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Finite-temperature dynamics of shock waves in an ultracold Fermi gas
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The study of finite-temperature dynamics of one-dimensional Fermi gases is a challenging problem. These
systems can present different phenomena, including the formation and propagation of shock waves and collective
oscillations. Here we calculate the dynamics of collective oscillations and shock waves in a noninteracting
one-dimensional ultracold Fermi gas, at both zero and finite temperature. These results are obtained using the
Majorana P-function method, which is a positive phase-space representation on a space of antisymmetric matrices.
At zero temperature, the results are in agreement with previous results, where the shock wave is observed as a
discontinuity of the density of atoms. At finite temperature, the formation of shock waves is observed but with the
shock fronts smoothed out. This places constraints on the experimental observation of shock-wave propagation
in a noninteracting Fermi gas or strongly interacting Bose gas.
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I. INTRODUCTION

The experimental achievement of Bose-Einstein condensa-
tion (BEC) [1–3] and degenerate atomic Fermi gases [4] has
opened new areas of research. The study of hydrodynamic
properties and nonlinear phenomena in ultracold gases [5,6]
has generated considerable recent research interest. Examples
of these are the formation of vortices [7–9], solitons [10,11],
and shock waves [12–16]. The high controllability achieved
in these systems allows one to reduce their dimensionality. In
one-dimensional systems, it is possible to observe a Tonks-
Girardeau gas [17–20], which is a gas of impenetrable bosons.
Due to the Fermi-Bose mapping, this is equivalent to a free
Fermi gas [17,21,22].

Shock waves are usually studied in hydrodynamics as a
discontinuity of a property of the system. In the case of ul-
tracold atoms shock waves can occur either in a Bose-Einstein
condensate [12–15] or in a strongly interacting Fermi gas [16].
For BECs, the dynamics of shock waves have been theoreti-
cally studied for one-dimensional gases using a hydrodynamic
approach [23,24]. There is also a proposal to generate them in
one and two dimensions [25]. For Fermi gases, theoretical work
on shock waves have been performed using a hydrodynamic
formalism [26,27], a time-dependent superfluid local density
approximation [28], an extended density functional approach
[29], a generalized nonlinear Schrodinger equation [30], a
time-dependent density matrix renormalization group [31], and
a time-dependent order parameter equation [32].

Phase-space approaches [33,34] are an alternative method
for quantum dynamical simulations of many-body systems.
Fermionic phase-space representations have already been used
to study the Hubbard model [35–38] and molecular dissocia-
tion [39,40]. The advantage of using phase-space techniques
is that the underlying space dimension grows quadratically,
not exponentially, with the number of modes. A feature of this
approach is that since it includes information about the entire
many-body density matrix, one can obtain information about

higher-order correlation functions as well. This is extremely
useful in quantum information applications [41,42]. While
other methods are possible for the results obtained in this paper,
it is an important proof of principle to apply this technique to
problems where it can be compared with existing methods.

Here we study the dynamics of collective oscillations and
shock waves in a noninteracting one-dimensional (1D) Fermi
gas, both at zero and finite temperature. This is equivalent to
a strongly interacting Bose gas in the Tonks-Girardeau limit.
We use the Majorana P-function as it can treat any density
matrix, is real and positive, and has no sign problem in the
cases treated here [36,43,44]. To verify our results, we compare
the zero-temperature results with those obtained by Damski
[26]. These calculations are then extended to more realistic
higher temperatures. We also carry out a quench simulation,
giving us the dynamics of collective oscillations for a nonin-
teracting one-dimensional Fermi gas confined in a harmonic
trap. At low temperatures, this is also in excellent quantitative
agreement with earlier results using a different technique
[45].

Both types of dynamical quantum evolution problems
treated here are accessible in experiments on ultracold one-
dimensional Fermi or Bose gases. In particular, it is important
to understand the effects of finite temperatures in these exper-
iments, as true zero-temperature dynamics is not practically
accessible. For the shock-wave simulations, we verify earlier
predictions of Damski [26] that shock-wave formation occurs
in a noninteracting Fermi gas at zero temperature. This is
caused by the strong effects of the Pauli exclusion principle,
and can be accurately simulated with the P-function techniques
described here. It is interesting to observe that these effects,
normally regarded as essentially nonlinear in origin, emerge
from completely linear phase-space equations. However, we
show that an initial finite temperature smooths out the shock-
wave fronts, requiring temperatures well below the Fermi
temperature where a degenerate Fermi gas is formed, in order
to observe them.

2469-9926/2018/98(1)/013638(8) 013638-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.013638&domain=pdf&date_stamp=2018-07-31
https://doi.org/10.1103/PhysRevA.98.013638


JOSEPH, ROSALES-ZÁRATE, AND DRUMMOND PHYSICAL REVIEW A 98, 013638 (2018)

This paper is organized as follows: Sec. II describes the
Majorana phase-space representations and its time-evolution
equation. In Sec. III, we introduce the formalism with a
general Hamiltonian as well as particular examples for a given
external potential. We use this formalism to describe both the
quench dynamics in a 1D harmonic trap and the formation
of fermionic shock waves at finite temperature. Section IV
gives the simulations of the quench dynamics, which is used
to test the method at finite temperatures. Both zero-temperature
and finite-temperature shock-wave dynamics are discussed in
Sec. V. Section VI gives a summary of our results.

II. MAJORANA QUASIPROBABILITIES

Just as with bosonic quantum fields, fermionic quantum
density matrices have more than one quasiprobability distri-
bution in phase space. The Q function is a positive probability
distribution that can represent any fermionic quantum density
matrix [46]. It is defined as the trace of the product of the
density matrix ρ̂ and a Gaussian basis. The P function can
also represent any fermionic quantum density matrix, but is
the complement of the Q function, as it expands the density
matrix in terms of the Gaussian basis.

Here we summarize the representation in the case of
the Majorana P function [43], which uses a 2M × 2M real
antisymmetric matrix x as the phase-space variable, where M

is the number of modes.

A. Definitions

In this section we summarize the formalism of Majorana
phase space methods [43] and derive the identities needed
for dynamical calculations. We use a diagonal form of the
Majorana P function that is defined in a previous work [43],
which is an expansion of the density matrix in terms of a basis
of Gaussian operators,

ρ̂ =
∫

P (x )�̂(x)dx. (1)

The integration measure is over the antisymmetric matrices
satisfying I + x2 = x+x− > 0. This can be extended to com-
plex antisymmetric matrices to give a generalized P function
[36,37,47], but this extension is not required here. The unit-
trace Majorana Gaussian operator is defined as [44]

�̂(x) = N (x) : exp{−iγ̂ T I[I − (Ix + I )−1]γ̂ /2}:. (2)

Here, N (x) = 1
2M

√
det [I − x], I = [ 0 I

−I 0], and I is the 2M ×
2M identity matrix. The Majorana operators γ̂ and γ̂ T are

γ̂ = U â,

γ̂ T = â†U †, (3)

where â = (âT , â†)
T

and â† = (â†, âT ) are 2M extended
vectors of the creation and annihilation operators. The U ma-
trix that transforms between Majorana and normal fermionic

operators is given by [48]

U =
[

I I

−iI iI

]
. (4)

B. Observables

Observables can be calculated in terms of the P function
since expectation values of observables O are obtained as [43]

〈O〉 =
∫
DC

P (x, τ )Tr[O�̂(x)]dx ≡ 〈O(x )〉P . (5)

We use the unordered differential identities derived in [43]
to obtain the observable function O(x). We consider the

correlation function X̂μν given by

X̂μν ≡ i

2
[γμ, γν]. (6)

The expectation value of X̂μν can be calculated using Eq. (5)
as

〈X̂μν〉 = i

2

∫
Tr[γμγν�̂(x) − γνγμ�̂(x)]P (x)dx. (7)

We use the following identity [43]:

γ̂ γ̂ T �̂ = i

[
x− d�̂

dx
x+ − �̂x+

]
, (8)

where x± = x ± iI , in order to obtain

〈X̂μν〉 = 1

2

∫
P Tr

{[
−x−

μα

d�̂

dxβα

x+
βν + �̂x+

μν

]
dx

}
− 1

2

∫
P Tr

{[
−x−

να

d�̂

dxβα

x+
βμ + �̂x+

νμ

]
dx

}
. (9)

As we can take the operator trace inside the differential
and since Tr(�̂) = 1, the derivative terms are all zero. This
simplifies the above expression to

〈X̂〉 =
∫

xP (x)dx. (10)

Therefore, x has a physical interpretation, as its mean value
is proportional to a quantum correlation function. In the cases
treated here, where the density operator is Gaussian, one can
relate the x variable with correlation functions directly since

x =
[

i(n− + m−) n+ + m+ − I

−n+ + m+ + I i(n− − m−)

]
, (11)

where n± = n ± nT , m± = m ± m∗, and nij = 〈â†
i âj 〉, mij =

〈âi âj 〉. If, in addition, there are no anomalous correlations, so
m = 0, the above expression becomes

x =
[

in− n+ − I

I − n+ in−

]
. (12)

If n = nT , it simplifies further to give

x =
[

0 2n − I

I − 2n 0

]
. (13)
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C. Dynamical evolution

Although the methods we use can treat other Hamiltonians,
here as an example we consider number-conserving Hamilto-
nians of the form

Ĥ = h̄ωij â
†
i âj , (14)

where i, j are summed over the M system modes.
If we define the Majorana commutator as in Eq. (6) and

� =
[

0 ω

−ω 0

]
, (15)

we can reexpress the Hamiltonian in terms of Majorana
operators as [43]

Ĥ = h̄

2
�μνX̂μν. (16)

The time evolution of the Majorana Q function is known to be
given by [43]

dQ
(
x
)

dt
= �μν

[
d

dxνκ

(
xμκQ

) − d

dxκμ

(xκνQ)

]
. (17)

It is also possible to obtain the time-evolution equation of the
P function following a similar strategy to the one used for the
Q function. In this case, the time-evolution equation of the
density operator is given by

ih̄
∂

∂t
ρ̂ = [Ĥ , ρ̂]. (18)

Taking the derivative of (1) with respect to the time gives

∂

∂t
ρ̂ =

∫
dP

dt
�̂dx. (19)

From Eqs. (18) and (19), together with the definition of the
Hamiltonian given in Eq. (16) and the correlation function of
Eq. (6), we get the following time-evolution equation for the
Majorana P function:∫

dP

dt
�̂dx = 1

4
�μν

∫
P [γμγν − γνγμ, �̂]dx.

We now use the following differential identity [43]:

[γμγν − γνγμ, �̂] = 4

[
xκν

d�̂

dxκμ

− xμκ

d�̂

dxνκ

]
. (20)

After performing an integration by parts and assuming that the
boundary terms are zero, we get

dP

dt
= �μν

[
d

dxvκ

(xμκP ) − d

dxκμ

(xκνP )

]
. (21)

The method of characteristics allows one to solve the above
equation, which leads to

dx

dt
= [�, x]. (22)

The final result is in the form of a commutation relation
and is the same as that obtained for the Majorana Q function
[43]. However, since the initial condition for the P function is
a delta function in the cases treated here, only one trajectory
is needed, which makes the calculations more efficient. In the
cases treated in this paper, we solve these matrix differential

equations with the widely used Runge-Kutta 4-5 adaptive
algorithm, with a relative error tolerance of ±10−3 and an
absolute error tolerance of ±10−6 [49,50].

III. HAMILTONIAN

For the initial conditions in these calculations, we treat
Fermi systems in a grand-canonical ensemble at finite tem-
perature. The unnormalized quantum density matrix is

ρ̂ = exp[−β(Ĥ − μN̂ )], (23)

where Ĥ is the Hamiltonian, β = 1/kBT at temperature T , N̂
is the number operator, and the chemical potential μ is chosen
so that the mean particle number is N = 〈N̂〉. This implies that
we use the Fermi distribution

nij = 〈â†
i âj 〉 = δij

1 + exp[β(Ei − μ)]
, (24)

where Ei is the ith-mode energy, with a corresponding phase-
space variable given by Eq. (13). Since the density matrix is
a Gaussian operator, it corresponds to a delta function in the
real phase space of the Majorana P representation.

A. One-dimensional Fermi gas

In more detail, we consider a one-dimensional noninteract-
ing Fermi gas, which is trapped in a box of length L = 2l,
extending from −l to l. Throughout the paper, we use the
following convention for units: m = h̄ = kB = 1. This leaves
a single length scale �0, which can be chosen arbitrarily. We
define all distances as dimensionless in terms of this length
scale, so that z = r3/�o. One can also regard this as a choice
of the unit of time as t0 = m�2

0/h̄, so we define t in terms of
these units.

The model Hamiltonian is

Ĥ = Ĥ0 +
∫ l

−l

dzV (z)ψ†(z)ψ (z), (25)

where V (z) is the external potential and Ĥ0 is the Hamiltonian
without perturbation,

Ĥ0 =
∑

k

ωkâ
†(k)â(k). (26)

The Hamiltonian Ĥ is in position space. It is useful to convert
it into momentum space, where one can define [51]

ψ (z) = 1√
L

∑
k′

eik′zâk′ . (27)

Utilizing this relation, the Hamiltonian in momentum space is

Ĥ = Ĥ0 + Ĥe, (28)

where

Ĥe = 1

L

∑
k,k′

â
†
kâk′

∫
dzV (z)ei(k′−k)z. (29)

After performing the integration, we can express the Hamilto-
nian in the following concise form:

Ĥ =
∑
kk′

h̄ωkk′ â
†
kâk′ . (30)
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We note that this Hamiltonian has an identical form to that
given in Eq. (14), and thus we can use the differential equations
obtained for the P function, given in Eq. (22), to simulate the
dynamics of a Fermi gas at any temperature. This includes the
formation of shock waves or other dynamics. In this case, the
elements of the matrix � are given in Eq. (15).

The momentum correlation function nkk′ is then obtained
from the phase-space distribution using Eq. (24), which can be
used to calculate the density of atoms in position space, n(z):

n(z) = 〈ψ†(z)ψ (z)〉. (31)

Using the definition of ψ (z) given in Eq. (27), we obtain

n(z) =
〈

1

L

∑
k,k′

ei(k′−k)zâ†
kâk′

〉
= 1

L

∑
k,k′

ei(k′−k)znkk′ . (32)

As an example, we analyze two models whose formalism
is similar. The first model has a variable harmonic-oscillator
potential, and the second model is a 1D Fermi gas trapped in a
box, with an external laser to give an additional localized trap
that is used to generate the low-temperature shock waves.

B. Harmonic trap

For investigating the collective oscillation quench, we
consider a one-dimensional Fermi gas trapped in a harmonic
potential of the form

V (z) = 1
2ω2z2, (33)

where ω is the trapping frequency that is changed in time during
the quench.

We use this external potential in order to perform the integral
of Eq. (29) from −l to l, with a total length L = 2l, obtaining

Ĥe = ω2

2L

∑
kk′

â
†
kâk′ {Akk′ cos[l(k′ − k)] − Bkk′ sin[l(k′ − k)]},

(34)
where Akk′ = 4l( 1

k′−k
)
2

and Bkk′ = 4( 1
k′−k

)
3 − 2l2( 1

k′−k
). This

expression is valid only for k �= k′. In the case that k = k′, we
get

Akk = 2l3

3
. (35)

Using these expressions, the explicit form of the Hamiltonian
in Eq. (30) is

Ĥ =
∑

k

ωkâ
†(k )̂a(k) + ω2

2L

∑
kk′

â
†
kâk′

× {Akk′ cos[l(k′ − k)] − Bkk′ sin[l(k′ − k)]}. (36)

Hence, for this case the frequency matrix ωkk′ is

ωkk′ =
{

ωk + ω2l2/6, k = k′,

{Akk′ cos[l(k′−k)] − Bkk′ sin[l(k′−k)]}ω2

4l
, k �= k′,

(37)
with

ωk = k2
n

2
, (38)

where k ≡ kn = (n − n0)	k and kn is symmetric by choosing

n0 = M − 1

2
, n = 0, 1, . . . , M − 1.

C. Perturbed flat potential

For investigating shock waves, we now consider a flat
potential with a time-varying Gaussian perturbation caused by
an external dipole coupled laser input,

V (z) = u0α(t ) exp

[
−α(t )z2

2σ 2

]
. (39)

Here, α(t ) = t/tf , tf is the final time, and u0 and σ are
the height and width of the potential, respectively. When we
perform the integral of Eq. (29) in the limit that σ << L, using
the external potential given in Eq. (39), we get

Ĥ = Ĥ0 + u0σ

L

√
2πα(t )

∑
k,k′

â
†
kâk′ exp

[
−σ 2(k′ − k)

2α(t )

]
.

(40)
The frequency matrix ωkk′ in Eq. (30) can then be defined as

ωkk′ = δkk′ωk + u0σ

L

√
2πα(t ) exp

[
−σ 2(k′ − k)

2α(t )

]
. (41)

Here, ωk is the same free particle energy as in Eq. (38).

IV. QUENCH DYNAMICS

To illustrate the use of Majorana P functions in a finite-
temperature dynamical simulation, we first consider the prob-
lem of a quantum many-body bounce or collective oscillation
in an external harmonic potential, which has been treated
previously using different techniques [45]. The quench dy-
namics is obtained when the trapping frequency ω is changed
instantaneously from an initial value of ω0 = 1 to a final
value of ω1 = ω0/6 at time t = 0, with a quench strength of
ε = ω2

0/ω
2
1 − 1 = 35 [45]. In this case, the initial value of the

correlation matrix can be calculated as

nk′k =
∑

n

∑
m

〈b̂†nb̂m〉HOφ†
n(k′)φm(k), (42)

where for a noninteracting Fermi gas at temperature T ,

〈b̂†nb̂m〉HO = δnm

1 + exp[β(En − μ)]
. (43)

Here, En = (n + 1
2 )ω0 are the eigenvalues of the harmonic

oscillator. The corresponding eigenstates in momentum space
are given by

φn(k) = (−i)n√
2nn!

(
1

πω0

) 1
4

e
− k2

2ω0 Hn

(
k√
ω0

)
, (44)

where Hn(k) are the Hermite polynomials. The chemical
potential μ of a Fermi system in a one-dimensional har-
monic trap at finite temperature T is given approximately
by μ = T ln (eTF /T − 1), where TF = Nω0, and the discrete
summations are replaced by an integral [52].

We study the dynamics of the system by solving Eq. (22).
The initial value of the x matrix is given in Eq. (13) and is
obtained from the correlation matrix of Eq. (42). The elements
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FIG. 1. Normalized density of atoms in position space of a 1D
Fermi gas with dimensionless initial temperature of θ0 = 0.01, N =
16, M = 401, ε = 35.

of the matrix � are given in Eq. (37). In this form, we obtain the
matrix x(t ) as a function of time, which allows us to calculate
the correlation matrix at different times. The density of atoms
in position space is then evaluated using the expression given
in Eq. (32). We use the harmonic-oscillator scale of length,
with

√
1/ω0 = 1, and we also introduce a scaled temperature

relative to the Fermi temperature, θ0 = T/TF .
Figures 1 and 2 show the normalized density of atoms in

position space obtained from the formalism described above
for the Majorana P function for two different values of θ0, a
very low temperature of θ0 = 0.01, and a higher temperature of
θ0 = 0.5, near the Fermi degeneracy temperature. We observe
the dynamics of breathing modes. These results are in excellent
agreement with those obtained by Atas et al. [45] for a Tonks-
Girardeau gas, who used a different approach based on the
Bose-Fermi mapping and the Fredholm determinant.

We also checked our low-temperature results by compar-
ing them with known analytic zero-temperature results. This
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1

FIG. 2. Normalized density of atoms in position space of a 1D
Fermi gas with dimensionless initial temperature of θ0 = 0.5, N =
16, M = 401, ε = 35.
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0
=0.01

0
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FIG. 3. Normalized density of atoms in position space for a 1D
Fermi gas. Here we used N = 16, M = 401, and ε = 35 at time ω1t =
2.1.

comparison is valid since we consider a finite temperature of
θ0 = 0.01, which is well below the Fermi temperature. The
expression for the density of atoms at zero temperature in a
time-dependent harmonic trap when considering a quench is
given by [45]

n(z, t ) = 1

λ
n
( z

λ

)
, (45)

where

n(z) = e−z2

√
π

N−1∑
n=0

H 2
n (z)

2nn!
,

and the scaling term is λ(t ) = [1 + ε sin2 (ω1t )]
1
2 [45]. In the

case where there is no quench, i.e., ε = 0, this expression
reduces to the standard ground-state density distribution.

Figure 3 shows the normalized density of atoms in position
space, given by Eq. (32), at a fixed dimensionless time of
ω1t = 2.1 and a finite temperature of θ0 = 0.01 (blue solid
line). We also plot the exact density of atoms for zero tem-
perature at the same time (red dashed line) using Eq. (45). In
this case, as we expected, we obtain an excellent agreement
between these results since the temperature is far below the
Fermi temperature. In Fig. 4, we also plot a comparison of
the normalized density of atoms in position space for zero
temperature (red dashed line) but with a higher temperature
of θ0 = 0.5 (blue solid line). This gives us a temperature
T ∼ TF /2 and shows that the P function can simulate the
finite-temperature dynamics of a Fermi gas in a regime where
the two results are expected to strongly differ.

V. SHOCK-WAVE DYNAMICS

The dynamics of shock waves in a 1D Fermi gas trapped
in a periodic box can also be described using the fermionic
P function. Here we wish to simulate the complete cycle
that could be used experimentally for a finite-temperature
experiment to observe shock waves, keeping in mind that
a zero-temperature noninteracting Fermi gas is difficult to
obtain. We assume that the localized, trapped atom system in
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FIG. 4. Normalized density of atoms in position space for a 1D
Fermi gas. Parameters are the same as in Fig. 3.

a Gaussian dipole potential—from a focused laser beam—is
obtained using an adiabatic passage from a larger, nearly
uniform sample of the trapped gas at finite temperature.

In this case, the density of atoms as a function of time
and position is obtained by performing the simulation in two
stages. First, the trapping laser is turned on adiabatically from
a known untrapped thermal state in order to obtain a finite-
temperature equilibrium state. Thus, we solve the differential
equations of Eq. (22), using the initial condition for thex matrix
given in Eq. (13) and the correlation matrix of Eq. (24). This
corresponds to a quasithermal density matrix, in the sense
that the corresponding distribution of thermal states in the
laser potential has the same entropy as the initial Fermi-Dirac
distribution. We note that faster methods may be available,
although these are often limited to special types of external
potential, such as the harmonic potentials of the previous
section [53].

Next, for the dynamical stage, the solution obtained in the
adiabatic stage at the final time is used as the initial condition.
We solve the differential equations by switching off the laser
potential, obtaining the values of the x matrix at different times.
Using these values of x, we can calculate the value of the
correlation matrix. Substituting these values in the expression
for the density of atoms given in Eq. (32) leads to the dynamics
of the system and, in the course of time evolution, we can
observe the formation of shock waves.

The numerical results using this phase-space approach are
shown below for zero and finite temperature. In order to
perform the calculations, we assume that the boundaries of
the 1D periodic box are z = ±l [26]. Here, as previously,
�0 is an arbitrary unit of length used to make the equations
dimensionless. For the purpose of comparison, we use the same
parameters and units as in [26].

The chemical potential of the original 1D Fermi gas con-
fined in a box at zero temperature is given by μ = EN − E0 =
ωN − ω0, and hence

μ = N2	k2

8
, (46)
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z

0.3

0.35

0.4

0.45

0.5

n(
z)

t=0
t=81
t=161
t=241
t=441

FIG. 5. Zero-temperature dynamics of shock waves: Density of
atoms as a function of position at different times. Parameters: M =
600, u0 ≈ −0.53, σ = 20, N = 399, l = 600.

where N is the number of Fermi particles. For finite tempera-
tures T , the chemical potential is [54]

μ = εF

[
1 +

(
π2

12

)(
T

TF

)2
]
. (47)

A. Zero-temperature results

The numerical simulations are performed as described
previously. Here we have used an adiabatic stage with a total
elapsed time of tf = 6001, while for the dynamical stage we
have used tf = 1000. The adiabatic stage uses the Fermi-Dirac
distribution as the initial condition. At zero temperature, this
is given by

nij = 〈â†
i âj 〉 =

{
1 if ωi < μ

0 if ωi > μ.

In Fig. 5, we show the results for the dynamics of shock
waves for different times in dimensionless time units. Here we
consider the initial time t = 0. We show the different density

-600 -400 -200 0 200 400 600
z

0.3

0.35

0.4

0.45

0.5

n(
z)

t=0
t=81
t=161
t=241
t=441

FIG. 6. Dynamics of shock waves at different times for a finite
temperature θ = 0.005. Other parameters are the same as in Fig. 5.
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FIG. 7. Dynamics of shock waves at different times for a finite
temperature θ = 0.07. Other parameters are the same as in Fig. 5.

profiles for different times up to a final time. The initial density
profile has a Gaussian shape as expected. As time progresses,
the density of atoms splits into two parts. The upper half of
each half wave moves faster than the lower part, which leads
to the formation of shock waves.

B. Finite-temperature results

In any realistic Fermi gas experiment, the temperature will
not be zero. It is an open question as to what happens in
this case. We have performed the shock-wave simulations
for different values of the initial temperature. To define a
suitable dimensionless scale, we choose a scaled temperature
as θ = T

TF
, noting that here both T and TF refer to the initial

thermal equilibrium Fermi gas before adiabatic passage.
In Figs. 6–8, we show the density of atoms as a function of

position at different times for different values of temperature,
θ ∈ (0.005–0.2). The plots show the shock-wave dynamics of
a 1D Fermi gas subject to a perturbed flat potential. For t = 0,
the initial density profile has a Gaussian pattern. As the time
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FIG. 8. Dynamics of shock waves at different times for a finite
temperature θ = 0.2. Other parameters are the same as in Fig. 5.
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FIG. 9. Effect of temperature on the dynamics of shock waves.
Here we have considered both zero temperature and finite tempera-
ture, with θ = 0.2, at a time t = 161. Other parameters are the same
as in Fig. 5.

advances, this Gaussian pattern splits into two parts, which
move in two different directions as previously. We notice that
as the temperature increases, it is more difficult to observe
the shock-wave characteristic behavior of a vertical leading
edge. Hence our results show that the effect of the temperature
is to smooth out the sharp leading edges, which makes
these shock-wave effects harder to observe as the temperature
increases.

This effect is observed clearly in Fig. 9, where we plot the
density of atoms for zero temperature and a higher temperature
of θ = 0.2, at a fixed time of t = 161. Since this is only 20%
of the original Fermi temperature, we predict that shock-wave
observations of this type will require an extremely degenerate
initial atomic Fermi gas.

VI. SUMMARY

We have shown that by utilizing the fermionic P-function
method, together with Majorana unordered differential identi-
ties [43], one can calculate in detail the dynamics of density
wave packets in a Fermi gas. This method is relatively simple to
implement, and takes advantage of the mappings between the
fermionic Hilbert space, and the Lie group of antisymmetric
matrices. It has been applied to study the dynamics of a Fermi
gas at zero and finite temperature. We have verified our results
for the dynamics of the 1D harmonically trapped Fermi gas by
comparison with previous results [45]. We expect this approach
to have wider applications to the physics and both coherent and
decoherent evolution of Majorana excitations in a fermionic
condensed-matter system as well.

We have used this method to simulate the dynamics of
fermionic shock waves at zero and finite temperatures. This
prediction can be tested in one-dimensional Fermi or Bose
gas experiments by using Feshbach resonances to tune the
interaction strength to either zero or very high values, respec-
tively. Last, we have found that the “quantum” shock-wave
front decays smoothly in finite-temperature dynamics, instead
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of creating a sharp front in the course of its time evolution.
This effect is more pronounced at finite temperature and leads
to stringent requirements on temperature for fermionic shock
waves.
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