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Coherent multiple scattering of light in (2 + 1) dimensions
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We formulate a multiple scattering theory of light in media spatially disordered along two directions and
homogeneous along the third one without making any paraxial approximation on the wave equation and fully
treating the vector character of light. With this formalism, we calculate the distribution of transverse momenta
of a beam as it evolves along the optical axis and unveil a phenomenon not captured by the paraxial equation:
a crossover from a scalar to a vector regime, visible in the coherent backscattering peak as polarization gets
randomized.
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I. INTRODUCTION

When light propagates mostly along a given direction z

in a weakly heterogeneous medium, its evolution is to a first
approximation governed by the paraxial wave equation. The
latter has the same structure as the time-dependent Schrödinger
equation, with the longitudinal coordinate z playing the role
of time [1,2]. In Kerr media this idea was recently applied
to study optical analogs of quantum matter-wave phenomena,
such as Bose condensation [3,4] or superfluidity [5,6]. In a
similar spirit, in spatially disordered materials paraxial light
propagation was exploited to observe the coherent backscat-
tering (CBS) effect without interface [7], in a configuration
that reproduces cold-atom setups [8,9]. In the same context,
transverse Anderson localization of optical wave packets [10]
was reported in the paraxial limit [11,12]. A major drawback
of the paraxial equation, however, is that it neglects the vector
nature of light. In presence of disorder, how polarization effects
manifest themselves beyond the paraxial approximation and
when the latter breaks down is not well known. Clarifying
these questions is essential to clearly identify the regime where
a scalar description of light can be used in experiments that op-
erate close to the paraxial limit. More generally, understanding
the role of the vector nature of light in heterogeneous media
is required for a proper characterization of disorder-induced
interference effects such as CBS, known to be sensitive to
polarization in general [13,14]. The question is even crucial for
Anderson localization of light, which was shown to be severely
altered in random ensembles of scatterers when vector effects
are accounted for [15–17].

In this paper, we develop a general theory of multiple
scattering of light in media disordered along two transverse
directions x and y and homogeneous along the third one z

(the optical axis). This theory does not rely on the paraxial ap-
proximation but is constructed from the exact Helmholtz wave
equation. As a concrete example, we calculate the disorder-
average distribution |E(k⊥,z)|2 of transverse momenta of an
incident plane-wave beam of transverse momentum k0 as
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it propagates along z; see Fig. 1. In this configuration, it
was shown theoretically in the framework of the paraxial (or
Schrödinger) equation that this distribution evolves toward a
pedestal ring of radius |k0| due to the diffusive randomization
of momenta, on top of which a CBS peak arises around
k⊥ = −k0 [8,18]. This phenomenon was recently observed
experimentally in photorefractive materials [7]. By revisiting
it within a full vector treatment, we discover an interesting
effect beyond the paraxial approximation: the momentum
distribution crosses over from a scalar to a vector regime as
z exceeds a characteristic scale zp, identified as the time over
which the polarization direction is randomized. As long as
z � zp, the polarization remains fixed, the paraxial equation
applies, and the physics of CBS, in particular, is that of a
scalar wave. In strong contrast, when z � zp the paraxial
theory breaks down and the CBS peak starts to nontrivially
depend on polarization. In particular, for a circularly polarized
incident beam the CBS peak is visible only from light of
opposite circular polarization, as imposed by the reciprocity
principle. We also find that the scale zp strongly depends on the
injection angle of the incident beam (θ in Fig. 1), thus offering
a convenient way of switching from a scalar to a vector regime
for light in a two-dimensional (2D) disordered environment.

II. OPTICAL MOMENTUM DISTRIBUTION

Our starting point is the Helmholtz equation for the complex
electric field E(r) = E(x,y,z):

[�δij − ∇i∇j + k2δij − V (r⊥)δij ]Ej (r) = 0, (1)

where k2 = ω2ε̄/c2, with ω being the light carrier frequency.
The disorder “potential” V (r⊥) = −k2δε(r⊥)/ε̄ stems from
spatial fluctuations δε(r⊥) of the refractive index around an
average value ε̄. Disorder is only along r⊥ = (x,y), not along
z. In Eq. (1) and in the following, summation over repeated in-
dices j = x, y, z is implied. For simplicity, we choose the dis-
order to be Gaussian distributed and uncorrelated of strength γ :

V (r⊥)V (r ′
⊥) ≡ k4 δε(r⊥)δε(r ′

⊥)

ε̄2
= k4γ δ(r⊥ − r ′

⊥), (2)
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FIG. 1. We consider the propagation of a quasi-plane-wave beam
of transverse wave vector k0 and polarization ε through a medium
spatially disordered along x and y and homogeneous along the optical
axis z. Light is detected on a polarization channel ε ′ belonging to the
plane (x,y).

with δε(r⊥) = 0. The main goal of this paper is to evaluate
the disorder-average distribution |ε′ · E(k⊥,z)|2 of transverse
momenta as a function of the longitudinal coordinate z. In
this definition, the output light beam, at z, is detected in the
direction k⊥ and along a polarization axis ε′ that lies in the
plane (x,y); see Fig. 1. We model the incident beam at z = 0,

Ei(k⊥,z= 0) = A(k⊥)εi , by a field distribution A(k⊥) peaked
around k⊥ = k0 and polarized along the complex unit vector
ε perpendicular to k (Fig. 1). The field at z is given by

Ej (k⊥,z) = 2ik

∫
d2k′

⊥
(2π )2

〈k⊥|Gij (z)|k′
⊥〉A(k′

⊥)εi, (3)

where Gij is the Green tensor of the Helmholtz equation
(1). The tensor 2ikGij (z) can be interpreted as the medium’s
transmission coefficient from z = 0 to z [19]. To obtain the
momentum distribution, we average the square modulus of
Eq. (3) contracted with ε′, introducing the Fourier transform
Gij (z) ≡ ∫ ∞

−∞[dkz/(2π )]Gij (kz)eikzz. This gives [8]

|ε′ · E(k⊥,z)|2

= 4k2
∫ ∞

0

dkz

2π

∫ ∞

−∞

dqz

2π

∫
d2k′

⊥
(2π )2

|A(k′
⊥)|2

× ε∗
i ε

′
j 〈k⊥|Gij (k+

z )|k′
⊥〉〈k′

⊥|G†
kl(k

−
z )|k⊥〉ε∗′

k εl e
iqzz, (4)

where k±
z ≡ kz ± qz/2 and we resorted to translation invari-

ance in plane (x,y) to remove one integral over k′
⊥. We

now assume a normalized, incident plane wave, |A(k⊥)|2 �
(2π )2δ(k⊥ − k0), and decompose the average product of two
Green tensors in a standard way [20]:

|ε′ · E(k⊥,z)|2 = 4k2ε∗
i ε

′
j ε

∗′
k εl

∫ ∞

0

dkz

2π
Giα(k0,kz)G

∗
kβ(k0,kz)Gjγ (k⊥,kz)G

∗
lδ(k⊥,kz)

∫ ∞

−∞

dqz

2π
〈k⊥,k0|�αβ,γ δ(kz,qz)|k0,k⊥〉eiqzz.

(5)

In writing Eq. (5), we introduced four average Green ten-
sors defined through the relation 〈k⊥|Gij (kz)|k′

⊥〉 = δ(k⊥ −
k′

⊥)Gij (k⊥,kz) implied by translation invariance on average
in the plane (x,y). We also dropped the qz dependence of
these tensors, which is justified in the large-z limit [21] (the
so-called diffusive regime, see below for the precise condition).
Physically, the first two Green tensors describe the average
propagation of the incoming beam at k0 to the first scattering
event in the material, and the last two describe the average
propagation of the outgoing beam at k⊥ from the last scattering
event to the detection point. The structure tensor �, on the other
hand, contains all information about the multiple scattering
process from the first to the last scattering event. Evaluating
the momentum distribution requires the computation of the
tensors G and �. We execute this program in the next two
sections.

III. AVERAGE GREEN TENSOR IN (2 + 1) DIMENSIONS

We first examine the average Green tensor G(k⊥,kz), given
by the vector Dyson equation [13,22,23]

G(k⊥,kz) = [G(0)(k⊥,kz)
−1 − �(k⊥,kz)]

−1, (6)

where G(0) is the free-space, transverse Green tensor (here and
in the following, we neglect near-field effects)

G
(0)
ij (k⊥,kz) = δij − k̂i k̂j

k2 − k2
⊥ − k2

z + i0+ , (7)

where k ≡ (k⊥,kz). In this paper we assume a weakly disor-
dered material, so that the Born approximation can be used for
calculating the self-energy tensor �ij . For a delta-correlated
potential (2), this gives [21]

�ij (kz) =
∫

d2k′
⊥

(2π )2

δij − k̂′
i k̂

′
j

k2 − k′2
⊥ − k2

z + i0+ . (8)

Let us comment on the physical meaning of the longitudinal
wave vector kz. At weak disorder, the Green tensors G(k0,kz) in
the general formulation (5) of the momentum distribution are
peaked around k2

z = k2 − k2
0 . Therefore, the parameter k̂z ≡

kz/k � 1 − k0/k, between 0 and 1, quantifies the deviations
of the incident beam from paraxiality. �ij (kz) and Gij (k⊥,kz)
can be found for any value of kz by exact calculation of
the integral in Eq. (8) and diagonalization of Eq. (6). We
give their expressions in the appendix because they are rather
cumbersome. They will be needed for the proper evaluation
of the structure factor presented in Sec. IV. For the present
discussion, however, let us focus our attention on the value of
G for k̂z � 1. In this limit, the imaginary part of the self-energy
Im�ij (kz) � −δij γ k4/4 and

Gij (k⊥,kz) � δij − k̂i k̂j

k2 − k2
⊥ − k2

z + ik/zs

, (9)

where zs ≡ 4/(γ k3). By Fourier transforming Eq. (9) with
respect to kz and inserting the result into Eq. (3), we infer:

E(k⊥,z) � E(k⊥,z = 0)eikz−z/2zs , (10)
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which describes the usual depletion of the incident mode due
to scattering as it evolves along z [21], at a rate governed by
the effective scattering time zs . Equation (9) also provides
the regime of validity of the Born approximation: |k2 − k2

z | ∼
k2

0 � k/zs . This weak-disorder condition can be rewritten as
the familiar k0 � 1 [21], where  ≡ k̂0zs is the mean-free
path, proportional to the effective transverse velocity k̂0 of the
incident beam.

Recall that Eq. (9) was obtained by assuming k̂z � 1, i.e.,
quasiparaxiality. This can be confirmed a posteriori by noticing
that Eq. (9) indeed coincides with the solution of the paraxial
wave equation. The latter is traditionally obtained by writing
E(r) = E(r)eikz and assuming slow variations of the envelope
along z, |∂2E/∂z2| � k|∂E/∂z|, and of the permittivity in
the plane (x,y), |∇⊥ε| � k [1,2]. Under these conditions, the
envelope E is mostly transverse and the Helmholtz equation
(1) simplifies to[

�δij + 2ikδij

∂

∂z
− V (r⊥)δij

]
Ej (r) = 0, (11)

which mimics a time-dependent Schrödinger equation where
z plays the role of time. By applying to Eq. (11) the scalar
version of the Green’s function technique introduced above [8],
we recover, in the Born approximation, E(k⊥,z) = E(k⊥,z =
0) exp(−z/2zs).

IV. STRUCTURE FACTOR IN (2 + 1) DIMENSIONS

A. Classical contribution

Under the weak-disorder condition k0 � 1, the structure
factor has two well-known contributions: the series of ladder
and of crossed diagrams, which respectively describe classical
diffusion and coherent backscattering. We first focus on the
ladder series. It gives a contribution �(L) to �, which obeys the
Bethe–Salpeter equation [13,20–23]:

�
(L)
αβ,γ δ(kz,qz,q) = γ k4δαγ δβδ + γ k4�

(L)
mn,γ δ(kz,qz,q)

×
∫

d2k′

(2π )2
Gαm(k′+,k+

z )G
∗
βn(k′−,k−

z ),

(12)

where k′± = k′ ± q/2 and we introduced the short-hand
notation

�
(L)
αβ,γ δ(kz,qz,q) ≡ 〈k+

⊥,k−
0 |�(L)

αβ,γ δ(kz,qz)|k+
0 ,k−

⊥〉. (13)

The Bethe–Salpeter equation is shown diagrammatically in
Fig. 2, which also indicates the conventions used for wave
vectors and polarization indices. Notice that the object (13)
is slightly more general than the structure factor in Eq. (4),
because it involves incoming and outgoing wave vectors k±

0 =
k0 ± q/2 and k±

⊥ = k⊥ ± q/2 instead of simply k0 and k⊥.
The additional variable q will be useful later for evaluating the
crossed contribution. The definition (13) moreover expresses
that �

(L)
αβ,γ δ(kz,qz,q) does not explicitly depend on k0 and

k⊥ [this is why we could take �(L) out of the integral over
k′ in Eq. (12)]. Such a property is a consequence of our
model of uncorrelated disorder, Eq. (2), which scatters light
isotropically.

= +

=

FIG. 2. (top) Diagrammatic representation of the Bethe–Salpeter
equation (12) for the ladder series �(L). Upper solid lines symbolize
the Green tensor G, and lower dashed lines symbolize its complex
conjugate. Vertical dotted lines refer to the correlation function of the
disorder potential, Eq. (2). (bottom) Reciprocity relation (32) between
ladder and crossed series.

The momentum distribution (5) involves the ladder structure
factor at q = 0. To find it, we set q = 0 in Eq. (12) and
introduce the tensor

Qαβ,γ δ(kz,qz) ≡ γ k4
∫

d2k′

(2π )2
Gαγ (k′,k+

z )G
∗
βδ(k′,k−

z ) (14)

as well as Iαβ,γ δ ≡ γ k4δαγ δβδ . Equation (12) thus reads

�(L) = I + Q · �(L) = γ k4
∞∑

m=0

Qm. (15)

The infinite sum can be carried out by diagonalizing Q in terms
of orthogonal projectors �(n) and associated eigenvalues λn

[24]:

Q =
∑

n

λn�
(n), (16)

where �(n) · �(n′) = δnn′ and
∑

n �(n) = 1. Substituting the
formal decomposition (16) for Q in Eq. (15), we obtain

�(L) =
∑

n

γ k4

1 − λn

�(n). (17)

The problem thus reduces to finding the eigenmodes (λn,�
(n)).

This task requires using the complete expression of the av-
erage Green tensor, Eq. (A2) of the appendix. Due to the
complex anisotropic structure of the latter, the diagonalization
of the tensor Q is considerably more difficult than in usual
three-dimensional (3D) isotropic disordered media, which are
rotationally invariant on average [13].

We have derived the modes (λn,�
(n)) in the diffusive

regime z � zs , equivalently qzzs � 1, by unfolding the
coordinates of Qαβ,γ δ onto a 9 × 9 matrix to diagonalize.
The polarization space of this matrix can be decomposed
into six eigensubspaces, three of them associated with a
twice-degenerate eigenvalue. The exact expressions of the
(λn,�

(n)) are rather cumbersome so they are reported in
the appendix for clarity. The eigenvalues are of the form
λn(kz,qz) = λn(kz,0) − iqzμn(kz), such that

�
(L)
αβ,γ δ(kz,qz,0) =

6∑
n=1

γ k4�
(n)
αβ,γ δ(kz)

1 − λn(kz,0) + iqzμn(kz)
. (18)
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FIG. 3. Factors 1 − λn(kz,qz = 0) of the mode decomposition
(17). The mode n = 6 fulfills 1 − λ6(kz,0) = 0 for all k̂z. It thus
always controls the large-z (small-qz) limit of the structure factor
(18). In the experimentally relevant limit where k̂z is close to 1, the two
modes n = 1 and 2 obey 1 − λ1,2(kz,0) � 1, so they also contribute
in general. The modes n = 3, 4, and 5 are, on the other hand, strongly
attenuated in this regime.

In the diffusive regime qzzs � 1, Eq. (18) is dominated by the
smallest factors 1 − λn(kz,0). These quantities are displayed
in Fig. 3 as a function of k̂z = kz/k, from the paraxial regime
(k̂z � 1) to the limit of grazing incidence (k̂z � 1). The
plots reveal two remarkable properties: First, the mode n = 6
satisfies 1 − λ6(kz,0) = 0 whatever k̂z. This implies a diffusive
behavior at large distances, �(L)(kz,qz,0) ∝ 1/(iqz), which is
needed to guarantee the conservation of normalization [25]. It
is worth noticing that keeping the complete expression (A2) of
G is absolutely crucial to recover this property. Second, in the
vicinity of the paraxial regime, k̂z � 1, two additional modes,
n = 1 and 2, have very small denominators 1 − λ1,2(kz,0) and
therefore persist up to very long times. This phenomenon,
which constitutes the main finding of the paper, signals a
crossover in light propagation, occurring around a characteris-
tic scale zp that will be discussed in detail in Sec. V. In short, for
z � zp the modes n = 1 and 2 are negligible, whereas for z �
zp they must be accounted for, which qualitatively modifies the
properties of the structure factor. In the strict limit k̂z = 1 (beam
aligned along the optical axis), we even have 1 − λ6(kz,0) =
1 − λ1(kz,0) = 1 − λ2(kz,0) = 0, so that the three modes n =
1, 2, and 6 equally contribute to Eq. (18) up to arbitrary large z.

B. Coherent backscattering contribution

The CBS interference peak is described by the series of
crossed diagrams denoted �(C). By virtue of reciprocity, �(C)

is related to �(L) through [21]

〈k⊥,k0|�(C)
αβ,γ δ(kz,qz)|k0,k⊥〉

= 〈k⊥,−k⊥|�(L)
αδ,γβ(kz,qz)|k0,−k0〉, (19)

as illustrated diagrammatically in Fig. 2. According to Eq. (13),
we thus obtain the CBS contribution from �

(L)
αβ,γ δ(kz,qz,q) by

interchanging β and δ and setting q = k⊥ + k0. This requires
solving Eq. (12) for q �= 0. We accomplished this task in the
diffusive regime |q|zs � 1. This leads to an extra dependence
of λn on q2 (the q2 corrections to the projectors � are, on the

other hand, negligible):

�
(C)
αβ,γ δ(kz,qz) = �

(L)
αδ,γβ(kz,qz,k0 + k⊥)

=
6∑

n=1

γ k4�
(n)
αδ,γβ(kz)

1 − λn(kz,0) + iqzμn(kz) + νn(kz)(k⊥ + k0)2 . (20)

The explicit expression of the new factors νn(kz) is given in the
appendix for the three modes n = 1, 2, and 6, relevant at large
z near the paraxial limit.

V. RESULTS

A. The paraxial regime revisited

We now derive the explicit expression of the momentum
distribution (5) for a typical setup where the incident beam
is almost aligned with the optical axis (k̂0 � 1). In this
configuration, it is sufficient to use Eq. (9) to evaluate the four
average Green tensors in Eq. (5). The first two are strongly
peaked around k2

z � k2 − k2
0 , which allows us to approxi-

mate �αβ,γ δ(kz,qz) � �αβ,γ δ((k2 − k2
0)1/2,qz) � �αβ,γ δ(k,qz).

The integral over kz then applies to the product of four Green
tensors only,∫ ∞

0

dkz

2π
Giα(k0,kz)G

∗
kβ(k0,kz)Gjγ (k⊥,kz)G

∗
lδ(k⊥,kz)

= zs/2k2

(2k/zs)2 + (
k2

⊥ − k2
0

)2 δiαδkβδjγ δlδ. (21)

We dropped here the tensorial parts of the type k̂i k̂α of the
Green tensors, which are negligible once contracted with the
incoming and outgoing polarization vectors ε and ε′. Let us
now deal with the structure factor in Eq. (5). As seen in
Sec. IV A, when k̂0 � 1 (corresponding to k̂z � 1) only the
three modes n = 1, 2, and 6 contribute to �. Equations (18)
and (20) then lead to∫ ∞

−∞

dqz

2π
〈k⊥,k0|�αβ,γ δ(kz,qz)|k0,k⊥〉eiqzz

� (γ k4)2

4k

∑
n=1,2,6

e−zn/zs
[
�

(n)
αβ,γ δ + �

(n)
αδ,γβe−Dn(k⊥+k0)2z

]
.

(22)

The first term inside the brackets is the ladder contribution,
while the second term describes the CBS peak. The projec-
tors �(n) and their corresponding lifetimes zn ≡ μn(kz)/[1 −
λn(kz,0)] take a particularly simple form in the regime k̂z � 1
considered here:

�
(6)
αβ,γ δ � 1

2
δαβδγ δ, z6 = ∞,

�
(1)
αβ,γ δ � 1

2
(δαγ δβδ − δαδδβγ ), z1 � 4zs

3k̂4
0

, (23)

�
(2)
αβ,γ δ � 1

2
(δαγ δβδ + δαδδβγ − δαβδγ δ), z2 � 8zs

5k̂4
0

.

The quantities Dn = νn(kz)/μn(kz) in Eq. (22) are the diffusion
coefficients of each mode. When k̂z � 1, they all equal (see
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appendix)

Dn � k̂2
0zs

2
≡ D. (24)

In this expression, we recall that zs is the effective mean free
time and k̂0 is the transverse velocity of the incident beam. The
factor 2, finally, refers to the dimensionality of the disorder.
Making use of Eqs. (21)–(24), we rewrite Eq. (5) as

|ε′ · E(k⊥,z)|2 = 8k

zs

F(ε,ε′,z,k⊥)

(2k/zs)2 + (
k2

⊥ − k2
0

)2 , (25)

where the function F = FL + FC splits into a diffusive con-
tribution,

FL(ε,ε′,z) = 1
2 [1 + (|ε · ε′∗|2 − |ε · ε′|2)e−z/z1

+ (|ε · ε′∗|2 + |ε · ε′|2 − 1)e−z/z2 ], (26)

FIG. 4. (top): Diffusive contribution FL to the momentum distri-
bution as a function of z, Eq. (26), in the four polarization channels.
(middle) CBS contribution FC at k⊥ = −k0, Eq. (27), in the four
channels. (bottom) Contrast of the CBS peak, FC/FL (curves σ ⊥ σ

and l ‖ l overlap). The insets display the shape of the momentum
distribution in the plane (kx,ky), in three configurations where the
CBS peak is fully contrasted, partially contrasted and not present.
Note that, in the channels σ ⊥ σ and l ⊥ l, the CBS peak and the
diffusive ring are both very small when z � z1,2, but their ratio is
finite.

and a contribution of the coherent backscattering peak:

FC(ε,ε′,z,k⊥) = 1
2 [|ε · ε′|2 + (|ε · ε′∗|2 − 1)e−z/z1

+ (|ε · ε′∗|2 − |ε · ε′|2 + 1)e−z/z2 ]e−D(k⊥+k0)2z. (27)

Equations (25)–(27) for the momentum distribution constitute
the main result of this paper. The distribution (25) is sketched
in the upper-right inset of Fig. 4 in the plane (kx,ky). It consists
of a diffusive ring of radial width 1/zs , on top of which the CBS
peak stands around k⊥ = −k0 [7,8]. This peak has a narrow
width 1/

√
Dz that decreases with z at a rate controlled by the

diffusion coefficient D [8,9,26,27].

B. Crossover from a scalar to a vector regime

We now come to the central result of the paper: Eqs. (26) and
(27) highlight a crossover between two well-distinct regimes.
When z � z1,2 ∼ zs/k̂

4
0 first, we have

F(ε,ε′,z � z1,2,k⊥) = |ε · ε′∗|2[1 + e−D(k⊥+k0)2z], (28)

corresponding to a structure factor

�
(L)
αβ,γ δ ∝ �(1) + �(2) + �(6) = δαγ δβδ. (29)

This result characterizes the behavior of a scalar wave and
coincides with the prediction of the paraxial wave equation
(11): the complex polarization vector stays fixed during the
multiple-scattering process (α = γ and β = δ), as signaled by
the prefactor |ε · ε′∗|2 which varies from 0 to 1 depending on
the polarization detection setup. We show in the first two rows
of Table I the values of FL = FC(k⊥ = −k0) = |ε · ε′∗|2 in
four main experimental setups where linearly polarized light
is analyzed along the parallel (l ‖ l) or perpendicular (l ⊥ l)
channels, or where circularly polarized light is analyzed in
channels of the same (σ ‖ σ ) or opposite (σ ⊥ σ ) polarization.
As intuition suggests, the diffusive ring and the CBS peak are
visible in the l ‖ l and σ ‖ σ channels only (ε′ = ε).

The opposite situation z � z1,2, on the contrary, cannot be
described by the paraxial wave equation. In this limit, we find

F(ε,ε′,z � z1,2,k⊥) = 1
2 [1 + |ε · ε′|2e−D(k⊥+k0)2z], (30)

corresponding to a structure factor

�
(L)
αβ,γ δ ∝ �(6) = 1

2δαβδγ δ. (31)

The values of FL = 1/2 and FC(k⊥ = −k0) = |ε · ε′|2/2 in
the four polarization channels are displayed in the last two
rows of Table I: the diffusive signal is visible with the same
probability in all channels. This indicates that polarization has

TABLE I. Values of the diffusive, FL [Eq. (26)], and CBS,
FC [Eq. (27)], contributions of the momentum distribution in the
four polarization channels, for z � z1,2 (scalar regime) and z � z1,2

(vector regime).

Channels σ ‖ σ σ ⊥ σ l ‖ l l ⊥ l

FL(z � z1,2) 1 0 1 0
FC(z � z1,2) 1 0 1 0
FL(z � z1,2) 1/2 1/2 1/2 1/2
FC(z � z1,2) 0 1/2 1/2 0
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been randomized by the multiple scattering process. The CBS
peak, on the other hand, has a high visibility in the channel
l ‖ l and, more unexpectedly, in the channel σ ⊥ σ (ε′ = ε∗):
for circularly polarized incident light the CBS peak is visible
only from light of opposite circular polarization. This unusual
property is a consequence of the vector nature of light, which
we will come back to in Sec. V C below.

For completeness, we plot in Fig. 4 the magnitude of the
diffusive and CBS contributions FL, Eq. (26), and FC(k⊥ =
−k0), Eq. (27), as a function of z in the four polarization
channels. The ratio FC(k⊥ = −k0)/FL is the contrast of the
CBS peak. It is also shown in the figure, together with the full
2D shape of the momentum distribution (insets). Note that in
the channels σ ⊥ σ and l ⊥ l, the CBS peak and the diffusive
ring are both very small when z � z1,2 [they scale as z/z1,2,
see Eqs. (26) and (27)], but their ratio is finite. In particular, in
the channel l ⊥ l, the CBS contrast equals z2/z1 − 1 = 1/5.

C. Reciprocity theorem in (2 + 1) dimensions

In the vector regime z � z1,2, we have seen that the CBS
peak is only visible in channels l ‖ l and, more surprisingly,
σ ⊥ σ . This somewhat counterintuitive behavior can be under-
stood by general symmetry arguments based on time-reversal
symmetry and homogeneity of the medium along z, as we now
show.

Consider the wave amplitudeA1→N(k0,ε; k⊥,ε′; kz) associ-
ated with a multiple scattering sequence 1 → N from the initial
state (k0,ε) to the final state (k⊥,ε′), with kz conserved. The
CBS interference is constructed by pairing this amplitude with
its counterpropagating partner AN→1(k0,ε; k⊥,ε′; kz). To find
the condition of constructive interference, we first apply the
reciprocity theorem, consequence of time-reversal symmetry
[21,28]:

AN→1(k0,ε; k⊥,ε′; kz) = A1→N(−k⊥,ε′∗; −k0,ε
∗; −kz). (32)

Owing to the independence of disorder on the longitudinal
coordinate z, the right-hand-side of Eq. (32) is also parity-
symmetric with respect to the variablekz. The CBS interference
is therefore constructive provided A1→N(k0,ε; k⊥,ε′; kz) =
A1→N(−k⊥,ε′∗; −k0,ε

∗; kz). This equality is obviously satis-
fied when

k⊥ = −k0, ε′ = ε∗, (33)

i.e., the CBS peak is fully contrasted in the channels l ‖ l and
σ ⊥ σ , as found in the previous section.

D. Total distribution and norm conservation

It is also interesting to evaluate the total momentum dis-
tribution, |E(k⊥,z)|2, which does not require any particular
polarization detection setup. This quantity is readily obtained
from Eq. (25) by summing over outgoing polarization vectors
ε′. Using that

∑
ε′ |ε · ε′|2 = ∑

ε′ |ε · ε′∗|2 = 1, we infer

|E(k⊥,z)|2 = 8k

zs

1

(2k/zs)2 + (
k2

⊥ − k2
0

)2

×
[

1 + 1

2
e−D(k⊥+k0)2z(1 − e−z/z1 + 2e−z/z2 )

]
.

(34)

The CBS contrast measured from the total distribution thus
varies from 1 in the scalar regime z � z1,2 to 1/2 in the vector
regime z � z1,2. These two values are easily understood from
the results in Table I: the diffusive ring and the CBS peak
are present in the same two polarization channels at small z,
whereas at large z the ring shows up in all channels and the CBS
peak in only half of them. Notice, finally, that if we neglect the
(small) contribution of CBS, Eq. (34) fulfills, as required, the
conservation of normalization for all z:∫

d2k⊥
(2π )2 |E(k⊥,z)|2 = 1. (35)

E. Physical interpretation of z1,2

Let us finally comment on the two characteristic times z1,2.
They are both on the order of

zp ≡ zs

k̂4
0

∼ zs

θ4
, (36)

where θ is the angle made by the incident beam with the optical
axis (see Fig. 1). We have seen above that this timescale sepa-
rates a scalar regime where polarization is fixed, from a vector
regime where polarization is randomized. zp can therefore be
interpreted as the time needed to randomize the direction of
polarization in (2 + 1) dimensions. This interpretation can be
confirmed by the following qualitative argument: The incident
beam, of wave vector k = (k0,kz), has the polarization ε.
After the first scattering event on a refractive-index fluctuation,
the light is scattered into a direction k̂

′
and acquires a (unit)

polarization ε′ which fulfills [29]

ε′ = ε − (k̂
′ · ε)k̂

′√
1 − |k′ · ε|2

. (37)

On the right-hand side, the dot product k̂
′ · ε ≡ k′ · ε⊥ +

εzk̂z ∼ k̂0, since |k̂z| ∼ |ε⊥| ∼ 1 and |εz| ∼ |k̂′| ∼ k̂0 ≡ k0/k

for an incident beam almost along z. By expanding Eq. (37) to
leading order in k̂0 � 1, we find that the change in polarization
in the plane (x,y), �ε⊥ ≡ ε′

⊥ − ε⊥, is on the order of

|�ε⊥| ∼ k̂2
0 . (38)

After a random walk of N = z/zs scattering events, the
polarization subsequently changes by an amount |�ε⊥(N )| ∼√

N |�ε⊥| ∼ √
Nk̂2

0 . This change becomes on the order of
unity when

N ∼ 1

k̂4
0

⇔ z ∼ zs

k̂4
0

≡ zp, (39)

which confirms the physical interpretation of zp given above.
The existence of the two timescales z1 and z2 can be understood
from Eq. (26): in the channels of linear polarization, FL ∝ 1 ±
e−z/z2 , while in the channels of circular polarization,FL ∝ 1 ±
e−z/z1 . We conclude that z2 (z1) is the time needed to randomize
the polarization of a linearly (circularly) polarized beam.

We can estimate zp for parameters used in state-of-the-art
experiments. In the recent work [7], for instance, λ � 532 nm
and light is detected at z � 20 mm. We estimate the largest
k̂0 used in this paper to be k̂0 � 0.17, and the mean-free
path  � 15 μm. This yields zs = /k̂0 � 90 μm, and thus
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zp = zs/k̂
4
0 � 10 cm. This value is not unreasonably larger

than z. In view of detecting the crossover discussed in the
present paper, zp could be decreased by using a slightly larger
incident angle or a stronger disorder.

VI. CONCLUSION

We have developed a general theory of multiple scattering of
light in (2 + 1) dimensions. Starting from the exact Helmholtz
equation, we have computed the full vector intensity tensors
associated with classical diffusion and with the CBS effect.

Our results demonstrate that in this geometry multiply
scattered light experiences a crossover as it propagates along
the effective time axis z. This crossover takes place around a
characteristic zp that corresponds to the time needed for light
to randomize its polarization direction. Due to the peculiar
anisotropic structure of the medium, zp is much larger than
the scattering time (unlike in usual 3D disordered media
where they are comparable): it varies with the inverse of the
fourth power of the incident beam’s angle and is inversely
proportional to the disorder strength. zp thus becomes smaller
and smaller as the beam is less and less paraxial, and when
disorder fluctuations increase. As long as z � zp, the multiple
scattering process is that of a scalar wave and is well captured
by the paraxial wave equation. When z exceeds zp, light
starts to behave as a vector wave and the paraxial equation

breaks down. In particular, the CBS interference peak becomes
only visible in polarization configurations where light initially
linearly (circularly) polarized is detected along the same
(opposite) channel.

Although in this paper we have focused on the optical
momentum distribution, our approach is very general and can
be applied to the calculation of various physical observables for
light in disordered media of dimension 2 + 1. Furthermore, as
it fully accounts for the coupling between polarization and the
spatial structure of the field, our theory could be used to unveil
the so-called spin-orbit interactions of light in the presence
of disorder, known to show up in heterogeneous media and
for nonparaxial beams [30,31]. From an experimental point of
view finally, probing light transport over the scalar-to-vector
crossover discussed in this paper would be highly interesting
at the onset of Anderson localization, to clarify whether the
latter still exists beyond zp.
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APPENDIX

In this appendix we provide the full expressions of various tensors, valid for any value of kz from the paraxial regime
(k̂z = kz/k � 1) to the regime of grazing incidence (k̂z = kz/k � 0).

The imaginary part of �, first, follows from Eq. (8):

Im�ij (kz) = −γ k4

8

[
δij

(
1 + k̂2

z

) + δizδjz

(
1 − 3k̂2

z

)]
. (A1)

The self-energy tensor is anisotropic, which stems from the symmetry axis z of the problem. Note that, while the self-energy does
not depend on k⊥, as is expected for a delta-correlated potential in the plane (x,y), it does depend on kz because no average along
the longitudinal direction is involved, unlike in the conventional scattering theory of three-dimensional (3D) disordered media.
The usual expression of the self-energy expected for that case, Im�ij (kz) = −δij γ k4/6 [22], is recovered by averaging Eq. (A1)
over k̂2

z .
Once the self-energy is known, the average Green tensor follows from a diagonalization of the Dyson equation (6) with respect

to polarization indices. This procedure leads to

Gij (k⊥,kz) = δij

k2 − k2
⊥ − k2

z − iIm�1(kz)
− k̂i k̂j

k2 − k2
⊥ − k2

z − iIm�2(kz)

+ 1

1 − k̂2
z

[
1

k2 − k2
⊥ − k2

z − iIm�1(kz)
− 1

k2 − k2
⊥ − k2

z − iIm�2(kz)

]

× (δizk̂j k̂z + δjzk̂i k̂z − δizδjz − k̂i k̂j ), (A2)

where Im�1(kz) = −(γ k4/8)(1 + k̂2
z ) and Im�2(kz) = −(γ k4/8)(2 − 3k̂2

z + 3k̂4
z ). Apart from the Born approximation, Eq. (A2)

constitutes the exact expression of the average Green tensor in disordered media of dimension 2 + 1. It contains three terms
which, in general, must be kept to describe the full multiple scattering problem in this geometry. In particular, working with the
exact expression of Gij is essential to guarantee the conservation of normalization at all z and to obtain the expressions of the
structure factor given in Sec. V.
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We then provide the expressions of the projectors �
(n)
αβ,γ δ on the eigensubspaces of the structure factor �(L)(kz,qz,q = 0), and

of their corresponding eigenvalues λn. In the diffusive regime qzzs � 1, we find

�
(1)
αβ,γ δ = 1

2
(δαγ δβδ − δαδδβγ − δαγ δβzδδz + δαδδβzδγ z + δβγ δαzδδz − δβδδαzδγ z), (A3)

�
(2)
αβ,γ δ = 1

2
(−δαβδγ δ + δαγ δβδ + δαδδβγ − δαγ δβzδδz − δαδδβzδγ z − δβγ δαzδδz

− δβδδαzδγ z + δαβδγ zδδz + δγ δδαzδβz + δαzδβzδγ zδδz), (A4)

�
(3)
αβ,γ δ = 1

2
(δαγ δβzδδz + δαδδβzδγ z + δβγ δαzδδz + δβδδαzδγ z − 4δαzδβzδγ zδδz), (A5)

�
(4)
αβ,γ δ = 1

2
(δαγ δβzδδz − δαδδβzδγ z − δβγ δαzδδz + δβδδαzδγ z), (A6)

�
(5)
αβ,γ δ =

(
1 − k̂2

z

)2

3 − 2k̂2
z + 3k̂4

z

δαβδγ δ − 2
(
1 − k̂2

z

)
3 − 2k̂2

z + 3k̂4
z

(δαβδγ zδδz + δγ δδαzδβz) + 4

3 − 2k̂2
z + 3k̂4

z

δαzδβzδγ zδδz, (A7)

�
(6)
αβ,γ δ =

(
1 + k̂2

z

)2

6 − 4k̂2
z + 6k̂4

z

δαβδγ δ +
(
1 + k̂2

z

)(
1 − 3k̂2

z

)
6 − 4k̂2

z + 6k̂4
z

(δαβδγ zδδz + δγ δδαzδβz) +
(
1 − 3k̂2

z

)2

6 − 4k̂2
z + 6k̂4

z

δαzδβzδγ zδδz. (A8)

It is easy to check that
∑6

n=1 �
(n)
αβ,γ δ = δαγ δβδ and �

(n)
αβ,ij�

(n′)
ij,γ δ = δnn′δαγ δβδ . Close to the paraxial regime, all terms of the type

δiz, i = α, β, γ , or δ are negligible. In particular, �(1), �(2) and �(6) reduce to Eq. (23).
The eigenvalues λn ≡ λn(kz,qz,q = 0) read, as a function of k̂z and qz:

λ1 = 4k̂2
z

3 − 2k̂2
z + 3k̂4

z

− iqz

64kz

γ k4

k̂2
z(

3 − 2k̂2
z + 3k̂4

z

)2 , (A9)

λ2 = 1

2 + 2k̂2
z

+ 2k̂2
z

3 − 2k̂2
z + 3k̂4

z

+ k̂4
z

4 − 6k̂2
z + 6k̂4

z

− iqz

4kz

γ k4

[
1(

1 + k̂2
z

)2 + k̂4
z(

2 − 3k̂2
z + 3k̂4

z

)2 + 8k̂2
z(

3 − 2k̂2
z + 3k̂4

z

)2

]
, (A10)

λ3 = − 2

3
+ 2 − 2k̂2

z

3 − 2k̂2
z + 3k̂4

z

+ 4

6 − 9k̂2
z + 9k̂4

z

− iqz

32kz

(
1 − k̂2

z

)
γ k4

[
k̂2
z

2
(
2 − 3k̂2

z + 3k̂4
z

)2 + 1(
3 − 2k̂2

z + 3k̂4
z

)2

]
, (A11)

λ4 = 2 − 2k̂2
z

3 − 2k̂2
z + 3k̂4

z

− iqz

32kz

γ k4

1 − k̂2
z(

3 − 2k̂2
z + 3k̂4

z

)2 , (A12)

λ5 = 2
(
1 − k̂2

z

)2

2 − k̂2
z + 3k̂6

z

− iqz

16kz

γ k4

[
1

2
(
1 + k̂2

z

)2 − k̂2
z

2
(
2 − 3k̂2

z + 3k̂4
z

)2 + 1

4 − 6k̂2
z + 6k̂4

z

− 1

3 − 2k̂2
z + 3k̂4

z

]
, (A13)

λ6 = 1 − iqz

16kz

γ k4

1

3 − 2k̂2
z + 3k̂4

z

. (A14)

The coefficients of the terms in iqz define the μn(kz) factors in Eqs. (18) and (20). The eigenvalues λ2, λ3, and λ4 are twice
degenerate, all the other are nondegenerate. We finally provide the factors νn(kz) in Eq. (20) for the three relevant modes n = 1,
2, and 6:

ν1(kz) = k2(
γ k4

)2

512k̂2
z

(
1 − k̂2

z

)
(
3 − 2k̂2

z + 3k̂4
z

)3 , (A15)

ν2(kz) = 32k2

(γ k4)2

(
1 − k̂2

z

)[ 1(
1 + k̂2

z

)4 + k̂4
z(

2 − 3k̂2
z + 3k̂4

z

)4 + 32k̂2
z(

3 − 2k̂2
z + 3k̂4

z

)4

]
, (A16)

ν3(kz) = 64k2

(γ k4)2

(
1 − k̂2

z

)[ 2 + k̂2
z

8
(
1 + k̂2

z

)2 + 3
(
2 − k̂2

z

)
8
(
2 − 3k̂2

z + 3k̂4
z

)2 − 3
(
1 − k̂2

z

)
8
(
2 − 3k̂2

z + 3k̂4
z

) + 2 − 3k̂2
z

4
(
3 − 2k̂2

z + 3k̂4
z

)
]
. (A17)

Close to the paraxial regime k̂z � 1, the three coefficients Dn = νn(kz)/μn(kz) (n = 1, 2, and 6) reduce to Eq. (24).
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