental
measurements, that no pump photons arrive at the detector.
Single-mode filtration is done by 3-nm width bandpass filter
(BPF) centered around 780 nm, and a step index 5 μm core
single mode fiber (SMF). The TMSV is given by single spatial
and spectral modes and two polarization modes, spatially
overlapped using a polarizing beam splitter (PBS). The signal
beam is directed to a (variable) neutral density filter (NDF)
and recollected with a graded index 62.5 μm core multimode
fiber (MMF) with collection efficiency of more than 90%.
The detector under test (DUT) is an avalanche photodiode
single-photon detector (SPD) (Perkin Elmer SPCM-AQ4C).
A reference detector (ref SPD) is used for comparison with
the coincidence method, where we added a beam splitter (BS)
and a half-wave plate (HWP) to split the photons into both
detectors.

The efficiencies and the transmission of the optics are
summarized in Table III. The SPDs, used in the experiment,
have efficiency of 55–65%, thus, the transmission of the
system is 24 ± 3% for TMSV and 16 ± 2% for SMSV. The
transmission of the bandpass filters is estimated to be around
90% and the rest of the optics also around 90%, thus the fiber

FIG. 6. Residuals and error calculation for TMSV SPD #1 (see
Fig 2).

coupling efficiency is 30 ± 4% and 20 ± 3% for the TMSV
and SMSV, respectively.

APPENDIX D: EXTRACT THE AVERAGE PHOTON
NUMBERS

Figure 5 shows the linear relation of the pump power and
the average number of incident photons. The average number

of incident photons,n̄, is calculated by n̄ = − 1
2

a2
1

a2
where a2, a1

are the polynomial coefficients of the fit to Eq. (8) (as in the
text). As expected, the fit has a linear dependence, where 0.04
photons per watt, on average, are generated.

APPENDIX E: ERROR CALCULATION

Error ranges and residuals are plotted in Fig. 6. The data
points are the residuals of the experimental data. The red line
is for guiding the eye. The dark-gray checkered area denotes
the Poissonian error range. The Poissonian error only partially
explains the residual. After adding a fixed error of 1% due to
intensity fluctuation (light-gray dashed area), the residuals are
contained within the error range.
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