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We consider the Fg = 1 → Fe = 1 transition between the ground and excited hyperfine levels in alkali-metal
vapor interacting with σ linearly polarized control and probe fields whose polarizations can be either parallel
or perpendicular to each other. We develop a matrix formulation that allows a solution of the Bloch equations
to all orders in the pump and probe Rabi frequencies. Using this formalism, we calculate the steady-state probe
absorption spectrum, the coherent population oscillations (CPOs), and two-photon coherence, in the absence
(degenerate case) and presence (nondegenerate case) of a longitudinal magnetic field. We then calculate the probe
storage when the pump is switched off and on again. We are particularly interested in whether the probe regains its
original temporal shape when the pump is switched on again for the case of identical pump and probe frequencies.
We show that, in the nondegenerate case, the restored probe does not regain its original shape whereas, in the
degenerate case, the original shape is restored. This can be explained by considering the relative magnitudes of the
CPOs which do not remember the temporal shape of the probe and the two-photon coherence oscillations which
store the probe shape when the pump is switched off, as in electromagnetically induced transparency memories.
In the nondegenerate case, the CPOs are much stronger than the two-photon coherence oscillations whereas, in
the degenerate case, they are of similar magnitudes. Thus it is the two-photon coherence oscillations that are
responsible for the restoration of the temporal shape of the probe in the degenerate case.

DOI: 10.1103/PhysRevA.98.013808

I. INTRODUCTION

Optical memories based on quantum processes are of great
importance as they are essential elements in communication
networks [1]. Our theoretical work on the storage of light
via coherent population oscillations (CPOs) [2] has recently
attracted experimental interest and such storage has been
demonstrated in atomic systems at room temperature [3,4].
CPO occurs when two coherent electromagnetic fields interact
with the same two-level transition. If the weaker probe field is
detuned slightly from the stronger control field, the populations
of the ground and excited states oscillate at the pump-probe
frequency difference. CPO can lead to sharp dips (transparency
windows) or peaks in the probe absorption spectrum when the
pump and probe frequencies coincide [5–10]. For example,
a dip (transparency window) appears in the probe absorption
spectrum of a simple two-level system (TLS) when the trans-
verse decay rate is much greater than the longitudinal decay
rate as in the case of a saturable absorber [6,11]; in this case, the
minimum width is equal to the decay rate of the excited state.
In an open TLS, a sharp dip occurs in the probe absorption
spectrum [9,10] [and a peak in the four-wave mixing (FWM)
spectrum [12]] when the decay of the lower-energy state is
smaller than the decay out of the system of the higher-energy
state. The width of the sharp dip is determined by the decay due
to the time of flight of the atoms through the laser beams, which
can be reduced by either introducing a buffer gas into the cell
or coating the cell with a paraffin coating. In common with dips
due to electromagnetically induced transparency (EIT), the
CPO dips are associated with a positive slope of the dispersion
curve which leads to slowing down of the group velocity of the
light on propagation [12].

A CPO dip also occurs when the TLS decays through a
cascade of one or more intermediate states [5]. For the case of
a single metastable state, the minimum width of the CPO dip
is equal to the decay rate of the metastable level [5,8,13] which
can be very small, so that the CPO can live a long time. We
have studied this system in a variety of contexts [2,8,13,14]; in
particular, we showed that it could be used to construct a spatial
optical memory [2]. Unlike storage in EIT systems, where the
temporal shape of the stored pulse is restored [15], CPO-based
storage in a TLS with a metastable shelving state results in
distortion of the temporal shape of the restored pulse [2].

This was also found to be the case in CPO-based light-
storage experiments performed on metastable He [3,16] and
Cs [4] atomic vapor where the pump and signal fields have
orthogonal linear polarizations and a longitudinal magnetic
field leads to Zeeman splitting of the ground and excited
states. However, storage of orbital angular momentum has
been demonstrated in both CPO-based [17,18] and EIT-based
[19,20] experiments in cold Cs atoms.

In this paper (see Fig. 1), we consider the Fg = 1 → Fe = 1
transition between the ground and excited hyperfine levels in
alkali-metal vapor interacting with σ linearly polarized pump
and probe in the absence or presence of a longitudinal magnetic
field and solve both the Bloch and Maxwell-Bloch equations.
In particular, we discuss light storage in this system. Our
primary motivation in exploring this system is to determine
whether the temporal shape of the probe can be restored
and under which conditions. This question has not been
investigated in previous work on this system. In our earlier
work on a TLS that decays via a metastable state [2], we showed
that the temporal shape of the probe pulse could not be restored
although it was possible to restore its spatial shape. We were
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FIG. 1. Energy-level scheme for Fg = 1 → Fe = 1 transition in
the presence of longitudinal magnetic field interacting with σ polar-
ized control (red) and probe (green) fields. The control frequency ωc is
resonant with the Fg = 1,mg = 0 → Fe = 1,me = 0 transition and
the probe can have a polarization which is parallel or perpendicular
to that of the control.

intrigued to find out whether these conclusions were also valid
for other systems.

In Fig. 1, the Fg = 1,mg = −1 → Fe = 1,me = 0 tran-
sition interacts with the σ+ component of the control and
probe fields with frequencies ωc and ωp, whereas the Fg =
1,mg = 1 → Fe = 1,me = 0 transition interacts with the σ−
component of the control and probe fields. The transition-
dipole moments of these transitions are equal and the control
frequency ωc is resonant with the Fg = 1,mg = 0 → Fe =
1,me = 0 transition frequency. For simplicity, we will label
the Fg = 1,mg = −1 and Fg = 1,mg = 1 Rabi sublevels as
|1〉 and |2〉, respectively, and the Fe = 1,me = 0 sublevel as
|3〉. These three levels constitute a � system since spontaneous
decay from the excited state Fe = 1,me = 0 to the Raman
sublevel of the ground state Fg = 1,mg = 0 is forbidden and
we will treat the system here as if it is a � system. In the absence
of a longitudinal magnetic field, the lower states |1〉 and |2〉
are degenerate and therefore in resonance with the pump field,
whereas in the presence of such a field, the lower states are
symmetrically detuned with respect to the pump field. Both
these situations are studied for two configurations of the pump
and probe polarizations: parallel (lin ‖ lin) and perpendicular
(lin ⊥ lin).

In order to solve the Bloch equations, we adopt a matrix
formalism that has been developed specifically for the system
shown in Fig. 1 and is valid even for intense probes (for
very weak probes, the formalism developed in [21] can also
be used). Using the Floquet expansion to all orders in the
pump and probe Rabi frequencies, we write the time-dependent
Bloch equations in a computationally convenient tridiagonal
matrix form and calculate the probe absorption spectrum, the
coherent population oscillations of the lower states, and the
two-photon coherence oscillations, as a function of δ. We also
show that fields are created at the four-wave mixing (FWM)
frequencies in the presence of the pump and probe fields. A
study of the behavior of these quantities is essential in order
to determine the factors that influence the storage of a probe
pulse in this system.

We then solve the Maxwell-Bloch equations in order to
study the storage of a probe pulse and the generated FWM
pulse as a resonant pump is switched off and on. We stress
that, to our knowledge, these equations have not been solved
before for this system. We find that the temporal shape of the
probe is only restored in the degenerate case whereas, in the
nondegenerate case, the restored probe suffers from temporal
distortion. We show that both the population and coherence
oscillations of the ground Zeeman sublevels play a role in
storing the probe but it is the coherence oscillations rather
than the population oscillations that are responsible for the
restoration of the probe’s temporal shape. It should be noted
that, while storage of the temporal pulse shape cannot be
achieved by CPO alone, one can still obtain storage of its
spatial shape in the same way as for the TLS that decays
via a metastable state [2]. Some aspects of this study, such
as propagation in a thick medium of a nonperturbative probe,
have previously been explored by Pack et al. in a single �

system under EIT conditions [22].

II. EQUATIONS OF MOTION

The time evolution of the density-matrix elements of the �

system of Fig. 1 interacting with a control field of frequency
ωc and probe field of frequency ωp is given by [23,24]

ρ̇11 = iV13ρ
′
31 − iV31ρ

′
13 − γt

(
ρ11 − ρ

eq

11

) + �31ρ33, (1)

ρ̇22 = iV23ρ
′
32 − iV32ρ

′
23 − γt

(
ρ22 − ρ

eq

22

) + �32ρ33, (2)

ρ̇33 = −iV13ρ
′
31 + iV31ρ

′
13 − iV23ρ

′
32 + iV32ρ

′
23

− (�31 + �32 + γ3t )ρ33, (3)

ρ̇ ′
21 = iV23ρ

′
31 − iV31ρ

′
23 − i(	21 − iγ21)ρ ′

21, (4)

ρ̇ ′
31 = iV31(ρ11 − ρ33) + iV32ρ

′
21 − i(	31 − iγ31)ρ ′

31, (5)

ρ̇ ′
32 = iV32(ρ22 − ρ33) + iV31ρ

′
12 − i(	32 − iγ32)ρ ′

32, (6)

ρ̇ij = ρ̇∗
ji , (7)

where

V31 = V ∗
13 = Vc + Vpeiδt ,

V32 = V ∗
23 = Vc + rVpeiδt , (8)

with Vc = iμEc/2
√

2h̄ for a σy polarized pump, Vp =
iμEp/2

√
2h̄ and r = +1 for a σy polarized probe, and Vp =

−μEp/2
√

2h̄ and r = −1 for a σx polarized probe [25],
μ = μ31 = μ32, and

ρ ′
31,32 = ρ31,32e

−i	31,32t ,

ρ ′
21 = ρ21e

−i	21t , (9)

with δ = ωc − ωp, 	31,32 = ω31,32 − ωc, and 	21 = ω21 =
	31 − 	32. The terms �ij are the rates of decay of population
from level i → j , �3 = �31 + �32, γt is the rate of transfer to
and from the reservoir, and γ3t − γt is the rate of decay of the
upper level out of the system when the system is open (as in
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a noncycling atomic transition). The decay rates of the optical
coherences are given by γ31 = γ32 = 1

2 (�3 + γ3t + γt ) + γ ∗,
where γ ∗ is the rate of decay due to phase-changing collisions
(taken to be zero in the calculations). The decay rate of the
Raman coherences is γ21 = γ12 = γt .

We now substitute the Floquet expansion

ρ =
n=∞∑

n=−∞
ρ(n)einδt (10)

in Eqs. (1)–(7) and express the resulting equations in matrix
form as

ρ = −iAρ + B, (11)

where ρ is a column matrix with 9(2nmax + 1) elements, where
nmax is the maximum value of n. For each value of n, there are

nine elements given by

ρ(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
(n)
11

ρ
(n)
22

ρ
(n)
33

ρ
′(n)
21

ρ
′(n)
12

ρ
′(n)
31

ρ
′(n)
13

ρ
′(n)
32

ρ
′(n)
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

All the elements of B are zero except for the (9nmax +
1,9nmax + 2)th terms, which are γtρ

eq

11,22. A is a tridiagonal
matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D(−nmax) R 0 · · · 0

L D(−nmax+1) R
...

0
. . .

. . .
. . . 0

... L D(nmax−1) R
0 · · · 0 L D(nmax)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where L, Dn, R are given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 Vp 0 0
0 0 0 0 0 0 0 0 rVp

0 0 0 0 0 0 −Vp 0 −rVp

0 0 0 0 0 0 0 0 Vp

0 0 0 0 0 0 rVp 0 0
−Vp 0 Vp −rVp 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 −rVp rVp 0 −Vp 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

D(n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(n)
11 0 i�31 0 0 −V ∗

c Vc 0 0
0 f

(n)
22 i�32 0 0 0 0 −V ∗

c Vc

0 0 f
(n)
33 0 0 V ∗

c −Vc V ∗
c −Vc

0 0 0 f
(n)
21 0 −V ∗

c 0 0 Vc

0 0 0 0 f
(n)
12 0 Vc −V ∗

c 0
−Vc 0 Vc −Vc 0 f

(n)
31 0 0 0

V ∗
c 0 −V ∗

c 0 V ∗
c 0 f

(n)
13 0 0

0 −Vc Vc 0 −Vc 0 0 f
(n)
32 0

0 V ∗
c −V ∗

c V ∗
c 0 0 0 0 f

(n)
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −V ∗
p 0 0 0

0 0 0 0 0 0 0 −rV ∗
p 0

0 0 0 0 0 V ∗
p 0 rV ∗

p 0
0 0 0 0 0 −rV ∗

p 0 0 0
0 0 0 0 0 0 0 −V ∗

p 0
0 0 0 0 0 0 0 0 0

V ∗
p 0 −V ∗

p 0 rV ∗
p 0 0 0 0

0 0 0 0 0 0 0 0 0
0 rV ∗

p −rV ∗
p V ∗

p 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

and f
(n)
11 = f

(n)
22 = nδ − iγt , f

(n)
33 = nδ − i�3 − iγ3t , f

(n)
21 = 	21 + nδ − iγ21, f

(n)
12 = −	21 + nδ − iγ21, f

(n)
31,32 = 	31,32 +

nδ − iγ31,32, and f
(n)
13,23 = −	31,32 + nδ − iγ31,32.
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We consider the case where the pump and probe propagate
along the z direction, the pump is σy linearly polarized, and the
probe has either the same polarization as the pump (lin ‖ lin)
as in [24], or is perpendicularly polarized (σx , lin ⊥ lin)
with respect to the pump as in [3,4], and substitute the
appropriate values of Vp and r in the probe absorption, which
is proportional to Im(ρ ′(1)

31 /Vp + ρ
′(1)
32 /rVp) [26].

The main purpose of this paper is to investigate when
it is possible to restore the probe pulse’s temporal shape
after storage. In order to calculate the probe propagation, we
solve the propagation equations for a control field with time
dependence

Vc(t,z = 0) = Vc(t = 0,z = 0){(1 − 0.5 tanh[�(t − τ1)]

+ 0.5 tanh[�(t − τ2)]}, (17)

which is switched off at time τ1 and on again at time τ2, and
an initially Gaussian probe

Vp(t,z = 0) = Vp(t = 0,z = 0) exp
[ − (t − tp)2/τ 2

p

]
, (18)

centered at time tp with width τp. The propagation of the
control field and probe pulse are determined by the propagation
equations

(
d

dz
+ 1

c

d

dt

)
Vc = iα

(
ρ

′(0)
31 + ρ

′(0)
32

)
, (19)

(
d

dz
+ 1

c

d

dt

)
Vp = iα

(
ρ

′(1)
31 + ρ

′(1)
32 + ρ

′(−1)
31 + ρ

′(−1)
32

)
, (20)

where Imρ
′(−1)
31,32 is proportional to the absorption of the field

generated at the FWM frequencies ωFWM = 2ωc − ωp, which
are the same as the two-photon resonance frequencies (if ωp =
ωc ± 2	zand ωFWM = ωc ∓ 2	z) and α is proportional to the
unsaturated absorption coefficient.

III. RESULTS AND DISCUSSION

We begin by solving the steady-state matrix equation
(11) for the system depicted in Fig. 1 for both the cases
where the control and probe fields have parallel linear
polarizations (lin ‖ lin) and where they have perpendicular
polarizations (lin ⊥ lin). We discuss the probe absorption
spectrum along with the coherent population oscillations ρ

(1)
11

and ρ
(1)
22 and the two-photon coherence ρ

(1)
21 . We then proceed

to solve the propagation equations (19) and (20) and show
how the temporal shape of the retrieved probe is related to the
time dependence of the coherent population oscillations and
the two-photon coherence. We note that all the parameters are
normalized by � = �31 = �32. In all the cases we consider,
the probe is assumed to be much weaker than the control field
so that it is sufficient to take nmax = 2.

A. Probe absorption spectrum

The probe absorption spectra are shown in Fig. 2 for the case
where a longitudinal magnetic field raises the degeneracy of the
Zeeman sublevels so that 	31 = −	32 = 1. In the top panel,
the probe absorption spectrum is shown for parallel pump and
probe polarizations (lin ‖ lin) and, in the bottom panel, for
perpendicular pump and probe polarizations (lin ⊥ lin). In each

case, we compare an open system where γ3t > γt with a closed
system where γ3t = γt . As expected, the spectra for the open
system are much weaker than those for the closed system. All
four spectra in Fig. 2 are characterized by two EIT dips at the
two-photon resonances δ = ±2	31. These originate from the
two-photon resonant � systems formed by the interaction of a
σ+ pump (probe) with the |1〉 → |3〉 transition and σ− probe
(pump) with the |2〉 → |3〉 transition. The spectral features
at line center δ = 0 arise as a result of the interaction of σ+
pump and probe with the |1〉 → |3〉 transition and σ− pump
and probe with the |2〉 → |3〉 transition. For the closed system,
a CPO dip appears at line center for perpendicular polarizations
but does not appear in the case of parallel polarizations. The
lack of a dip at line center for the closed system is in line with
earlier work on this system [24,27,28], which only considered
lin ‖ lin polarized fields interacting with a closed system.
For the open system, CPO dips appear for both parallel and
perpendicular polarizations [29] but the dip is much narrower
in the lin ‖ lin case. The case of parallel polarizations in the
� system considered here can be compared to the open TLS
for the same parameters [9,10] where the width of the dip is
determined byγt . In the case of the perpendicular polarizations,
we can see from Fig. 2 that the widths of the EIT and CPO dips
are similar. We have not introduced phase-changing collisions
or Doppler broadening in our calculations. In general, these
broadening mechanisms do not affect the width of the narrow
spectral features [9]. In Sec. III A, we will compare the
storage of a probe pulse with frequency equal to that of the
pump for parallel and perpendicular polarizations for both
the nondegenerate system (Fig. 2) and the degenerate system
(Fig. 3).

In Fig. 3, we show the probe absorption spectra for the same
cases as in Fig. 2 but for the situation where the ground Rabi
sublevels are degenerate as would occur in the absence of a
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FIG. 2. Probe absorption spectrum as a function of pump-probe
detuning for Fg = 1 → Fe = 1 transition in the presence of longi-
tudinal magnetic field for lin ‖ lin and lin ⊥ lin polarizations. The
quantity plotted is Im(ρ ′(1)

31 /Vp + ρ
′(1)
32 /rVp), which is proportional

to the probe absorption [26]. The parameters used are |Vc| = 0.3,
|Vp| = 0.001, 	31 = −	32 = 1, γ21 = γ12 = γt , γt = 0.001, γ ∗ =
0, and γ3t = 0.001 (closed system, solid red line) and γ3t = 0.2 (open
system, dotted blue line). The plot for the open system is magnified
fivefold. All the parameters are normalized by the population decay
rate � = �31 = �32 and are thus dimensionless.
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FIG. 3. Probe absorption spectrum as a function of pump-probe
detuning for Fg = 1 → Fe = 1 transition in the absence of longi-
tudinal magnetic field for lin ‖ lin and lin ⊥ lin polarizations. The
quantity plotted is Im(ρ ′(1)

31 /Vp + ρ
′(1)
32 /rVp), which is proportional

to the probe absorption [26]. The parameters used are |Vc| = 0.3,
|Vp| = 0.001, 	31 = −	32 = 0, γ21 = γ12 = γt , γt = 0.001, γ ∗ =
0, and γ3t = 0.001 (closed system, solid red line) and γ3t = 0.2 (open
system, dotted blue line). All the parameters are normalized by � and
are thus dimensionless.

magnetic field, so that 	31 = 	32 = 0. Here, the CPO and EIT
dips coincide at δ = 0 and, as in the nondegenerate system, the
dip is wider for the perpendicular case. However, in addition,
the absorption is much stronger in the perpendicular case than
in the parallel one. This will have important consequences
when we consider the propagation of a probe pulse.

B. Coherent population oscillations and two-photon coherence

In Sec. III C, we will study the storage of a probe pulse
in an attempt to determine which factors control whether its
temporal shape will be restored. In order to clarify this issue, it
is necessary to study the behavior of the steady-state coherent
population oscillations and two-photon coherences near line
center, in the presence and absence of a magnetic field.

In Fig. 4, we plot the absolute values of the coherent
population oscillations ρ

(1)
11 and ρ

(1)
22 near line center for parallel

polarizations (upper panel) and perpendicular polarizations
(lower panel) for the same parameters as Fig. 2 for an open
system with γ3t = 0.2. The widths of the peaks are in accord
with those of the probe absorption spectra at line center,
namely, wider for the perpendicular polarizations. For the case
where 	31 = −	32 = −1, the CPOs ρ

(1)
11 and ρ

(1)
22 would be

interchanged. The absolute values of the coherent population
oscillations are depicted in Fig. 5 for the same parameters
as in Fig. 3 for γ3t = 0.2. Here we see that, in contrast to
the nondegenerate case of Fig. 3, here the populations for the
perpendicular case are much larger than those for the parallel
case. This is reflected in the greater probe absorption for the
perpendicular case, as depicted in Fig. 3. In Figs. 4 and 5, we
plotted the absolute values of the CPOs. If we consider the real
and imaginary parts of the CPOs, we find that ρ

(1)
11 and ρ

(1)
22

have the same phase for the parallel case but opposite phases
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FIG. 4. Absolute values of the coherent population oscillations
ρ

(1)
11 (full red line) and ρ

(1)
22 (dashed green line) as a function of

pump-probe detuning for an open Fg = 1 → Fe = 1 transition in the
presence of longitudinal magnetic field for lin ‖ lin and lin ⊥ lin
polarizations. The parameters used are |Vc| = 0.3, |Vp| = 0.001,
	31 = −	32 = 1, γt = 0.001, γ21 = γ12 = γt , γ ∗ = 0, and γ3t =
0.2. All the parameters are normalized by � and are thus
dimensionless.

for the perpendicular case (ρ(1)
11 = −ρ

(1)
22 ) as shown previously

[29].
In Fig. 6, we show the two-photon coherence oscillations

ρ
(1)
21 and ρ

(−1)
21 for the nondegenerate system with the same

parameters as in Fig. 4. We see that the two-photon coherences
have peaks at the appropriate two-photon resonances but are
very small at line center in contrast to the CPOs which have
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FIG. 5. Absolute values of the coherent population oscillations
ρ

(1)
11 (full red line) and ρ

(1)
22 (dashed green line) as a function of

pump-probe detuning for an open Fg = 1 → Fe = 1 transition in the
absence of longitudinal magnetic field for lin ‖ lin and lin ⊥ lin
polarizations. The parameters used are |Vc| = 0.3, |Vp| = 0.001,
	31 = −	32 = 0, γt = 0.001, γ21 = γ12 = γt , γ ∗ = 0, and γ3t =
0.2. All the parameters are normalized by � and are thus
dimensionless.
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FIG. 6. Two-photon coherences ρ
(1)
21 (full red line) and ρ

(−1)
21

(dashed green line) as a function of pump-probe detuning for Fg =
1 → Fe = 1 transition in the presence of longitudinal magnetic field
for lin ‖ lin and lin ⊥ lin polarizations. The parameters used are
|Vc| = 0.3, |Vp| = 0.001, 	31 = −	32 = 1, γt = 0.001, γ21 = γ12 =
γt , γ ∗ = 0, and γ3t = 0.2. All the parameters are normalized by � and
are thus dimensionless.

peaks at line center. In Fig. 7, we show the two-photon coher-
ence oscillations for the degenerate case (same parameters as
Fig. 5). The coherence oscillations for the perpendicular case
are larger than for the parallel case. This is in agreement with
the behavior of the population oscillations (see Fig. 5).

The value of ρ
(0)
21 , the two-photon coherence which derives

from the interaction of the σ (+) component of the pump inter-
acting with the |1〉 → |3〉 transition and its σ (−) component
interacting with the |2〉 → |3〉 transition, can be calculated
for the nondegenerate and degenerate configurations. For the
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FIG. 7. Two-photon coherences ρ
(1)
21 (full red line) and ρ

(−1)
21

(dashed green line) as a function of pump-probe detuning for Fg =
1 → Fe = 1 transition in the absence of longitudinal magnetic field
for lin ‖ lin and lin ⊥ lin polarizations. The parameters used are
|Vc| = 0.3, |Vp| = 0.001, 	31 = −	32 = 0, γt = 0.001, γ21 = γ12 =
γt , γ ∗ = 0, and γ3t = 0.2. All the parameters are normalized by � and
are thus dimensionless.
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FIG. 8. Probe amplitude as a function of time for z = 3 × 10−4 at
line center (δ = 0) for Fg = 1 → Fe = 1 transition in the presence of
longitudinal magnetic field for lin ‖ lin and lin ⊥ lin polarizations (the
inset contains a magnified version of the restored probe). The param-
eters used are |Vc(t = 0,z = 0)| = 0.3, |Vp(t = 0,z = 0)| = 0.001,
	31 = −	32 = 1, γ3t = 0.2, γt = 0.001, γ21 = γ12 = γt , γ ∗ = 0,
tp = 2.5, τp = 1.5, τ1 = 4, τ2 = 11, and α = 104. All the parameters
are normalized by � and are thus dimensionless.

nondegenerate case, ρ
(0)
21 = 0.002 + 0.0024i, whereas for the

degenerate case, ρ(0)
21 = −0.46, which is close to the maximum

coherence value of −0.5.
In the next section, we discuss probe propagation for both

the nondegenerate and degenerate cases and show that the
temporal shape of the restored probe is only restored for the
degenerate case.

C. Probe propagation

In this section, we study the storage of a probe pulse whose
frequency is equal to that of the pump field δ = 0 when the
pump field is switched off and then on again. We compare the
nondegenerate case (see Fig. 2) where the EIT dips flank
the central CPO dip (see Fig. 2) and the degenerate case
where all three dips coincide. For both cases, we plot the
probe absorption at line center for a probe pulse that is initially
centered at t = tp = 1.5 with width τp = 2.5 and a control field
that is switched off at t = τ1 = 4 and on again at t = τ2 = 11.
For the nondegenerate case shown in Fig. 8, we consider the
time dependence of the probe on propagation for a value of
z where the amplitude of the restored pulse is significant. For
the degenerate case shown in Fig. 9, the probe propagation
is displayed as a function of z and t . The main difference
between Figs. 8 and 9 lies in the shape of restored pulse: for
the degenerate case, the restored pulse has the same general
shape as the initial pulse, whereas for the nondegenerate case,
the restored pulse is smeared, similar to the behavior obtained
for a two-level system with shelving state [2]. This lack of well-
defined temporal shape has been observed experimentally in
light-storage experiments performed on metastable He [3,16]
and Cs [4] atomic vapor where the pump and signal fields have
orthogonal linear polarizations and a longitudinal magnetic
field is applied.
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FIG. 9. Probe amplitude as a function of time for various propaga-
tion distances at line center (δ = 0) for Fg = 1 → Fe = 1 transition
in the absence of longitudinal magnetic field for lin ‖ lin and lin ⊥ lin
polarizations. The parameters used are |Vc(t = 0,z = 0)| = 0.3,
|Vp(0,z = 0)| = 0.001, γt = 0.001, γ21 = γ12 = γt , 	31 = 	32 = 0,
γ3t = 0.2, γ ∗ = 0, tp = 2.5, τp = 1.5, τ1 = 4, τ2 = 11, and α = 104.
All the parameters are normalized by � and are thus dimensionless.

In order to understand the difference between the degenerate
and nondegenerate cases, it is advisable to refer to the behavior
of the coherent population oscillations and two-photon coher-
ence oscillations shown in Figs. 4– 7. For the nondegenerate
case, we see that the CPOs are much greater than the coherence
oscillations at line center (compare Figs. 4 and 6) whereas, in
the degenerate case, the two-photon coherence oscillations at
line center are an order of magnitude greater than the CPOs
for parallel polarizations and of the same order of magnitude
for perpendicular polarizations (compare Figs. 5 and 7). Thus
the CPOs determine the lack of the shape of the restored
probe pulse in the nondegenerate case, whereas the two-photon
coherence oscillations contribute to the temporal shape of the
restored pulse in the degenerate case, similar to the behavior
observed in EIT experiments where the two-photon coherence
oscillations remember the shape of the incident probe pulse
[15,30,31]. The difference in behavior of the initial probe pulse
on propagation between the two polarization schemes shown
in Fig. 9 can be explained by considering the difference in the
probe absorption spectra shown in Fig. 3. There we see that
the absorption is much greater for the case of perpendicular
polarizations so that the pulse is absorbed on propagation. This

absorption could be mitigated by considering a longer probe
pulse which would have a narrower spectral bandwidth.

IV. CONCLUSIONS

We have considered the Fg = 1 → Fe = 1 transition be-
tween the ground and excited hyperfine levels in alkali-metal
vapor interacting with σ linearly polarized control and probe
fields whose polarizations can be either parallel or perpen-
dicular to each other. We developed a matrix formulation
that allows a solution of the Bloch equations to all orders in
the pump and probe Rabi frequencies. Using this formalism,
we calculated the steady-state probe absorption spectrum,
the coherent population oscillations (CPOs), and two-photon
coherence oscillations, in the absence (degenerate case) and
presence (nondegenerate case) of a longitudinal magnetic
field. We then calculated the probe storage when the pump is
switched off and on again. We were particularly interested in
whether the probe regains its original temporal shape when the
pump is switched on again for the case where the control-probe
frequency difference is zero as the CPO dip is centered at
this point. We showed that, in the nondegenerate case, the
restored probe does not regain its original shape whereas,
in the degenerate case, the original shape is restored. This
can be explained by considering the relative magnitudes of
the CPOs which do not remember the temporal shape of
the probe, as we showed for the case of a two-level system
with shelving state [2] and the two-photon coherence which
stores the pulse shape when the pump is switched off, as
in electromagnetically induced transparency (EIT) memories
[32]. In the nondegenerate case, the CPOs are much stronger
than the coherence oscillations whereas, in the degenerate
case, they are of similar magnitudes. Thus it is the two-photon
coherence oscillations that are responsible for the restoration
of the temporal shape of the probe in the degenerate case.

The degenerate system is simultaneously a double-EIT
system (control and probe fields on different legs) [31] and
a double-coherent-population-trapping (CPT) system (control
and probe fields on the same leg) [33]. The restoration of the
pulse shape is due to the contribution of the double-EIT system,
which is an extension of the single-EIT system [32] and has
some features in common with pulse storage in an amplifying
double-� system [30]. It should be pointed out that, although
storage of the temporal pulse shape cannot be achieved by
CPO alone, one can still obtain storage of its spatial shape as
proposed for the TLS that decays via a metastable state [2].
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