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Input-output theory for superconducting and photonic circuits that contain weak retroreflections
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Input-output theory is invaluable for treating superconducting and photonic circuits connected by transmission
lines or waveguides. However, this theory cannot in general handle situations in which retroreflections from
circuit components or configurations of beam splitters create loops for the traveling-wave fields that connect
the systems. Here, building upon the network-contraction theory of Gough and James [Commun. Math. Phys.
287, 1109 (2009)], we provide a compact and powerful method to treat any circuit that contains such loops
so long as the effective cavities formed by the loops are sufficiently weak. Essentially all present-day on-chip
superconducting and photonic circuits will satisfy this weakness condition so long as the reflectors that form the
loops are not especially highly reflecting. As an example, we analyze the problem of transmitting entanglement
between two qubits connected by a transmission line with imperfect circulators, a problem for which our method is
essential. We obtain a full solution for the optimal receiver given that the sender employs a simple turn-on–turn-off
procedure. This solution shows that near-perfect transmission is possible even with significant retroreflections.
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I. INTRODUCTION

Input-output theory [1–9] is an important tool for describing
the behavior of quantum superconducting [10–15] and pho-
tonic [16–19] circuits. This theory models the interaction of
circuit components (localized quantum systems) with trans-
mission lines and waveguides that carry what are effectively
traveling-wave fields. It provides a description in which the
fields appear as “inputs” that drive the localized systems and
in which the fields that propagate away from the systems (the
“outputs”) contain both the input fields and a contribution from
the systems. If the behavior of the systems is linear, then the
dynamics of a system or network of systems can be solved and
the result is a single frequency-space “scattering matrix” that
tells how the network transforms the input fields to the output
fields as a function of frequency [3,5–7,9].

As useful as it is, input-output theory has an Achilles heel, in
that it cannot in general handle situations in which the fields can
traverse “loops” created inadvertently by retroreflections from
circuit components or deliberately through the use of beam
splitters. The reason that input-output theory breaks down
in this situation is that such loops allow individual fields to
interact repeatedly with the same system, potentially an infinite
number of times, creating a “non-Markovian” dynamics in
which states of the circuit components at one time are able
to directly effect the components at later times via the fields
[20,21]. Another way to understand this breakdown is that
the effective cavities formed by the loops can change the
mode structure of the fields so that they no longer possess
the simple continuum of modes on which input-output theory
relies.

The method we present here begins with the observation
that if the wave packets emitted by the localized systems
change slowly compared to the time that the input fields
spend bouncing around within the network, then input-output
theory should still provide a good description: On the timescale
of the systems, each system will see merely a single total
field that is the sum over all the repeated traversals of the
loops. Thus, in the appropriate parameter regime, in which the
“ring-down” time of the fields within the network is sufficiently
short, one should be able to obtain an effective input-output
description for the circuit. It turns out that the mathematical
machinery required to derive this description, with only a
minor addition (the inclusion of intersystem phase shifts), is
a “network contraction” theory already developed by Gough
and James [22]. Here we extend and reformulate this network
contraction theory, as well as rederiving it in the language
of input-output theory familiar to physicists. The result is
a simple and powerful tool for analyzing superconducting
and photonic circuits that can handle internal reflections and
other configurations in which the fields traverse loops (that
is, traverse some arbitrarily complex network of interlocking
effective weak cavities and ring cavities).

Gough and James developed a method to construct an effec-
tive, loopfree input-output description from a “loopy” network.
This elegant mathematical theory is obtained by imposing the
condition that the time delay in going from one system to
another is zero. In developing their theory, Gough and James
did not, however, establish the physical conditions, and thus the
parameter regimes under which the dynamics of the resulting
input-output network well approximates that of the original
network: The ring-down times depend not only on the travel
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time between systems but also on the reflectivities that form
the effective weak cavities. Our first main contribution is to
derive these conditions in detail, showing at the level of the
field commutators the regimes in which input-output theory
can be expected to provide a valid description of a “loopy”
network. In presenting their network contraction procedure,
Gough and James emphasized its use in building a network
one element at a time, which while appropriate for computer-
automated computations is cumbersome if one wishes to
perform calculations by hand. In extending (and specializing)
the Gough-James method to superconducting and photonic
circuits with weak retroreflections and other weak loops, our
second main contribution is to show explicitly how the entire
network structure (the set of connections) can be captured
by a single matrix. The effective input-output description of
the network is then given by compact formulas in terms of
this matrix. As the original derivation by Gough and James is
not written in a language familiar to most physicists, we also
both derive and present the method in such a language. We
note that there is some overlap between the work presented
here and concurrent work by Gough et al. presented in
Ref. [23].

In the second part of this paper, we apply the method
described above to the important problem of transferring a
quantum state from one qubit to another via a unidirectional
transmission line [24–30]. We show how this problem can
be solved when we take into account that all the circuit
elements, including the circulators that couple the qubits to
the transmission lines, induce retroreflections at their various
interfaces. Such reflections cause unavoidable loss, the effect
of which can be minimized by choosing the appropriate control
protocol.

The rest of this paper is laid out as follows. In Sec. II, we
discuss the derivation of the input-output formalism and in par-
ticular the approximations that it requires. These are important
later when determining the conditions under which the method
presented here is applicable. In Sec. III, we explain how a set of
unconnected input-output network elements is easily described
using a single scattering matrix S, a vector of operators L, and a
Hamiltonian H (this formalism was introduced by Gough and
James [31]). We follow this by explaining how to specify the
connections between the elements (that is, define a network)
using a single matrix W. In Sec. IV, we show how to calculate
the effective input-output description of a network, which is
a single input-output system described by effective scattering
matrix Seff, vector of operators Leff, and Hamiltonian Heff. We
give the explicit expressions for these quantities in terms of
S, L, H , and W. We also describe the effective “dissipative
Hamiltonian” for the effective input-output system, and we
derive the regime in which the effective description is a good
approximation. In Sec. V, we apply the method to the problem
of transferring a quantum state from one qubit to another along
a transmission line via imperfect circulators, something that is
not possible with standard input-output theory. We show how
the transmission probability can be maximized by controlling
the receiver given that the coupling between the sender and
the transmission line is simply turned on for a fixed amount
of time. We also analyze the super- and subradiant states of
this two-qubit network. In Sec. VI, we summarize our results
and discuss open questions. The Appendix gives the details

of the algebraic manipulations required to derive the effective
input-output model.

II. INPUT-OUTPUT THEORY: LOCAL SYSTEMS WEAKLY
INTERACTING WITH TRAVELING-WAVE FIELDS

Here we discuss the key assumptions and approximations
that lead to the equations of input-output theory [8,9]. We
will need to refer to these assumptions when we derive the
conditions under which a network with internal reflections can
be well approximated by an effective input-output description.
Since the work here builds upon input-output theory, some
basic familiarity with this theory will be helpful to the reader.
In particular, we recall that input-output theory describes a
localized system interacting with a one-dimensional (1D),
unidirectional propagating field. This theory provides two key
equations, one which gives the output field in terms of the input
field and the emissions from the system and a second that
gives the dynamics of the system as a Heisenberg-Langevin
equation driven by the field. For references purposes, we note
that the input-output relation for the field is given in Eq. (12)
(for an interaction with a single field) and Eq. (20) (for a
set of interactions with multiple 1D fields). The Heisenberg-
Langevin equation for one or more systems interacting with
the fields is given in Eq. (35).

Input-output theory is also able to handle a “network”
situation in which the output field from one system is connected
to the input field of another system. This was first shown
by Gardiner [4], who referred to such a configuration as
“cascading” two quantum systems together. Here we will be
considering a lossless network of guided 1D fields that connect
local quantum systems in this manner.

We will work with a general 1D scalar field, F (z), which
when written in terms of the right (+) and left (−) propagating
modes, is

F (z) =
∫ ∞

0

dω√
2π

F(ω)
[
b+(ω)eiωz/vp + b−(ω)e−iωz/vp

]
+ H.c., (1)

where F(ω) is the complex vacuum field strength, vp is
the phase velocity, and b±(ω) are canonical commuting field
operators with units of 1/

√
Hz.

We wish to consider quantum systems that couple to this
field via a linear interaction of the form [8]

HSF = −QiF (zi), (2)

for a system operator Qi located at position zi . Our model
assumes that the system contains only a single dominant
resonance frequency ω0, which for simplicity corresponds to
the energy gap between the relevant system states |g〉 and
|e〉. Furthermore, Qi is assumed to only contains off-diagonal
matrix elements coupling |g〉 and |e〉. Note that the resonant
interaction strength, 〈e|Qi |g〉F(ω0)/h̄, has units of

√
Hz. The

frequency κ0 ≡ |〈e|Qi |g〉F(ω0)|2/h̄2 is ultimately the rate at
which |e〉 decays into |g〉 by emitting an excitation into the
field. After transforming to the interaction picture and dropping
any counter-rotating terms, the interaction Hamiltonian is

HSF = −ih̄
√

κ0σ
+
i eiφ

[
eik0zi b+(zi,t) + e−ik0zi b−(zi,t)

]
+ H.c., (3)
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where σ+
i = |e〉〈g| and φ is the phase angle that sets the cou-

pling quadrature, i.e., φ = arg 〈e|Qi |g〉F(ω0)/ih̄. The field
operators b±(zi,t) are defined as

b±(zi,t) ≡
∫ ∞

0

dω√
2π

F(ω)

F(ω0)
b±(ω)e−i(ω−ω0)(t∓zi/vp). (4)

In this definition, we have factored out the carrier traveling
waves e±ik0z−iω0t (with wave number k0 = ω0/vp). However,
in moving to the interaction picture, σ+

i generated the phase
eiω0t , canceling the time dependence of the carriers.

Standard input-output theory considers only a single system
localized at a given position and thus any spatial phases can
be safely ignored. However, when considering two systems
coupling to the same field at differing positions, propagation
phases become relevant. The nonzero commutation relations
between the field operators at unequal positions and times are

[b±(zi,t),b
†
±(zj ,t

′)] =
∫ ∞

0

dω

2π

|F(ω)|2
|F(ω0)|2 exp{−i(ω − ω0)

×[t − t ′ ∓ (zi − zj )/vp]}. (5)

(The counterpropagating fields commute with
[b±(zi,t),b

†
∓(zj ,t

′)] = 0, as they integrate over wave vectors
with opposite signs.)

Here we will make the crucial approximation that this
commutation relation will ultimately be approximated by a
δ function in time. Whether or not this approximation is made
with respect to the absolute time or a retarded time ultimately
resides in the relevant timescale and distance scale. We have
already assumed that the relevant timescale is given by 1/κ0;
thus we define the unitless time and frequency variables

�τ ≡ (t − t ′)κ0, ν ≡ (ω − ω0)/κ0, (6)

which are both ∼O(1). After making this change of variables
and using the relation that vp = ω0/k0,

[b±(zi,t),b
†
±(zj ,t

′)] =
∫ ∞

− ω0
κ0

dν

2π

κ0

|F(ω0)|2
∣∣F(

ω0
(
1+ν κ0

ω0

))∣∣2

×e−iν(�τ∓(zi−zj )k0κ0/ω0). (7)

The assumption of weak coupling implies that κ0 
 ω0. The
spatial dependence of this commutator comes down to the
comparison of the separation |zi − zj | to the coherence length
�0 ≡ vp/κ0. Here we focus on the case where |zi − zj | 

�0, or equivalently, |zi − zj |k0 
 ω0/κ0. Note that this is a
significantly weaker criteria than is usually imposed for either
a lumped element circuit model or free-space superradiance
[32], which both assume that the distance between systems is
small when compared to the wavelength, not merely this larger
coherence length.

Current experiments with superconducting qubits [24,33]
operate at ω0 ∼ 2π × 6 GHz with maximum coupling rates
varying between κ0 � 2π × 100 MHz [24] and κ0 � 2π ×
400 KHz [33]. These experiments generally satisfy the criteria
of weak coupling as 10−6 � κ0/ω0 � 10−2. In terms of the
coherence length, 2 m � �0 � 500 m, given a typical phase
velocity vp = 0.7c.

In the limit κ0/ω0 → 0, the approximation

[b±(zi,t),b
†
±(zj ,t

′)] ≈ κ0

∫ ∞

−∞

dν

2π
e−iν�τ = κ0 δ(�τ )

= δ(t − t ′) (8)

becomes exact. In light of this, we will approximate the
spatially dependent field operators by a single one, b±(zi,t) ≈
b±(t), resulting in a monochromatic approximation for the free
field:

F (z,t) ≈ F(ω0)eik0z−iω0t b+(t) + H.c.

+F(ω0)e−ik0z−iω0t b−(t) + H.c.

≡ F+(z,t) + F−(z,t). (9)

For an ensemble of N systems identically coupled to
the same waveguide, this approximation results in the total
interaction Hamiltonian

HSF = −ih̄[L†
+b+(t) + L

†
−b−(t)] + H.c., (10)

where the collective excitation operators are

L
†
± = √

κ0e
iφ

N∑
i=1

σ+
i e±ik0zi . (11)

We have now covered the assumptions of input-output theory
to the extent we need for our analysis below. To obtain the
equations of input-output theory from this point onward, we
refer the reader to the standard treatment (see, for example,
Refs. [8,9]).

III. DEFINING A NETWORK OF INPUT-OUTPUT
SYSTEMS

We now show how one can specify a network of input-output
systems (that is, specify how the inputs and outputs of the
systems are connected together) using a single matrix. To
do this, one first decides on a set of input-output systems
(“network elements”) that are to be connected together to
form the network. These may be systems with their own
internal dynamics that are coupled to transmission lines or
waveguides, or they may be beam splitters that merely connect
various waveguides or transmission lines together. These latter
elements essentially set boundary conditions that the traveling-
wave fields must obey. As we will explain, a given set of
network elements can be described by (i) a “scattering matrix,”
(ii) a vector whose elements are the operators by which the
dynamical systems are coupled to the fields, and (iii) the
Hamiltonians of the systems. Given this compact description of
the network elements, the connections between the inputs and
outputs of the elements, which completely define the network,
are then captured by a single matrix.

A. The 1D input-output relation

For a system coupled to a single IO channel, e.g., a
superconducting qubit terminating a 1D transmission line, the
detection of an outgoing photon could have one of two possible
origins. Either the qubit system made a transition creating
an outgoing photon, or an incoming photon reflected off the
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(a) (b)

(d)(c)

FIG. 1. Two examples of superconducting circuits (networks)
that contain weak loops, along with their corresponding reduced
(loop-free) input-output (IO) models. The traveling-wave fields that
are internal to the networks, and that are thus eliminated in obtaining
the input-output descriptions, are denoted by solid gray arrows.
The fields that are the external inputs and outputs to the networks
are denoted by solid black arrows. The outgoing emissions from
the systems are depicted by dashed arrows. (a) A superconducting
qubit capacitively coupled to a terminated planar waveguide, forming
a quasi-1D input output system. (b) The effective IO model for
(a) derived by eliminating the internal field modes (gray arrows).
(c) Two of the qubit IO models in (b) connected together via imperfect
circulators. (d) The reduced two-qubit IO model for (c) obtained by
eliminating all the internal fields.

terminating boundary condition. In a lossless system, a per-
fectly reflecting boundary can only result in a scattering phase
shift between the incident and exiting fields. The Heisenberg
equation of motion for the outgoing field operator will be the
coherent sum of these two processes, i.e.,

bout(t) = eiθbin(t) + L(t). (12)

Here θ is the scattering phase shift and L(t) is a system operator
describing resonant emission.

As an example, consider Fig. 1(a). In order for an interaction
Hamiltonian like Eq. (2) to implement a single-channel model,
the macroscopic boundary conditions that describe perfect
reflection at the position z0 require that F (z) = 0 for all z � z0.
Setting F (z0) in Eq. (9) to zero leads to the boundary condition

b+(t) = −e−i2k0z0b−(t), (13)

or in other words θ = −2k0z0 + π . This boundary has a
physical effect on system’s emission, as the reflected portion
of the left-going part interferes with the right-going part. In
fact, direct substitution into Eq. (10), with N = 1, results in

H1D = −ih̄[L†
1Db−(t) − L1Db

†
−(t)], (14)

where

L1D = 2
√

κ0e
−iφ−iθ/2 cos[k0zi + θ/2] σ−. (15)

Thus, a change in θ has a real effect on the system field
coupling, possibly transforming a system located at an antinode
to a node where L1D = 0. The importance of the above
example is that we can utilize the lesson of the reflecting
boundary condition at z0 to apply multiple constraints across
a network of guided modes.

B. The scattering matrix

Utilizing the lessons of microwave engineering, the linear
passive response of a lossless multiport device is summarized
by a single unitary scattering matrix S, which maps the
incoming traveling waves to the outgoing ones. Here we adopt
the convention that the outgoing traveling wave exiting a port
will have the same mode index as the field entering that port.
Thus, when Sij = δij , all incoming fields are perfectly reflected
with no change of phase (θi = 0). This is in contrast to a
convention where δij corresponds to perfect transmission in
some preferred direction. However, our results are ultimately
independent from any particular choice of mode labels.

A pertinent example for a multiple port scatter is an
imperfect circulator. Figure 1(c) shows two localized qubit
systems connected via two circulators. Consider the circulator
on the left, for which the spatial coordinates of the three ports
are denoted by z1, z2, and z3, with z1 and z3 lying on a vertical
axis increasing from bottom to top and z2 on a horizontal axis
increase from left to right. If we collect the input and output
fields of the three ports into vectors as

bin(t) =

⎛⎜⎝b+(z1,t)

b−(z2,t)

b−(z3,t)

⎞⎟⎠, bout(t) =

⎛⎜⎝b−(z1,t)

b+(z2,t)

b+(z3,t)

⎞⎟⎠, (16)

then the scattering matrix tells us how the input fields get split
up and directed among the output fields:

bout(t) = Scirc bin(t). (17)

Here, and in what follows, we denote vectors and matrices
whose dimension is the number of input-output ports in a
network in boldface. Given how we have chosen to order the
input and output fields within the vectors bin(t) and bout(t), if
we write the scattering matrix Scirc as

Scirc =

⎛⎜⎝r11 c12 t13

t21 r22 c23

c31 t32 r33

⎞⎟⎠, (18)

then the elements rii are the input retroreflections, the tij are
the circulating transmission coefficients, and cjk are the “cross-
talk” coefficients.

A crucial point for the formalism we develop is that we only
consider scattering matrices that describe classical boundary
conditions and are independent from any quantum degrees of
freedom. In other words, we assume that for any quantum
system operator A, [S,A] = 0. The original theory of Gough
and James is more general in that they used the quantum
probability theory of Hudson and Parthasarathy [34] to include
theoretical models in which [S,A] �= 0.

C. The many-input many-output relation

The many-input analogy of the single-field IO relation,
Eq. (12), is made by first defining, for an N -port system, the
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(a)

(b)

FIG. 2. A two-qubit “crossed waveguide” network. (a) A
schematic depicting two superconducting circuits weakly coupled to a
pair of crossed waveguides, with a general unitary scattering relation.
(b) A block diagram of all field operators. Input field operators bin

j are
scattered to the output fields bout

k via the local elements of S, e.g., SJ ,
and irrespective of the waveguides. The internal inputs are connected
to the internal outputs by the connection matrix elements wkl (gray).

vector of inputs (outputs),

bin(t) =

⎛⎜⎜⎜⎜⎝
bλ1 (z1,t)

bλ2 (z2,t)
...

bλN
(zN,t)

⎞⎟⎟⎟⎟⎠, bout(t) =

⎛⎜⎜⎜⎜⎝
bλ̄1

(z1,t)

bλ̄2
(z2,t)
...

bλ̄N
(zN,t)

⎞⎟⎟⎟⎟⎠, (19)

where the propagation direction λi is positive (negative) when
the coordinate zi is increasing (decreasing) as the input field
approaches the port. The corresponding output field then
propagates in the opposite direction; thus λ̄i ≡ −λi . The
general network IO relation is then

bout(t) = Sbin(t) + L(t). (20)

Here L is a vector composed of the operators via which the
systems interact with the fields at each of their ports:

L(t) =

⎛⎜⎜⎜⎜⎝
L1(t)

L2(t)
...

LN (t)

⎞⎟⎟⎟⎟⎠. (21)

Each of the operators Li describes the resonant emission from
a quantum system inside the scattering region. Note that the
elements of L are labeled not by the individual subsystems, but
by the output ports. If our model contains multiple subsystems
within the scattering region, then the Li(t) will in general be
collective operators [e.g., L± in Eq. (11)].

Figure 2 shows an example multimode network containing
two crossed waveguides that form a general four-input–four-
output junction. The local scattering between inputs bin

i and
bout

j , i,j = 1 . . . 4, is made by a general 4-by-4 unitary matrix
SJ. The network also contains two superconducting qubits that
are each coupled to one of the ports of the four-port junction.
To describe this network, we first consider the two qubits and
the four-port junction as three separate components, each with
their own input-output ports. Since each of the qubits has a

single input-output port, together the three components have
six inputs and six outputs.

We now define a scattering matrix S that describes the
relationship between the six inputs and outputs before the three
components are connected together to form the network. Since
each of the components acts on its own inputs separately from
the others, this scattering matrix is block diagonal, where each
block describes the action of one of the components. Since
each qubit has only one port, S has two 1-by-1 blocks and a
single 4-by-4 block given by SJ:

S =
⎛⎝eiθa 0

0 eiθb
0

0 SJ

⎞⎠. (22)

Physically, the fact that the three components are connected
with two ports of the junction each terminated by a qubit makes
the 6-by-6 model redundant. The right-going field entering
the junction at z1, F+(z1), is simply the spatial translation
of the right-going field that exited qubit a, F+(za). The
monochromatic approximation of Eq. (9) implies that so long
as |z1 − za| 
 �0, this translation is simply a change in phase,
F+(z1) = eik0(z1−za )F+(za), and there is only one relevant field
operator, b+(t). Thus, the connection from a to the junction
input at z1 imposes the constraint

bin
1 = eik0(z1−za )bout

a . (23)

If SJ contains retroreflecting amplitudes at positions z1 and z3,
then there is the distinct possibility of developing circulating
power in the (hopefully weak) cavities formed in the intervals
[za,z1] and [z3,zb]. The legitimacy of the monochromatic
approximation ultimately depends upon these intermediate
cavities being of poor quality with a rapid decay rate; see
Sec. IV E.

Figure 2 contains a total of four constraints, as both right and
left waveguides have bidirectional connections. For a general
network consisting of N inputs and N outputs, if M � N of
the outputs are injectively routed to M distinct inputs, then
the M constraint equations can be easily written as a single
matrix equation relating M elements of bout(t) to M elements
of bin(t).

We will find it extremely convenient to utilize matrix
projectors that isolate the M connected “internal” modes from
the remaining N − M free “external” modes. In addition to
distinguishing internal from external, we must also maintain
the distinction between input and output modes, as they refer
to traveling-wave fields in physically distinct regions. Thus
we define the projectors onto the internal-external inputs as Ii

and Xi and the projectors onto the internal-external outputs as
Io and Xo. As they are orthogonal projectors, they satisfy the
relations

1 = Ii + Xi, X2
i = Xi, IiXi = XiIi = 0, (24)

where 1 is the N × N identity matrix. We denote the internal-
external partitioning of the vector of field operators as super-
scripts, i.e.,

bin = Xibin + Iibin = bext
in + bint

in . (25)

Given this notation, the constraints imposed by a given
network (that is, which of the outputs are routed to which
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inputs) can be captured by a single connection matrix, W [35]
via the relation

bint
in = Wbint

out. (26)

For the crossed-waveguide network depicted in Fig. 2, the
connection matrix is explicitly

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 eiϕ1a 0 0 0

0 0 0 0 eiϕ3b 0

eiϕ1a 0 0 0 0 0

0 0 0 0 0 0

0 eiϕ3b 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (27)

where the propagation phases are ϕij = k0|zi − zj |. Note that
W is symmetric here because we are considering bidirectional
(i.e., reciprocal) connections, which may not hold for more
general networks. However, the rank of W is always equal
to the number of internal connections, M . In fact, we will
repeatedly use the relations

W†W = Io and WW† = Ii. (28)

It then follows that W = IiWIo.
It is worth emphasizing that, at its most general, S is a unitary

map that takes all inputs to all outputs. As a matrix, its columns
index input modes while its rows index the outputs. In contrast,
W is a one-for-one mapping between a subset of output modes
to an equal number of inputs. So as a matrix, W has columns
labeled by outputs, rows labeled by inputs, and is null on every
unconstrained external mode. In a sense, W describes M direct
feedback connections, as it returns outputs to inputs.

IV. THE EFFECTIVE INPUT-OUTPUT MODEL FOR A
NETWORK WITH WEAK LOOPS

We have shown above how to define a set of network
elements (a set of systems and beam splitters, each with a
number of inputs and outputs) and how to specify the way these
elements are connected together to form a network. Recall that
if our network contains loops, there is no guarantee that it
can be described with input-output theory. We now derive the
effective input-output description for such a network, and the
conditions under which this description can be expected to well
approximate the dynamics of the network.

A. Paths of the network

A great amount of physical intuition can be gained by noting
that every possible path through the network can be created by
taking alternating products of S and W. Consider the infinite
sum of matrices

S + SWS + SWSWS + · · · . (29)

We have already discussed that matrix elements [S]jk are
the scattering amplitudes that directly map bin

k to bout
j . The

elements of the second term of the above series, which we can
equivalently write as [SIiWIoS]jk , is the sum over all paths that
map input k to output j , while traversing the network exactly
once. If j is an internal output, then the path will continue and
traverse the network a second time. In general [(SW)nS]jk is

the sum over all k �→ j paths that traverse the network precisely
n times. Assuming this series converges (that is, longer paths
have successively smaller amplitudes), we then conclude that
the elements of the matrix[ ∞∑

n=0

(SW)n
]

S = 1

1 − SW
S (30)

are the coherent sum over all scattering paths through the
network. The subset of these paths that take external inputs
to external outputs are thus the nonzero elements of

Seff ≡ Xo
1

1 − SW
SXi, (31)

which is the effective scattering matrix of the reduced input-
output model.

The vector of effective sources Leff is interpretable along
similar lines. Consider the sum

L + SWL + SWSWL + · · · (32)

This is the coherent sum over the raw system emissions L,
the emissions having progressed through one round trip of the
network, SWL, the emissions after two round trips, and so on.
Summing this series and projecting it onto the external outputs
gives

Leff ≡ Xo
1

1 − SW
L. (33)

Thus, we expect that

bext
out = Seffbext

in + Leff. (34)

B. The effective Hamiltonian

We now turn to identifying how the connection constraints
effect the evolution of the local systems embedded in the net-
work. We will begin by considering the Heisenberg-Langevin
equation for the evolution of any system operator A, interacting
with N independent fields:

Ȧ = i

h̄
[Hsys,A] − 1

2
([A,L†]L − L†[A,L])

− [A,L†]Sbin + b†
inS†[A,L]. (35)

Here we have included an unspecified system Hamiltonian
Hsys, to allow for the presence of external controls. We assume
that Hsys, when transformed to the interaction picture, causes
slow evolution of the system(s), ensuring that the system-field
coupling remains quasiresonant. The compact but possibly am-
biguous vector notation introduced above should be interpreted
as implicit sums:

[A,L†]L ≡
∑

i

[A,L
†
i ]Li,

[A,L†]Sbin ≡
∑
ij

[A,L
†
i ]sij b

in
j . (36)

The presence of the scattering matrix S in the equations of
motion for the system comes from the fact that Li is coupled
to the ith output and

∑
j sij b

in
j is the free output field for that

mode. (Note that this equation fails to hold when [A,S] �= 0.)
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In the Appendix, we show that by imposing the connec-
tion constraints, bint

in = Wbint
out, the equation of motion for A,

Eq. (35), is transformed not only by the replacement (S,L) �→
(Seff,Leff), but also by the replacement of the total Hamiltonian,
Hsys, with the effective Hamiltonian

Heff ≡ Hsys + h̄

2i
L†

[
1

1 − SW
− 1

1 − (SW)†

]
L. (37)

The proof of this result is essentially an exercise in matrix
algebra. Physically, the second term in Heff is equal to the
“imaginary part” of the coherent sum over all paths where a
quanta is emitted via Lj and subsequently absorbed by L†

i .
Such terms account for the spin exchange rates for atoms
coupled to a 1D wave guide, as well as the Lamb shift in either
free space [36] or cavitylike [37] conditions.

C. The effective input-output description

We can now write down the complete effective input-output
description for a network that contains “weak loops” for the
fields. For ease of reference, we now collect all the equations
that define this effective description. Given that W is the matrix
that defines the connections between the systems (the network
topology) and that bext

in and bext
out are, respectively, the external

inputs and outputs to this network, we have

bext
in = (1 − WW†)bin, (38)

where 1 is the N -dimensional identity matrix, and

bext
out = Seffbext

in + Leff (39)

with

Leff ≡ Xo
1

1 − SW
L, (40)

Seff ≡ Xo
1

1 − SW
SXi. (41)

The effective equation of motion for any system operator A is

Ȧ = i

h̄
[Heff,A] − 1

2
([A,L†

eff]Leff − L†
eff[A,Leff])

− [A,L†
eff]Seffbext

in + (
Seffbext

in

)†
[A,Leff], (42)

in which the effective Hamiltonian is given above in Eq. (37).

D. The non-Hermitian dissipative Hamiltonian

While the operators Heff and Leff are all that are needed to
specify the master equation in Lindblad form (for vacuum input
fields), some physical insight can be gained by considering the
so-called dissipative Hamiltonian, H̃loss ≡ Heff − i 1

2 L†
effLeff.

An application of the tricky relation in Eq. (A22) shows that

H̃loss = Hsys − i
2 L†L − iL† SW

1−SW L. (43)

Each term of H̃loss has a clear and distinct meaning. The first
and second show the “unconstrained” open system dynamics,
consisting of the externally applied Hsys and the dissipation
induced by every output port. The third term shows the cumu-
lative effect of the network. The coherent effects of Heff and the
dissipation induced by L†

effLeff combine as real and imaginary
parts so that H̃loss only involves the sum SW + SWSW + · · ·

FIG. 3. An empty cavity. A section of waveguide of length z3 −
z2 = l is capped by two partially reflecting boundary conditions: S�

and Sr .

and not its reversed adjoint. If W is asymmetric and only
connects system a to system b but not vice versa, then this
unidirectional flow is preserved in H̃loss.

E. Regime of applicability: Satisfying weak-coupling and
multipass constraints

Here we identify the conditions under which the effective
input-output description, derived above, is a good approxi-
mation to the real network in which the fields pass through
the loops multiple times. This involves identifying when the
network geometry allows repeated interactions, while ensur-
ing that the criteria for the monochromatic traveling-wave
approximation remains valid. Consider the case depicted in
Fig. 3 where a simple empty cavity is formed when a section
of waveguide of length l is capped by two partially reflect-
ing boundary conditions. The scattering elements at these
boundaries are defined by the frequency-independent unitary
matrices S� and Sr . In the monochromatic approximation, the
in-to-out scattering boundary condition, and the constraint of
free propagation of internal modes are imposed by the block
diagonal matrices,

S =
(

S� 0

0 Sr

)
(44)

and

W =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 eik0l 0

0 eik0l 0 0

0 0 0 0

⎞⎟⎟⎟⎠. (45)

Outside of this approximation, we still have the two param-
eter field operators b±(zi,t), which can still be arranged into
input-output vectors bin(t) and bout(t).

The free propagation of the internal fields still give the
constraints

F+(z3,t) = F+(z2,t − l/vp),

F−(z2,t) = F−(z3,t − l/vp). (46)

This implies that

bint
in (t) = Wbint

out(t − l/vp). (47)

Combining this with the general condition

bout(t) = Sbin(t) + L(t) (48)
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shows that

bout(t) =
∞∑

n=0

(SW)n SXibin(t − nl/vp)

+
∞∑

n=0

(SW)n L(t − nl/vp). (49)

Note that this is simply the time-delayed version of Eq. (A9).
Previously we have argued that so long as the spatial separa-

tion remains small when compared to the characteristic length
�0 = vp/κ0 then the field operators are still well approximated
by a single field operator that δ commutes in time. But here we
have an infinite number of distances so that there always exists
a number reflections ncut such that ncutl ∼ �0. Nevertheless,
the contribution of these significantly delayed paths are all
attenuated by a factor of (SW)ncut . If the largest singular value
of this matrix is small compared to 1, then we can be confident
in the approximation.

In a general network, the time delay for the different internal
connections may be different. Rather than being merely n

multiples of a single traversal time, the cumulative delay will
depend upon the specific path taken. For a given path consisting
of n internal connections followed by a final exit at an external
port, the total delay τn is simply the sum over the individual
delays, so that

τn =
∑

i

|zi+1 − zi |/vp (50)

and the weighting factor wn is the product of matrix elements

wn = [SW]e,in [SW]in,in−1 · · · [SW]i2,i1 . (51)

Ultimately, we require that any path that has a significant delay
must also have an insignificant weight. We can therefore state
a simple sufficient condition for the validity of the effective
description as follows. If τmin is the minimum relevant system
dynamical timescale (e.g., 1/κ0), then

wn 
 1 for all τn � τmin. (52)

This condition captures the requirement that any effective cav-
ities that are formed by loops in the network decay sufficiently
quickly, as discussed in Sec. III C.

For example, consider the two-qubit system of Fig. 1(c),
where two qubits are connected by a transmission line, via
isolating circulators. Taking this as a model for a long-
distance communication channel, let the interconnecting dis-
tance, l = |z4 − z2|, be generally larger than the distances
between the bare qubits and their circulators, �za = |z1 −
za| and �zb = |z5 − zb|. The paths with the longest delay
times are clearly those that traverse the interconnecting line.
The shortest path traveling from qubit a to qubit b follows
the sequence of outputs with locations za → z2 → z5 → zb.
This path has a delay time τ1 = (l + �za + �zb)/vp and
carries a weight with magnitude |w1| = |t54t21|. The paths
following outputs za → z2 → z4 → z1 → za and za → z2 →
z4 → z2 → z5 → zb have delays of τ2 = 2(l + �za)/vp and
τ3 = (3l + �za + �zb)/vp. The corresponding weights have
magnitudes |w2| = |c12r44t21| and |w3| = |t54r22r44t21|. An
off-the-shelf circulator operating in the 4- to 8-GHz range

(e.g., Low Noise Factory LNF-ISC4_8A), specifies the pa-
rameters |tij | ∼ 0.98 and |rij |,|cij | � 0.08. Thus for the delays
τ1,τ2,τ3 the associated weights have magnitudes |w1| ∼ 0.96
and |w2|,|w3| ∼ 6 × 10−3.

Were we to follow the manufacturer’s lead and consider the
weights |w2| and |w3| negligible, we then recover the standard
implementation of cascading two systems in a unidirectional
way. In this case, the time-of-flight delay, τ1 can be easily
absorbed by evaluating qubit b at the retarded time tr =
t − τ1 [4].

V. AN EXAMPLE: THE QUBIT-TO-QUBIT
COMMUNICATION CHANNEL

One of the many uses of a quantum communication channel
is the transfer of entanglement. Specifically, Alice wishes to
send to Bob one half of an entangled state. Previous results
[24–30,33,38] show how one could transfer a quantum state
between localized systems by dynamically controlling the
rates each system couples to a one-dimensional traveling-wave
field. In a lossless setting, near-perfect transfer fidelity can be
achieved if the sender and receiver use appropriately matched
waveforms. For example, if the receiver, Bob, simply gates his
coupling in an on-off way, the sender Alice should modulate
her coupling rate such that the outgoing wave packet forms a
rising exponential, effectively the time reversal of an excited
system decaying at a constant rate [28]. Here we investigate
if and how such a procedure could be implemented across an
imperfect network.

For simplicity, we assume that all input fields are in the
vacuum state, which is not an unreasonable idealization, for
example, for superconducting qubits with ω0 ∼ 6 GHz and an
ambient temperature no higher than 100 mK. Figures 1(c) and
2 depict two different yet similar settings where two qubits
are interconnected via guided fields with two external inputs
and two external outputs. The design in Fig. 1(c) models
an asymmetric communication channel where two qubits are
linked via a transmission line and are isolated by circulators
that may be imperfect. The design in Fig. 2 models two qubits
connected to transmission lines that cross at a beam-splitter-
like intersection. Nevertheless, depending upon how the scatter
SJ in the latter couples its four ports, both models may generate
the same dynamics for the qubits. The difference between the
two really lies in the quality of the zero-delay approximation,
where a significant delay in the interconnecting line may
violate the necessary assumptions.

In either of the above models, we assume that local, possibly
time-dependent rotations can be applied to each qubit, so that

Hsys = h̄

2
[ha(t) · σ a + hb(t) · σ b ], (53)

where ha is the control vector and σ a is the vector of Pauli
matrices for qubit a; and likewise for qubit b. We also assume
that each qubit couples only to its transmission line and not
to any additional output. We imagine that the decay rates of
both qubits, κi , and their coupling phase angles φi , can be
independently controlled, so that

L =
{√

κi(t) eiφi (t) σ−
i for i ∈ {a,b}

0 otherwise
. (54)
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To apply our effective network theory to the network
connecting the two qubits, it is useful to recall first that there
is a single matrix that plays the key role in determining the
effective input-output description, namely

1

1 − SW
= 1 + SW

1 − SW
. (55)

It is this matrix that tells how the outputs of the systems are
mapped (routed, if you like) to the external outputs of the
network. Examining the expression for the effective Lindblad
operators,

Leff = Xo
1

1 − SW
L = Xo

[
L + SW

1 − SW
L

]
, (56)

we see that it is the matrix

T ≡ SW
1 − SW

(57)

that gives the contribution of the network, since it is this matrix
that vanishes when W = 0, in which case Leff reduces to XoL.

With some abuse of notation, we will denote the matrix
element of T that maps the output from qubit a or b to the j th
output by

tjk ≡ [T]jk =
[

SW
1 − SW

]
jk

, with k = a,b. (58)

Using these matrix elements, we can now write explicit
expressions for the effective Lindblad operators (the elements
of Leff). The Lindblad jump operator associated with a photon
leaving external port j is

Leff j = tjaLa + tjbLb, (59)

and the effective Hamiltonian is (h̄ = 1)

Heff = Hsys + L†
a Im(taa)La + L

†
b Im(tbb)Lb

+ 1

2i
L†

a (tab − t∗ba) Lb + 1

2i
L
†
b (tba − t∗ab) La. (60)

Given vacuum external inputs to the network, the master
equation for the two-qubit density matrix ρ, when written in
Lindblad form, is

ρ̇ = −i[Heff,ρ] + D[Leff]ρ (61)

in which the superoperator D[Leff]ρ is defined by

D[Leff]ρ ≡ Leff ρ L†
eff − 1

2 L†
effLeff ρ − 1

2ρ L†
effLeff. (62)

The derivation of Heff in the Appendix shows that L†
effLeff

can be simplified, via Eq. (A18), to read

L†
effLeff = L†

(
1 + SW

1 − SW
+ (SW)†

1 − (SW)†

)
L

=
∑

i,j∈{a,b}
L
†
i (δij + tij + t∗ji)Lj . (63)

Additionally, the fact that the matrix elements tij are merely
complex numbers and thus commute with all system operators
means that

Leff ρ L†
eff =

∑
k∈ ext

outs

∑
j,i∈{a,b}

tkjLj ρ t∗kiL
†
i

=
∑

j,i∈{a,b}

⎡⎣ ∑
k∈ ext

outs

t∗ki tkj

⎤⎦Lj ρ L
†
i

=
∑

j,i∈{a,b}

[
1

1 − (SW)†
Xo

1
1−SW

]
ij

Lj ρ L
†
i

=
∑

j,i∈{a,b}
(δij + tij + t∗ji)Lj ρ L

†
i . (64)

Combining these two results, we find that the two-qubit master
equation can also be written as

ρ̇ = − i

2

⎡⎣ha · σ a + hb · σ b − i
∑

i,j∈{a,b}
L
†
i (tij − t∗ji)Lj , ρ

⎤⎦
+

∑
i,j∈{a,b}

(δij + tij + t∗ji)

(
Lj ρ L

†
i − 1

2
{L†

i Lj ,ρ}
)

(65)

where {A,B} ≡ AB + BA is the anticommutator.
This master equation can exhibit super- and subradiant

states, where interference between the various decay channels
results in distinct decay rates for different superpositions of the
two atom states. There may even be a specific superposition of
the states |↑↓〉 and |↓↑〉 which is unable to radiate and remains
a dark state. If such a state exists and its amplitudes are suitably
controllable, then it could be used to deterministically transfer
a single excitation across the network. Next, we show that such
a state exists if and only if

‖t∗ab + tba‖2 = (1 + taa + t∗aa)(1 + tbb + t∗bb). (66)

A. Two-qubit superradiance

We identify the emission properties of the two-qubit system
by first analyzing how the populations of different states are
transferred via the so-called “feeding terms” of the master
equation. Specifically, consider the expression∑

i,j∈{a,b}
(δij + tij + t∗ji)Lj ρ L

†
i . (67)

The single-qubit terms (i.e., those for which i = j ) show that
the network has the effect of increasing the action of these
terms by the factor

ηi ≡ 1 + tii + t∗ii for i = a,b, (68)

which is the 1D equivalent of the Purcell factor.
A straightforward calculation shows that when writ-

ten as outer products of the two-qubit basis states
{|↑↓〉,|↓↑〉,|↓↓〉,|↑↑〉},∑

i,j∈{a,b}
(δij + tij + t∗ji)Lj ρ L

†
i = Tr ( ρ|↑↑〉〈↑↑| )R

+ Tr (Rρ)|↓↓〉〈↓↓|, (69)

where

R ≡ κa ηa|↑↓〉〈↑↓| + κb ηb|↓↑〉〈↓↑|
+√

κaκb(t∗ab + tba) eiφa−iφb |↓↑〉〈↑↓|
+√

κaκb(tab + t∗ba) e−iφa+iφb |↑↓〉〈↓↑|. (70)
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In terms of R, the total master equation is

ρ̇ = −i[Heff,ρ] + Tr ( ρ|↑↑〉〈↑↑| )R + Tr (Rρ)|↓↓〉〈↓↓|
− 1

2 Tr (R) (|↑↑〉〈↑↑|ρ + ρ|↑↑〉〈↑↑|) − 1
2 (Rρ + ρR).

(71)

By writing it in this way, we see that the properties of R not
only characterize the decay of the single-excitation subspace
(being the subspace in which one but not both of the qubits is in
its excited state), but also the decay rate of the doubly excited
state |↑↑〉 and the accumulation rate of the zero excitation state
|↓↓〉.

In the single-excitation subspace, span {|↑↓〉,|↑↓〉}, R

forms a 2 × 2 matrix, which is easily diagonalized. Looking
forward to a specific application, we find it useful to introduce
a Bloch-sphere representation in this two-level subspace. By
choosing the representation |0〉 ≡ | ↑↓〉 and |1〉 ≡ |↓↑〉, the
usual four-component Pauli matrices {σ0,σx,σy,σz} span the
space of 2 × 2 complex matrices. Thus, R can be written as

R = 1
2 (R0σ0 + Rxσx + Ryσy + Rzσz), (72)

with Rα ≡ Tr(Rσα). Here and in the following, we denote all
Bloch sphere expansion coefficients with a sans serif typeface.
Also we denote the three-vector formed by the Cartesian
components with an arrow, e.g., �R ≡ (Rx,Ry,Rz)T , unless it
is a unit vector, in which case we denote it with a caret (e.g.,
R̂ = �R/|�R|). Explicitly, these coefficients are

R0 = κa ηa + κb ηb,

Rx = 2
√

κaκb β+ cos(φa − φb + δ+),

Ry = 2
√

κaκb β+ sin(φa − φb + δ+),

Rz = κa ηa − κb ηb, (73)

and with a bit of foresight it is useful to define the cross-
coupling coefficients

β± ≡ ‖t∗ab ± tba‖ (74)

and associated phase angles

δ± ≡ arg(t∗ab ± tba). (75)

In this notation, the eigenvalues of R define the collective decay
rates

�b/d = 1
2 (R0 ± ‖�R‖)

= 1
2

[
R0 ±

√
4κaκbβ

2+ + (κaηa − κbηb)2
]
. (76)

The corresponding eigenstates are the superradiant bright state
|B〉 and the subradiant dark state |D〉:

|B〉 = cos(ϑ/2)|0〉 + sin(ϑ/2)eiϕ |1〉 and

|D〉 = sin(ϑ/2)|0〉 − cos(ϑ/2)eiϕ |1〉, (77)

where ϕ = φa − φb + δ+ and the mixing angle ϑ satisfies

tan ϑ = 2
√

κaκbβ+
κa ηa − κb ηb

. (78)

Other than the trivial solution κa = κb = 0, the only way for
|D〉 to be a truly dark state with �d = 0 is when β2

+ = ηaηb,
i.e., when Eq. (66) is satisfied. One possible configuration that

meets this criteria is the perfect unidirectional communication
channel, e.g., when taa = tbb = tab = 0 and |tba| = 1.

The key insight is that sweeping from a parameter regime
in which 0 < κa 
 κb to that in which 0 < κb 
 κa results
in sweeping ϑ from π to 0. This in turn sweeps the state |D〉
from |0〉 to |1〉. Thus, if the remaining coherent terms of the
overall master equation can be engineered so that the total
system evolution also follows |D〉, then a single excitation can
be transferred from the first qubit to the second with a minimum
amount of radiative loss.

B. The single-excitation Bloch vector

Here, we show that there exists a control scheme such that
the joint system will evolve from the state |↑↓〉 to the state |↓↑〉
while simultaneously maximizing the overlap of the evolving
state with the subradiant state |D〉. Note that both the state of
the system and the subradiant state change with time as the
control parameters change with time. The initial state is thus
ρ(0) = |↑↓〉〈↑↓|.

Here we will exclusively consider local qubit rotation
vectors ha(t) and hb(t) that only induce rotations about the
z axis. The idea being that if the total number of excitations
in the system is a conserved quantity, then the states |↑↓〉
and |↓↑〉 will form a closed subspace. In order for a given
observable to be a constant of motion, and thereby conserved, it
must commute with the total Hamiltonian. But as σ (a)

x changes,
the number of excitations in qubit a irrespective of qubit b, a
control Hamiltonian that contains single-qubit x or y rotations,
cannot preserve the total number of excitations.

Given this constraint, we write this excitation-number-
conserving Heff in the two-qubit basis, which is

Heff =
(

κa Im(taa) + κb Im(tbb) + 1

2
haz + 1

2
hbz

)
|↑↑〉〈↑↑|

−
(

1

2
haz + 1

2
hbz

)
|↓↓〉〈↓↓|

+
(

κa Im(taa) + 1

2
haz − 1

2
hbz

)
|↑↓〉〈↑↓|

+
(

κb Im(tbb) − 1

2
haz + 1

2
hbz

)
|↓↑〉〈↓↑|

+ 1

2i

√
κaκb‖t∗ab − tba‖e−i(φa−φb+δ−)|↑↓〉〈↓↑|

− 1

2i

√
κaκb‖t∗ab − tba‖ei(φa−φb+δ−)|↓↑〉〈↑↓|. (79)

The first two terms of Heff are merely energy shifts of the 2-
and 0-excitation states and the remaining terms act only in the
single-excitation subspace. For a system initialized in the pure
state |↑↓〉, the total master equation will never populate the
state |↑↑〉. However, as the total probability is conserved, the
probability to be in |↓↓〉 will be unity less the total probability
to be in the single-excitation subspace. This implies that for
this specific initial condition, the entire system evolution is
fully characterized by the evolution in the single-excitation
subspace.
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In terms of the Bloch-sphere picture, we can parametrize ρ

as

ρ(t) = 1
2 [ b0(t)σ0 + bx(t)σx + by(t)σy + bz(t)σz]

+[1 − b0(t) ] |↓↓〉〈↓↓|, (80)

where �b(t) is the three-component Bloch vector and b0(t) gives
the probability for the system to be in the single-excitation
subspace.

The single-excitation part of Heff defines a “spin exchange”
operator

J ≡ 1
2 (J0σ0 + Jxσx + Jyσy + Jzσz), (81)

where

J0 = κa Im(taa) + κb Im(tbb),

Jx = −√
κaκb β− sin(φa − φb + δ−),

Jy = +√
κaκb β− cos(φa − φb + δ−),

Jz = κa Im(taa) − κb Im(tbb) + haz − hbz. (82)

Computing the expectation values Tr( dρ

dt
σα) results in the

coupled equations

d

dt
b0 = −1

2
R0b0 − 1

2
�R · �b, (83a)

d

dt
�b = �J × �b − 1

2
R0

�b − 1

2
b0 �R. (83b)

These equations can be decoupled in a particularly relevant
special case. A straightforward calculation shows

d

dt
‖�b‖ = −1

2
R0‖�b‖ − 1

2
b0 �R · b̂, (84)

where the unit vector b̂ = �b/‖�b‖ is well defined, so long as
the system has not completely decayed into |↓↓〉, i.e., when
‖�b‖ �= 0. Combining Eq. (84) with Eq. (83a) gives

d

dt
(‖�b‖ − b0)2 = −(R0 − �R · b̂)(‖�b‖ − b0)2. (85)

Thus if ‖�b(0)‖ �= b0(0), they will converge exponentially in
time. More important, if they are equal at t = 0, then they
will remain equal for all t � 0. In this case, Eq. (83a) has the
explicit solution

b0(t) = b0(0) exp

{
−1

2

∫ t

0
ds [R0(s) + �R(s) · b̂(s)]

}
. (86)

For the pure-state initial condition, ρ(0) = | ↑↓〉〈↑↓|, we have
‖�b(0)‖ = b0(0) = 1. A final exercise in vector calculus shows
that for the pure-state initial condition, b̂ has the equation of
motion

d

dt
b̂(t) = �J × b̂(t) − 1

2
[�R − �R · b̂(t) b̂(t)]. (87)

C. Dark-state controls

Equation (86) shows that if the Bloch vector points in the
opposite direction from �R, i.e., R̂ = −b̂, then the probability of
loosing the single-system excitation is minimized. This leads

to the inequality

b0(t) � exp

{
−1

2

∫ t

0
ds [R0(s) − ‖�R(s)‖]

}
= exp

[
−

∫ t

0
ds �d (s)

]
. (88)

In other words, we again see that subradiant decay rate bounds
the degree of radiant loss.

We have already shown that if 0 < κa(0) 
 κb(0) then
R̂(0) ≈ −b̂(0). Thus our control objective is to perform a
π -rotation pulse for the Bloch vector �b(t) while maintaining the
relation R̂(t) = −b̂(t) throughout. As b̂(t) is the solution to the
first-order differential equation given in Eq. (87), the evolution
will remain in the dark state so long as db̂(t)/dt = −R̂(t)/dt .
When b̂ = ±R̂, the second term in Eq. (87) is zero and only
the coherent rotation caused by �J is relevant. Thus evaluating
Eq. (87) at b̂ = −R̂ shows that the derivative requirement leads
to the constraint

d

dt
R̂(t) = �J × R̂. (89)

If R̂(t) satisfies this constraint and 0 < κa(0) 
 κb(0), then b̂
will faithfully track the dark state.

Equation (89) can be satisfied in a number of different ways.
Here we derive a relatively simple solution, where the sender
only needs to switch on and off the decay rate κa so that it is
equal to some nonzero constant value κ0 for a prespecified total
time T . The receiver then simultaneously varies the parameters
κb(t) and hbz(t) with precalculated wave forms. We note that
the solution for the ideal case is already known and has an
analytic form [29]. All other parameters φa , φb, haz, tij , etc.,
are assumed to be known constants. With no further loss of
generality, we choose a phase reference such that φa − φb =
−δ+, thereby setting Ry = 0. Any other choice for this phase
difference corresponds merely to a fixed rotation of the Bloch
ball about the z axis.

Given the above choice of phase, a simple calculation shows
that

�J × �R = JyRz x̂ + (JzRx − JxRz)ŷ − JyRx ẑ. (90)

However, as Ry = 0, it must be the case that ŷ · d
dt

R̂(t) = 0.
Thus in order for to satisfy Eq. (89), it must be true that

JzRx − JxRz = 0. (91)

Other than the trivial solution in which either κa or κb is zero,
we must have

Jz

Rz

= Jx

Rx

= β−
2β+

sin(δ+ − δ−), (92)

which is constant. Solving Eq. (92) for hbz(t) in terms of κb,
we obtain

hbz(t) = κb(t)

[
ηb

β−
2β+

sin(δ+ − δ−) − Im(tbb)

]
− κ0

[
ηa

β−
2β+

sin(δ+ − δ−) − Im(taa)

]
+haz. (93)
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(a) (c)

(b)

FIG. 4. Dark state evolution. Numerical simulations for three different network parameters; see text. (a) |↑↓〉 �→ |↑↓〉 transfer probability
vs time. (b) Receiver coupling rate κb, relative to a fixed κa = κ0 in dB. (c) Bloch vector trajectories, �b(t), shown in the x-z plane of the Bloch
ball.

Returning now to the LHS of Eq. (89), an exercise in vector
calculus shows that

d

dt
R̂(t) = 1

‖�R‖

(
d

dt
�R − R̂(t) R̂(t) · d

dt
�R
)

= 1

‖�R‖

[(
Rz

‖�R‖

)2
d

dt
Rx − RzRx

‖�R‖2

d

dt
Rz

]
x̂

+ 1

‖�R‖

[(
Rx

‖�R‖

)2
d

dt
Rz − RzRx

‖�R‖2

d

dt
Rx

]
ẑ. (94)

Taking the ẑ of Eq. (94), multiplying by ‖ �R‖, and setting it
equal to �J × �R · �ez give the requirement that

R2
x

‖�R‖2

d

dt
Rz − RxRz

‖�R‖2

d

dt
Rx = −JyRx. (95)

In order of this equality to hold for Rx �= 0, it must be the case
that

Rz

Rx

d

dt
Rx − d

dt
Rz = Jy

Rx

‖�R‖2

= cos(δ+ − δ−)
β−

2β+
‖�R‖2. (96)

Using the basic definitions of �R and R0 from Eq. (73), the LHS
of the above equation simplifies to

Rz

Rx

d

dt
Rx − d

dt
Rz = R0

1

2κb

d

dt
κb. (97)

Thus we finally obtain an explicit ODE that shows how to
control κb(t) with time in order to obtain a transfer with
minimal loss:

d

dt
κb(t) = cos(δ+ − δ−) κb

β−
β+

‖�R‖2

R0
. (98)

For a perfect unidirectional channel, we have already seen
that ‖�R‖ = R0 because �d = 0. In this case, Eq. (98) takes
the form κ̇b = c1κb + c2κ

2
b , for some constants c1 and c2.

This simplified equation has a known analytic solution, which
reproduces the control solution obtained in Ref. [29].

Note that in general the solution of Eq. (98) ensures that
the joint system remains aligned with the subradiant state
|D〉, which does not necessarily guarantee that the the total
evolution results in a π rotation on the Bloch sphere. However,
in order for R̂(0) ≈ −ẑ, we have the initial condition of
κ0 
 κb(0). If, at the terminal time tf , we have κb(tf ) 
 κ0,
then R̂ ≈ ẑ and the π pulse was achieved. This terminal
condition can certainly be arranged if we have d

dt
κb(t) < 0

for all t � T .
By definition κ0, β±, and ‖�R‖2 are all non-negative. So long

as ηa and ηb are both positive, R0 is also non-negative. (This
is always the case for weak retrorefections). Thus if cos(δ+ −
δ−) < 0, then d

dt
R̂(t) � 0 for all t . For a perfect unidirectional

channel, cos(δ+ − δ−) = −1. However, if cos(δ+ − δ−) > 0,
we can obtain a solution simply by reversing the roles of sender
and receiver. Thus cos(δ+ − δ−) serves as a measure of the
networks nonreciprocity.

D. Numerical simulations

In Fig. 4, we show the results of numerical simulations of
the dark state evolution, namely Eqs. (83) and (98), for three
different networks. Each configuration is an imperfect instance
of the circulator network of Fig. 1(c). The imperfections are
introduced in two ways. First, the propagation phase introduced
by the bidirectional connection, via W, between the two
circulators is varied. Second, the ideal block-diagonal S matrix
is replaced by a similarly block-diagonal random unitary,
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where each submatrix is constrained to be within a certain
distance of the identity.

Figure 4(a) displays the overlap of the evolving state with
the target state |↓↑〉, i.e., the probability of a successful transfer
as a function of time. Figure 4(b) shows how κb(t) is varied with
time to achieve the transfer, relative to the value of κ0 in dB,
with an initial value of κb(0)/κ0 = 25 dB. With our particular
choice of phase, the evolution of �b(t) is constrained to the x-z
plane of the Bloch ball. In Fig. 4(c), we plot the trajectory made
by �b(t) in this plane for each of the networks.

Network configuration 1 demonstrates that near-perfect
state transfer is possible, even when the network is significantly
far from the ideal unidirectional connection. The imperfect
circulators have retroreflections in the range 0.04 � |rii |2 �
0.15, with a total b �→ a transfer coefficient with magnitude
|tab| = 0.02. In spite of this, the coherent effects collude in
such a way as to ensure that the criteria of Eq. (66) is nearly
satisfied, with ηaηb − β2

+ = 0.001. At the terminal time, the
probability for the system to be measured in |↓↑〉 is 0.996.

The performance of networks with randomized imperfec-
tions with magnitudes similar to network 1 varies considerably,
with the excellent performance of network 1 being atypical.
Network 2, for which the range chosen for the imperfections
is 0.03 � |rii |2 � 0.14 (similar to those of network 1) gives a
typical example of the resulting performance. Despite the fact
that Eq. (66) is far from satisfied for network 2, ηaηb − β2

+ =
0.147, the terminal probability for a successful transfer is
0.827.

Network 3 shows a particularly adverse case, with 0.42 �
|rii |2 � 0.84. Additionally the asymmetry in the a �→ b trans-
fer is particularly impeded, with cos(δ+ − δ−) = −0.151.
Unsurprisingly, the final success probability is only 0.576,
although poorer performance can occur for similar parameters.

Figure 4(b) show all three optimal protocols [solutions of
Eq. (98)] for κb(t), all of which involve a rapid descent from
the regime where κb � κa and most of the transfer time spent
in the asymptotic limit where κb 
 κa . This suggests that
when considering practical limitations to the control resources,
varying κa in addition to κb will be helpful and may be
necessary. When ∂tκa �= 0, Eq. (98) remains pertinent but as an
equation of motion for the ratio κb/κa in terms of the rescaled
time, ∂t �→ ∂τ , where τ (t) ≡ ∫ t

0 κa(s) ds. In this light, making
κa time dependent results in the compression and/or expansion
of the κ0t axis.

VI. SUMMARY AND OUTLOOK

We have elucidated how and when the network contraction
theory of Gough and James can be applied to physical networks
of input-output systems. This theory allows one to accurately
model networks containing weak loops that cause the fields
to circulate in the network. We have shown that, in particular,
the method provides an analytically tractable way to handle
retroreflections that are a common and important source of
imperfection in superconducting and photonic circuits. We
have presented a formulation of the method that requires only
a single matrix inversion and is thus efficient for analytical
calculations. We have also rederived the theory in the language
typically used by physicists, making it easily accessible. We
have provided an explicit example in which we apply the

method to the problem of transmitting entanglement between
two qubits connected via two imperfect circulators. This exam-
ple showed that despite the retroreflections it was possible to
obtain a largely analytic solution to the problem of maximizing
the probability of a successful transfer.

Networks with weak loops can be thought of as quantum
feedback networks. The fact that the effective input-output
description of a network with weak loops can be obtained
using a single matrix inversion may well have use in es-
tablishing systematic methods for the design of quantum
feedback networks. Given an effective input-output network
that one wishes to construct, the network topology that would
induce this effective dynamics can thus also be obtained by
inverting a matrix. This does not by itself solve the network
design problem, since there is no guarantee that all effective
input-output models can be obtained by constructing loopy
networks under a given set of constraints. Nevertheless, the
question of what input-output dynamics can be engineered
via the introduction of feedback loops, under experimentally
motivated constraints, is a interesting question for future work,
and one for which the technique presented here may well be
useful.
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APPENDIX: ALGEBRAIC DERIVATION OF THE
EFFECTIVE MODEL

Here we present the algebraic derivation showing that
merely by enforcing the constraint,

bint
in = Wbint

out, (A1)

which can also be written as Iibin = Wbout, an unconnected set
of network elements described by the set of quantities (S, L,
H) can be described by an effective input-output model given
by the set of quantities (Seff,Leff,Heff). For simplicity, we set
Hsys = 0, as it will play no role. For reference, the equations
of the input-output formalism that describe the unconnected
network elements are

bout = Sbin + L (A2)

and

Ȧ = − 1
2 ([A,L†]L − L†[A,L])

− [A,L†]Sbin + (Sbin)†[A,L], (A3)
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and those of the resulting effective input-output description are

bext
out = Seffbext

in + Leff (A4)

and

Ȧ = + i

h̄
[Heff,A] − 1

2
([A,L†

eff]Leff − L†
eff[A,Leff])

− [A,L†
eff]Seffbext

in + (
Seffbext

in

)†
[A,Leff]. (A5)

1. The external input-output relation

Starting from Eq. (A2), we first decompose bin into its
internal and external components,

bout = S(Xibin + Iibin) + L. (A6)

Substituting the constraint as written in the second line of
Eq. (A1) shows that

bout = SXibin + SWbout + L. (A7)

Subtracting SWbout from both sides results in

(1 − SW)bout = SXibin + L. (A8)

Wherever1 − SW is invertible, or equivalently, when the series∑
n(SW)n converges, we have

bout = 1

1 − SW
SXibin + 1

1 − SW
L. (A9)

Thus projecting onto the external outputs shows that

bext
out = Seffbext

in + Leff, (A10)

where

Seff = Xo
1

1 − SW
SXi (A11)

and

Leff = Xo
1

1 − SW
L. (A12)

2. The Heisenberg-Langevin equation of motion

Here we show that expressing Eq. (A3) in terms of Seff

and Leff results in an additional term in Heff. The first line of
attack is to write Sbin in terms of the external inputs and system
sources. In other words,

Sbin = SXibin + SIibin

= SXibin + SWbout

= SXibin + SWSbin + SWL. (A13)

Collecting all terms involving Sbin on the left-hand side and
then acting on both sides with (1 − SW)−1 shows that

Sbin = 1

1 − SW
SXibin + SW

1 − SW
L. (A14)

Substituting this into Eq. (A3) and collecting like commutator
terms gives us

Ȧ = −[A,L†]

(
1

2
1 + SW

1 − SW

)
L

+ L†
[

1

2
1 + (SW)†

1 − (SW)†

]
[A,L]

− [A,L†]
1

1 − SW
SXibin +

(
1

1 − SW
SXibin

)†
[A,L].

(A15)

Before working through further simplifications, it is use-
ful to identify some expected terms. The effective equation
of motion, Eq. (A5), contains the terms AL†

effSeffbext
in and

L†
effASeffbext

in . However, multiplying Eq. (A11) by the adjoint
of Eq. (A12) shows that

L†
effSeff = L† 1

1 − (SW)†
X2

o
1

1 − SW
SXi. (A16)

This expression can be simplified by first noting that X2
o = Xo

and second by writing

Xo = 1 − W†W = 1 − W†S†SW

= 1 − (SW)† + 1 − SW − [1 − (SW)†][1 − SW].

(A17)

To obtain the second equality, we used the fact that S is unitary,
and the third equality, while true, is useful only in hindsight.
However, this rather opaque rewriting leads to the relation

1

1 − (SW)†
Xo

1

1 − SW
= 1

1 − SW
+ 1

1 − (SW)†
− 1

= 1

1 − SW
+ (SW)†

1 − (SW)†
. (A18)

This is particularly useful as it shows that

AL†
effSeff = AL†

(
1

1 − SW
+ (SW)†

1 − (SW)†

)
SXi

= AL† 1

1 − SW
SXi + AL† 1

1 − (SW)†
W†Xi

= AL† 1

1 − SW
SXi, (A19)

where the second term is ultimately zero because S is unitary
and W† is orthogonal to Xi. Furthermore, because we have
assumed that [S,A] = [SW,A] = 0, we also find that

L†
effASeff = L†A

1

1 − (SW)†
X2

o
1

1 − SW
SXi

= L†A
1

1 − SW
SXi. (A20)

Combining the previous two relations gives

[A,L†
eff]Seffbext

in = [A,L†]
1

1 − SW
SXibin, (A21)

and thus we conclude that the second line of Eq. (A15) is indeed
equal to the second line of Eq. (A5).

To show that the first line of Eq. (A5) also follows from
Eq. (A15), consider the parenthetical expression in the first
term. The trick of Eq. (A18) does not immediately apply to this

013801-14



INPUT-OUTPUT THEORY FOR SUPERCONDUCTING AND … PHYSICAL REVIEW A 98, 013801 (2018)

expression. However, it is true that

1

2
1 + SW

1 − SW
= 1

2

(
1 + 2

SW
1 − SW

)
= 1

2

[
1

1 − (SW)†
X2

o
1

1 − SW
+ 1

1 − SW
− 1

1 − (SW)†

]
,

(A22)

which follows from Eq. (A18). Now consider the full first line in Eq. (A15). Expanding out the commutators and using the fact
that A commutes with any function of SW or its adjoint result in

−[A,L†]

(
1

2
1 + SW

1 − SW

)
L + L†

(
1

2
1 + (SW)†

1 − (SW)†

)
[A,L]

= −1

2
AL†

(
1

1 − (SW)†
X2

o
1

1 − SW

)
L − 1

2
AL†

(
1

1 − SW
− 1

1 − (SW)†

)
L

− 1

2
L†

(
1

1 − (SW)†
X2

o
1

1 − SW

)
LA + 1

2
L†

(
1

1 − SW
− 1

1 − (SW)†

)
LA + L†A

(
1

1 − (SW)†
X2

o
1

1 − SW

)
L. (A23)

By defining the effective Hamiltonian

Heff ≡ h̄

2i
L†

(
1

1 − SW
− 1

1 − (SW)†

)
L, (A24)

and utilizing the definition of Leff shows

−[A,L†]

(
1

2
1 + SW

1 − SW

)
L + L†

(
1

2
1 + (SW)†

1 − (SW)†

)
[A,L] = −1

2
AL†

effLeff − 1

2
AL†

effLeff + L†
effALeff + i

h̄
[Heff,A],

(A25)

which is equal to the first line of Eq. (A5).
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