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Inclusion of the backaction term in the total optical force exerted upon Rayleigh
particles in nonresonant structures
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In this paper, we investigate the impact of the electromagnetic scattering caused by other objects in nonfree
space on the time-averaged force exerted upon a Rayleigh particle, which is conventionally referred to as the
backaction effect. We show that backaction modifies the gradient force, radiation pressure, and spin curl force
exerted upon Rayleigh particles, and gives rise to an additional force term which stems from the gradient of the
backaction field in nonfree space. As a numerical example, we look into the trapping of a dielectric nanoparticle
at the center of curvature of a spherical mirror, and study how it is affected by the backaction effect. We show
that backaction can enhance the force exerted upon the particle, reshape the trapping potential, and shift the
equilibrium position of the particle.
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I. INTRODUCTION

In the past decades, many impressive advances have been
made in the field of optical manipulation of mesoscopic objects
[1–3]. The forces induced by the interaction of matter with the
optical fields have been employed to realize optical tweezers
[1–6], rotators [7–10], and tractor beams [11–16]. Despite
the substantial progress made in the trapping of micrometer-
sized objects, stable trapping of Rayleigh nanoparticles is still
challenging in the free space because the polarizability of the
particle decreases rapidly when its size is reduced [3,17–19].
The seemingly straightforward solution of increasing the
intensity of the incident light to counterbalance the reduction
of the polarizability is not viable since increasing the intensity
of the light can damage the particle before it gets trapped
[20]. One possible approach to address this issue is to employ
nanostructures which can confine the electromagnetic field
beyond the diffraction limit [20–31]. In this fashion, the
trapping force is enhanced by increasing the gradient of the
incident field in the absence of the particle. Interestingly,
there is a further enhancement of the trapping force reported
in resonant nanostructures on account of the so-called self-
induced backaction (SIBA) effect [32–38]. These structures
are designed in such a way that the fulfillment of the resonance
condition in the structure has a strong dependence on the
position of the particle. In this fashion, the particle has a strong
influence on the local electric field, and plays an active role in
its trapping [32].

The conventional approach to studying the SIBA phe-
nomenon observed in resonant structures is to employ the
Hamiltonian formalism, whereby it can be easily shown that
the SIBA can reshape the trapping potential and can provide
dark field trapping that reduces the averaged intensity seen by
the particle [39]. It should be noted, however, that applying
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the Hamiltonian formalism as presented in Ref. [39] is solely
valid when the structure has a high-quality resonance. As a
matter of fact, the quality factor of the resonance should be high
enough to justify approximation of the electromagnetic fields
by a single resonance mode of the structure. In other words,
the impact of the continuum radiation modes of the structure
should be negligible. That is why the conventional Hamiltonian
formalism is not capable of analyzing the backaction effect
in structures which do not have a high enough quality factor.
However, the SIBA is not solely observed in resonant structures
with high-quality factors and can be present in structures
either with low-quality resonance or even no resonance at
all. Moreover, the SIBA might bring about results other than
the increased trapping force. For instance, long-range optical
pulling force has been reported recently in a photonic crystal
structure [40].

In this paper, we investigate the time-averaged optical force
exerted on Rayleigh particles in the vicinity of scattering
objects which does not necessarily form a resonant structure.
We formulate the backaction effect using the dyadic Green’s
function of the structure, and demonstrate that it modifies the
polarizability of the particle and the total time-averaged force.
We show that the polarizability of the particle is no longer
a scalar value even for spherical particles, and becomes a
dyadic quantity which depends on the position of the particle.
Therefore, the gradient force, radiation pressure, and spin curl
force are all modified on account of the backaction effect.
Furthermore, an additional term, which is proportional to the
gradient of the scattering Green’s function of the structure,
appears in the time-averaged total force. It should be noted
that defining the effective polarizability based on Green’s
function has already been reported in literature [41–45]. The
main contribution of this paper is to show how the backaction
field modifies different force terms, and how the force term
associated with the gradient of the scattering Green’s function
could be the significant factor in determining the overall optical
force. The proposed formulation remains exact insofar as the
effects of higher multipole orders remain negligible. This is the
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matter that we have looked into numerically by comparing the
results of our formulation against those obtained by applying
the Maxwell stress tensor (MST). In this fashion, the signifi-
cance of the higher multipole orders is quantitatively studied
when Rayleigh particles come close to the boundaries. We also
show that even though the proposed formalism is inherently
different from the Hamiltonian formalism, both approaches
provide the same results when Green’s function in our proposed
formulation is approximated by the electromagnetic fields of
a single resonance mode.

The organization of this paper is as follows: In Sec. II, the
mathematical formalism for the inclusion of the backaction
effect in the force exerted upon Rayleigh particles in non-
free space is presented. It is also shown that the proposed
formulation yields essentially the same results that the more
conventional Hamiltonian formalism provides. Two different
scenarios are then studied numerically in Sec. III. In Sec. III A,
the backaction effect is investigated at the center of curvature of
a spherical mirror, which is obviously a nonresonant structure.
It is shown that the backaction can reshape the trapping
force and potential, and also shift the equilibrium position of
the particle. In Sec. III B, the trapping force exerted upon a
Rayleigh nanosphere is studied in a structure with a circular
nanohole (CNH). The contribution of different force terms
in the total optical force is looked into and it is numerically
shown that the backaction effect is mainly the result of
the scattering Green’s function gradient. In other words, the
difference between the results of the Maxwell stress tensor
method and the perturbative method reported in Ref. [32] is not
entirely due to the contribution of the higher-order multipoles.
Rather, the difference between the two methodologies is mostly
attributable to the gradient of the scattering Green’s function
which was hitherto neglected in the perturbative method.
Eventually, the conclusions are made in Sec. IV.

II. FORMULATION

In the Rayleigh regime where the size of the particle is
much smaller than the wavelength of the electromagnetic field,
the particle behaves as if it is an electric dipole [17–19],
whose electric dipole moment is p = Vp P(rp), where Vp is
the volume of the particle, and P(rp) is the polarization at the
center of mass of the particle:

P(rp) = ε0(εp − 1)[E0(rp) + Ep(rp)] (1)

Here, εp is the relative permittivity of the particle, E0 is the
electric field in the absence of the particle, and Ep is the electric
field generated in the presence of the particle. The latter can
be written as a summation of two terms. One is the electric
field radiated by the particle in the free space which does not
contain the impact of other scattering objects, and is given by
[43]

Erad(r) =
[(

k2
0

↔
I + ∇∇) ∫

Vp

eik0|r−r ′|

4πε0|r − r ′|d
3r ′

]
· P(rp).

(2)

The other, which is hereafter referred to as the backaction field,
is in fact the scattered field of the particle radiation, and can be

written as

Eba(r) = Vp

↔
Gs(r,rp) · P(rp), (3)

where
↔
Gs is the scattering Green’s function of the structure, and

is easily obtained by the elimination of the free-space Green’s
function from the total Green’s function of the structure.

It should be noted that ∇ operators and the integral in Eq. (2)
cannot be interchanged since the result will be singular at r =
r ′ [46,47]. Since this singularity stems from the static part of
Erad, it can be easily dealt with once the static and dynamic
contributions within the radiation field are separated from each
other. Therefore, for further simplification, Erad can be written
as

Erad = Esta + Edyn. (4)

The first term, Esta, is the static part of the radiated field which
is given by

Esta(r) =
↔
S (r) · P(rp), (5)

where

Sij (r) = ∂i∂j

∫
Vp

1

4πε0|r − r ′|d
3r ′

=
∮

Sp

xi − x ′
i

4πε0|r − r ′|3 x̂j · ds′. (6)

The next term, Edyn, is the dynamic part of the radiated field,
which can be written as

Edyn(r) =
↔
R(r) · P(rp), (7)

where

↔
R(r) = 1

4πε0

[
k2

0

↔
I

∫
Vp

eik0|r−r ′|

|r − r ′| d3r ′

+
∫

Vp

∇∇ eik0|r−r ′| − 1

|r − r ′| d3r ′
]

(8)

and can be further simplified to

↔
R(r) = k2

0

8πε0

∫
Vp

|r − r ′|2
↔
I − (r − r ′)(r − r ′)
|r − r ′|3 d3r ′

+ ik3
0

6πε0
Vp

↔
I (9)

by expanding Eq. (8) with respect to k0 up to the third-order
term. It should be noted that while the second-order term in
the above expression can be neglected, keeping the third-order
term is necessary since it is the first imaginary term present in
the expansion. This term is usually referred to as the radiation
reaction of the particle, which makes the polarizability a
complex value even in the absence of absorption [18,48].

Now, it can be easily shown that the equivalent electric
dipole moment is given by

p = ↔
α · E0(rp). (10)
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Here,
↔
α is the dyadic polarizability of the particle and reads as

↔
α =

[↔
I − ik3

0

6πε0

↔
α0 − ↔

α0 ·
↔
Gs(rp,rp)

]−1

· ↔
α0, (11)

where

↔
α0 = ε0(εp − 1)Vp[1 − ε0(εp − 1)

↔
S (rp)]−1 (12)

is the static polarizability of the particle in the free space. It
should be noted that for a spherical particle,

↔
α0 is isotropic and

is given by

α0 = ε0Vp

εp − 1

εp + 2
. (13)

After finding the equivalent localized electric dipole, the time-
averaged force exerted upon the particle can be obtained from

〈F 〉 = 1

2
Re

[∑
i

pi∇E∗
i

]
, (14)

where

E = E0 +
↔
Gs(rp,rp) · p (15)

is the electric field experienced by the electric dipole that
consists of the electric field in the absence of the particle,
E0, and the backaction field due to the presence of scattering
objects in the vicinity of the particle. It is quite obvious that
the time-averaged total force can be separated to four terms:

〈F〉 = 1

4

∑
ij

α′
ij∇

(
E0i

E∗
0j

) + ωμ0

2
Re[(

↔
α

′′ · E0) × H∗
0]

+1

2
Im{[(↔α ′′ · E0) · ∇]E∗

0}

+ 1

2
Re

⎡
⎣∑

ijkl

αikα
∗
j lE0k

E∗
0l
∇G∗

sij

⎤
⎦, (16)

where
↔
α

′
and

↔
α

′′
are the real and imaginary parts of the polariz-

ability, respectively. The first term is the generalized form of the
gradient force which clearly becomes the conventional form of

the gradient force whenever
↔
α

′
is isotropic [1,19]. Moreover,

the second and the third terms which depend on the imaginary
part of the polarizability are the generalized forms of radiation
pressure and spin curl force, respectively. Eventually, the last
term is an additional force term that does not appear in the free
space and depends on the gradient of the scattering Green’s
function.

As already mentioned, the proposed formalism is capable
of modeling the backaction effect in both resonant and non-
resonant structures. Here, we want to apply this formalism to
investigate trapping of a Rayleigh nanosphere in a resonant
structure, and show that it leads to the same results with
the Hamiltonian formalism discussed in the Appendix. In a
resonant structure, the electromagnetic fields can be almost
approximated with the resonant mode of the structure, and the
impact of other modes can be neglected. It is worth noting that
this approximation is only valid in high-Q resonant structures

and near its resonance frequency. In such a case,

Gs(r,rp) = −iωL

2ε0Vm

u(r)u∗(rp)(− κ
2 − iωc

) + iωL

, (17)

using the modal expansion of Green’s function where the
term corresponding to the resonant mode is just kept in the
expansion. Here, ωc − i κ

2 is the complex resonant frequency
of the structure, and ωL is the frequency of the driving laser.
Moreover, u(r) and Vm are the normalized field profile and
mode volume of the resonant mode, respectively. Hence,

Gs(rp,rp) = iA

α0
(

κ
2 − i�

)	(rp), (18)

where A = ωcα0
2ε0Vm

, and 	(rp) = |u(r p)|2 is the normalized in-
tensity profile of the resonant mode. Moreover, � = ωL − ωc

is the detuning from the resonance frequency of the structure.
Now, the equivalent dipole moment can be written as

p = α0E(rp) = α0

1 − α0Gs(rp,rp)
E0(rp)

= α0

1 − iA
κ
2 −i�

	(rp)
E0(rp), (19)

and thereby the effective polarizability of the nanosphere can
be obtained from

α = α0

1 − iA
κ
2 −i�

	(rp)
, (20)

which is the same as the result of Hamiltonian formalism
discussed in the Appendix. According to the above equation,
we can define the backaction parameter as η = 2A

κ
[39]. When

η � 1, the impact of the cavity on the polarizability of the
nanosphere is negligible, and α � α0. However, for large η,
the cavity can significantly change the polarizability of the
nanosphere due to the backaction effect. Furthermore, when
η 	 1, α � iα0

η	(rp) for � = 0, which means that backaction
makes the polarizability of the nanosphere become almost
imaginary.

III. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
observe the impact of backaction on the force exerted upon
a Rayleigh particle. In the first example, we investigate trap-
ping of a Rayleigh nanosphere at the center of curvature
of a spherical mirror. In this configuration, the spherical
mirror can concentrate the backaction field at the position
of the particle and thereby can affect the force exerted upon
the particle. This example, which clearly has no resonance,
demonstrates that backaction can also be observed in a non-
resonant structure. Furthermore, it indicates that backaction
can be observed in the far zone of a scattering object,
which to the best of our knowledge has not been reported
yet.

Then, as the second example, we investigate the trapping of
a Rayleigh nanosphere in the circular nanohole structure which
counts among the earliest cases in which SIBA had been re-
ported [32]. We compare the results obtained from the proposed
formalism with those calculated by the Maxwell stress tensor
method, and show that the failure of the perturbative method
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FIG. 1. Schematic of the system. A dielectric nanosphere is
trapped by an optical tweezer at the center of a spherical mirror.

reported in Ref. [32] is not totally due to the failure of the
Rayleigh approximation, i.e., the contribution of higher-order
multipoles. It is shown that the dominant effect is the impact

of the scattering Green’s function which was not considered
in Ref. [32], especially when the particle is far from the walls
of the hole. This is interpreted as the backaction effect in our
paper.

A. Spherical mirror

In this section, the trapping of a Rayleigh nanosphere at
the center of curvature of a spherical mirror which focuses
the backaction field at the position of the particle is studied to
demonstrate the backaction effect in a nonresonant structure.
The schematic of this system is depicted in Fig. 1. As shown
in this figure, a dielectric nanosphere is trapped by a Gaussian
beam which passes through a spherical mirror with radius R0

stretched from θ0 to π
2 around the z axis. It is worth noting

that the Gaussian beam propagates along the z axis and has a
free-space wavelength λ0, and its focal point is adjusted at the
center of the spherical mirror.

FIG. 2. Optical force exerted upon a 110-nm nanosphere with refractive index 2.5 at the z = 0 plane. (a),(b) For R0 = (2n − 1) λ0
4 . (c),(d)

For R0 = (2n + 1) λ0
4 . (e),(f) In the absence of the spherical mirror. These results are obtained for I0 = 2[ mW

μm2 ] and w0 = 3λ0.
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FIG. 3. Trapping potential. (a) Along the x axis for R0 = (2n − 1) λ0
4 . (b) Along the x axis for R0 = (2n + 1) λ0

4 . (c) Along the y axis for
R0 = (2n − 1) λ0

4 . (d) Along the y axis for R0 = (2n + 1) λ0
4 . The red-dashed lines show the backaction free results obtained in the absence of

the spherical mirror.

The electric field in the absence of the nanoparticle in the
proposed structure is given by

E0(r) =
√

2η0I0x̂
w0

w(z)
exp

(
−x2 + y2

w2(z)

)

× exp

[
i

(
k0z + k0

x2 + y2

2R(z)
− ψ(z)

)]
, (21)

where I0 is the intensity of the beam at its waist, and w0 is

the beam waist radius. Furthermore, w(z) = w0

√
1 + z2

z2
R

and

R(z) = z(1 + z2
R

z2 ) are the beam radius and wavefront radius,
respectively. Eventually, ψ(z) = arctan( z

zR
) denotes the Gouy

phase of the optical beam, and zR = πw2
0

λ0
is called the Rayleigh

distance from the beam waist [43].
Since the radius of the spherical mirror is much larger

than the wavelength of the optical beam (R0 � λ0), we can
use physical optics approximation to calculate the dyadic
scattering Green’s function of the structure, which reads as

↔
Gs(r,r ′) = ik3

0

8π2ε0
e2ik0R0

∫ π
2

θ0

∫ 2π

0

↔
F(θ ′,ϕ′) exp{−ik0[(x + x ′)

× sin θ ′ cos ϕ′ + (y + y ′) sin θ ′ sin ϕ′

+ (z + z′) cos θ ′]} sin θ ′dθ ′dϕ′, (22)

where

↔
F(θ ′,ϕ′) =

⎡
⎣cos2 θ ′ cos2 ϕ′ + sin2 ϕ′ − sin2 θ ′ sin ϕ′ cos ϕ′ − sin θ ′ cos θ ′ cos ϕ′

− sin2 θ ′ sin ϕ′ cos ϕ′ cos2 θ ′ sin2 ϕ′ + cos2 ϕ′ − sin θ ′ cos θ ′ sin ϕ′

− sin θ ′ cos θ ′ cos ϕ′ − sin θ ′ cos θ ′ sin ϕ′ sin2 θ ′

⎤
⎦. (23)

The force exerted upon a 110-nm-radius nanosphere with
refractive index 2.5 by an optical tweezer when I0 = 2[ mW

μm2 ],
w0 = 3λ0, and λ0 = 1064 [nm] wavelength is numerically
calculated and plotted in Fig. 2. Furthermore, the waist ra-
dius of the optical tweezer is considered w0 = 3λ0. Note
that the calculation is carried out at two different radii,

R0 = (2n − 1) λ0
4 and R0 = (2n + 1) λ0

4 , and the results are
given in Figs. 2(a) and 2(b) and Figs. 2(c) and 2(d), respectively.
These figures clearly demonstrate that the results significantly
depend on the radius of the spherical mirror. Furthermore, the
impact of the backaction on the exerted force can be weighed
by comparing the results in Figs. 2(a)–2(d) with the results
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FIG. 4. (a) Imaginary part of the polarizability normalized to the imaginary part of the free-space polarizability along the z axis. (b) Force
exerted upon the nanosphere along the z axis. The red-dashed line is the force in the absence of the spherical mirror. The blue-dotted line is the
scattering force in the presence of the nanosphere neglecting the contribution of the gradient of the scattering Green’s function. These results
are obtained for R0 = (2n − 1) λ0

4 .

obtained in the absence of the spherical mirror which are
shown in Figs. 2(e) and 2(f). According to these figures, the
backaction increases the maximum force, and modifies the
force profile. Looking at Figs. 2(c) and 2(d) we see that when
R0 = (2n + 1) λ0

4 the backaction shifts the trapping position of
the particle from the center of the beam, and results in a dual
trap. This phenomenon can be better seen in Fig. 3 where the
trapping potentials are depicted along the x and y axes. Note
that our simulations show that the mirror can change the real
part of the polarizability up to 10% while as seen in Fig. 2 the
backaction has a greater impact on the force exerted upon the

nanosphere. This difference originates from the force term in
Eq. (16) associated with the gradient of the scattering Green’s
function of the structure.

Finally, the influence of the backaction on the scattering
force exerted upon the particle along the axis of the beam is
studied. Figure 4(a) shows the imaginary part of the polariz-
ability of the nanosphere along the z axis. As it can be seen
in this figure, the imaginary part of the polarizability is now a
function of the position of the nanosphere since the strength of
the backaction effect depends on how close the particle is to
the center of the spherical mirror. Figure 4(b) shows the force
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FIG. 5. (a) Schematic of the CNH structure. (b) Transmission spectrum of CNH structure in the absence of the nanosphere. (c), (d) Intensity
profiles of the electromagnetic fields in the absence of the nanosphere.
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FIG. 6. (a) Optical force exerted upon a 50-nm-radius polystyrene nanoparticle along the x direction at the entry of the aperture. The force is
calculated with three different methods: Maxwell stress tensor (red-dotted), dipole approximation including the backaction effect (solid black),
and conventional dipole approximation without considering the backaction effect (blue-dashed). (b) Contribution of different force terms.
(c) Real part of the polarizability of the nanosphere normalized to the polarizability of the nanosphere in the free space.

exerted upon the nanosphere along the z axis. According to this
figure, the backaction can counteract the scattering force at the
beam waist (z = 0), and thus form a stable three-dimensional
trap.

B. Circular nanohole structure

Here, we investigate the trapping of a Rayleigh nanosphere
in a structure with a circular nanohole. The schematic of this
configuration is depicted in Fig. 5(a). As shown in this figure, a

310-nm-diameter circular hole is drilled inside a 100-nm-thick
gold film. An x-polarized Gaussian beam is incident upon
the aperture which is utilized for trapping a 50-nm-radius
polystyrene nanosphere. The transmission spectrum of this
structure is shown in Fig. 5(b). According to this figure, it
has a pick at 750-nm wavelength. However, since the quality
factor of this resonance is very low (Q ∼ 1.5), this structure
cannot be analyzed using a single resonance mode of the
structure. The wavelength of the incident field is adjusted
to 800 nm which, as in Ref. [32], is slightly above the
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FIG. 7. Optical force exerted upon a 50-nm-radius polystyrene nanoparticle along the z direction at (a) x = 100 nm and (b) x = 90 nm from
the center of the hole. (Red-dotted) Maxwell stress tensor, (solid black) dipole approximation including the backaction effect, (blue-dashed)
conventional dipole approximation without considering the backaction effect.
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resonance wavelength of the structure. Furthermore, the inten-
sity of the electromagnetic fields supported by this structure
in the absence of the nanosphere is depicted in Figs. 5(c)
and 5(d).

Figure 6(a) shows the calculated force along the x direction
at the entry of the aperture. In this figure, in addition to the
force calculated from our formalism, the results of the force
calculation by applying the Maxwell stress tensor and the
conventional dipole approximation neglecting the impact of
the scattering Green’s function (referred to as the perturbative
method in Ref. [32]) are also depicted. This figure definitely
helps us to distinguish between the contribution of the scatter-
ing Green’s function referred to as the backaction effect and
the contribution of the higher-order multipoles in the CNH
structure. The difference between the solid black line and the
blue-dashed line in Fig. 6(a) is due to the backaction effect,
and the difference between the black line and the red-dotted
one is due to the contribution of the higher-order multipoles.
This figure clearly indicates that the proposed formalism can
accurately predict the force in the CNH structure, and the
contribution of higher multipole orders becomes important
only when the particle is almost touching the walls of the
aperture. Figure 6(b) describes the contribution of different
force terms introduced in Eq. (16). Furthermore, the real part
of the polarizability of the particle is depicted in Fig. 6(c).
From these figures, it can be figured out that the backaction
cannot significantly affect the real part of the polarizability of
the particle, and the backaction effect seen in CNH structures
mostly stems from the force term introduced in Eq. (16).
Eventually, we also calculate the force exerted upon the
nanosphere along the z direction which is depicted in Fig. 7.

IV. CONCLUSION

In this paper, a closed form expression is given for the
exerted force upon a Rayleigh particle in nonfree space by
proposing a mathematical formalism based on the scatter-
ing Green’s function of the structure wherein the Rayleigh
particle is put. In this manner, the dipole approximation for
the calculation of the total force is modified to include the
backaction effect. It was shown that the backaction fields
due to the presence of scattering objects can modify gradient
force, radiation pressure, and spin curl force by changing the
polarizability of the particle. Furthermore, it was shown that
the backaction brings about a new force term which depends on
the gradient of the scattering Green’s function of the structure.

The proposed formalism is a beneficial tool for studying
trapping of Rayleigh nanoparticles in nanostructures, and can
facilitate the design of nanometric optical tweezers which are
to benefit from the backaction effect. It is also worth noting
that modeling the backaction effect by the scattering Green’s
function of the structure can be employed to analyze backaction
cooling of nanoparticles in nonresonant structures.

APPENDIX: HAMILTONIAN FORMALISM
IN RESONANT STRUCTURES

Assume a Rayleigh nanosphere is trapped inside a resonant
structure with resonance frequency ωc. The electric field of the

resonant mode is considered as

E(r) = i

√
2h̄ωc

ε0Vm

au(r), (A1)

where a, and Vm are the mode amplitude and mode volume
of the resonant mode, respectively, and u(r) is the normalized
field profile of the resonant mode. The interaction between the
nanosphere and the optical mode can be described with the
interaction part of Hamiltonian which is given by

Hint = − 1
4α0|E|2 = −h̄Aa†a	(rp), (A2)

where 	(rp) = | f (rp)|2 is the normalized intensity profile of
the resonant mode, and A = ωcα0

2ε0Vm
is the maximum resonance

frequency shift of the resonant mode due to the presence of the
nanosphere.

The equation of motion for a can be written as

da

dt
= i�a − κ

2
a + iA	(rp)a + √

κex�, (A3)

where � = ωL − ωc is the detuning of the laser frequency,
ωL, from the resonance frequency of the cavity; κ and κex

are the total decay rate and external decay rate of the cavity,
respectively, and � is the driving strength of the laser. The
steady-state value of a is given by

a =
√

κex�
κ
2 − i[� + A	(r p)]

, (A4)

which clearly depends on the position of the nanosphere. It
should be noted that, similar to Eq. (15), a can also be separated
into two parts. The first part is the mode amplitude in the
absence of the nanosphere and is given by

a0 =
√

κex�
κ
2 − i�

. (A5)

The second part is the backaction mode amplitude which can
be obtained from

aba = iA	(rp)
κ
2 − i[� + A	(rp)]

a0. (A6)

Now, it can be easily shown that the equivalent dipole moment
of the nanosphere can be written as

p = α0 E(rp) = α0

1 − iA
κ
2 −i�

	(rp)
E0(rp), (A7)

and thereby the polarizability of the nanosphere is given by

α = α0

1 − iA
κ
2 −i�

	(rp)
. (A8)
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