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Mean-field dynamics of a Bose-Hubbard chain coupled to a non-Markovian environment
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We study the dynamics of an interacting Bose-Hubbard chain coupled to a non-Markovian environment. Our
basic tool is the reduced generating functional expressed as a path integral over spin-coherent states. We calculate
the leading contribution to the corresponding effective action, and by minimizing it, we derive mean-field equations
that can be numerically solved. With this tool at hand, we examine the influence of the system’s initial conditions
and interparticle interactions on the dissipative dynamics. Moreover, we investigate the presence of memory
effects due to the non-Markovian environment.
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I. INTRODUCTION

Open quantum many-body systems have gained significant
attention due to their importance in quantum-information pro-
cessing, experiments with ultracold atoms, and other areas of
scientific and technological interest. An environment is always
present and it usually has destructive influence on quantum
coherence. However, there are plenty of works that prove that
a carefully designed environment can be used to control the
many-body dynamics [1]. It is thus of great importance to
understand all the aspects of such systems.

The usual treatment of open quantum many-body systems
is based on a Lindblad master equation [1,2], which assumes
a memoryless environment. However, if the environment is
structured or if the coupling between system and environment
is strong, then this approach is not valid. For quadratic Hamil-
tonians it is possible to use non-Markovian master equations,
which can be derived with the help of the Feynman-Vernon
formalism [3–7]. In addition to that non-Markovian approaches
such as quantum jumps or quantum trajectories [8–11] can
also be used. The case of nonquadratic Hamiltonians, such
as the interacting Bose-Hubbard (BH) [12], are by far more
complicated. The difficulties begin already when one tries to
express the problem in the context of the Feynman-Vernon
influence functional. As has been shown [13] there are incon-
sistencies in the definition of the coherent-state path integrals
for such Hamiltonians, making the derivation of the influence
functional problematic. Only recently, a simple recipe to define
bosonic [14] and spin [15] coherent state path integrals has
been given. However, even if the influence functional is well
defined, it is impossible to derive a non-Markovian master
equation due to the presence of interactions.

In this work we make a first step to understanding the
dynamics of a nonquadratic many-body Hamiltonian coupled
to a non-Markovian environment. In Sec. II we present the
model we are going to use: a BH chain coupled to a non-
Markovian bath of harmonic oscillators. After that we write the
thermal generating functional in the language of coherent-state
path integrals and we integrate out the degrees of freedom of
the environment to obtain the reduced generating functional.
Since we are interested in the influence of vacuum fluctuations
on the evolution we examine the zero-temperature limit. In this

way we study a dissipative mechanism which is important in
optical systems, where the modes are inevitably coupled to the
vacuum of the electromagnetic field [3]. In Sec. III, we use
the effective-action approach to derive mean-field equations
of motion, in the form of a non-Markovian discrete nonlinear
Schrödinger (NMDNLS) equation.

In Secs. IV and V, we study the dynamics of two small
but interesting systems, the two-site and the four-site BH
models, respectively. In the two-site model, we compare the
dynamics between different types of non-Markovian envi-
ronments and their respective Markovian limit. For different
interaction strengths we find that the particle losses are larger
for larger interactions between the particles and we explain the
phenomenon. Moreover, we investigate the initial conditions
leading to maximum or minimum losses at a given instant.
We find that if we begin from the unstable fixed point of
the dissipative DNLS, there are no losses and we discuss
the phenomenon. Extending our discussion to the four-site
system we find that the essential property of the zero-loss initial
conditions is their underlying Z2 symmetry. Finally, we study
a purely non-Markovian effect: the return of particles back to
the system from the environment due to memory effects.

II. THE REDUCED GENERATING FUNCTIONAL

In this work we will study the influence of a non-Markovian
environment on the dynamics of a BH chain. The BH Hamilto-
nian has been used successfully to describe the dynamics of a
great variety of systems, from ultracold atoms in optical lattices
[16] to discrete optical systems [17]. The BH Hamiltonian that
describes our system is given by

ĤS =
M∑

j=1

εj α̂
†
j α̂j + U

2

M∑
j=1

α̂
†
j α̂

†
j α̂j α̂j

− J

M−1∑
j=1

(α̂†
j α̂j+1 + α̂

†
j+1α̂j ), (1)

where α̂j , α̂
†
j are bosonic annihilation and creation operators,

εj are the on-site energies, J is the tunneling strength, U is the
interparticle interaction strength, while we set h̄ = 1.
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We shall adopt the usual approach and we are going to
simulate the environment as an infinite collection of harmonic
oscillators [18–20],

ĤR =
∑

k

EkR̂
†
kR̂k, (2)

where R̂k and R̂
†
k are annihilation and creation bosonic opera-

tors for the kth oscillator.
Finally, we consider the interaction between the system and

the environment to be linear,

ĤI =
∑
j,k

(γj,kR̂kα̂
†
j + γ ∗

j,kR̂
†
kα̂j ). (3)

Thus, the Hamiltonian that describes the total system has
the form

Ĥ = ĤS + ĤR + ĤI. (4)

At this point we shall introduce our basic mathematical
tool: the functional that, at a finite temperature β = 1/kT ,
generates correlation functions pertaining to the composite
system (4). We shall express this functional as a path integral
over the space spanned by the coherent basis. We introduce
the notation |a〉 = |a1, . . . , aM〉 and |r〉 = |r1, . . . , rk, . . .〉 for
the overcompleted bases pertaining to the system and the
environment, respectively. For the composite system we use
the notation |z〉 = |a, r〉, while the completeness relation can
be cast in the abbreviated form∫

d2 z|z〉〈z| ≡
∏
j∈S

∫
dajda∗

j

2πi
|aj 〉〈aj |

∏
k∈R

∫
drkdr∗

k

2πi

× |rk〉〈rk| = Î . (5)

Path integration in the complexified phase space is ultimately
connected with the underlying time-slice structure [21,22]. The
continuum limit has to take properly into account this structure
in order to avoid inconsistencies [13]. One way to avoid such
problems is based on the introduction of the proper “classical”
Hamiltonian HF that weighs paths in the space spanned by
the coherent states. This classical Hamiltonian can be obtained
from the quantum one via a simple route [14]

Ĥ (α̂†, α̂) → Ĥ (p̂, q̂ ) → HF (p, q ) → HF (a∗, a). (6)

The first step in this chain is the replacement of the creation
and annihilation operators by the corresponding quadratures
(“momentum” and “position” operators). Next, one passes to
the classical Hamiltonian appearing in the Feynman phase
space integral and eventually performs a canonical change of
variables: q = (a∗ + a)/

√
2 and q = i(a∗ − a)/

√
2.

In this way the generating functional for the composite
system at a finite temperature is defined as follows:

Z[J ] = 1

Z(β )

∫
d2w

∫
D2 z

z∗(β ) = w∗
z(0) = w

exp
{−�(z∗, z)

−
∫ β

0
dτ

[
1

2
(z∗ · ż − z · ż∗) + HF (z∗, z)

]

−
∫ β

0
dτ (a∗ · J + J ∗ · a)

}
. (7)

Here J is an auxiliary source term, while the integration over
w = (a(0); r (0) ) takes care of the periodic boundary conditions.
The classical Hamiltonian, HF = HF

S + HF
R + HF

I , has been
constructed through the rule (6) and its terms read as follows:

HF
S =

M∑
j=1

(εj + U )|aj |2 − J

M−1∑
j=1

(a∗
j aj+1 + a∗

j+1aj )

+ U

2
|aj |4 +

M∑
j=1

(
εj + 3U

8

)
, (8)

HF
I =

∑
j,k

(γkj rka
∗
j + γ ∗

kj r
∗
k aj ) (9)

and

HF
R =

∑
k

Ek|rk|2 − 1

2

∑
k

Ek. (10)

The boundary factor � appearing in (7) reads as follows:

� = |w|2 − 1
2 [w∗ · z(β ) + w · z∗(0)]. (11)

Finally, Z(β ) = Tr(e−βĤ ) = Z[J = 0] is the partition func-
tion of the total system.

Since we are interested only in quantities pertaining the sys-
tem S, we are going to integrate out the degrees of freedom of
the environment, r , to obtain the reduced generating functional.
Due to the fact that it is just a collection of harmonic oscillators
and the interaction with the system is linear, the integration
can be easily performed. One needs only a change of variables
in order to get rid of the boundary conditions: r = rcl + ηR,
r∗ = rcl∗ + η∗

R with rcl∗(β ) = r (0)∗ and rcl (0) = r (0). The
functions

rcl
k (τ ) = e−Ekτ r

(0)
k −

∑
j

γ ∗
kj

∫ τ

0
dτ ′e−Ek (τ−τ ′ )aj (τ ′), (12)

rcl∗
k (τ ) = e−Ek (t−τ )r

(0)∗
k

−
∑

j

γkj

∫ t

τ

dτ ′e−Ek (τ−τ ′ )a∗
j (τ ′) (13)

have been chosen to enforce stationarity, with respect to the
environmental degrees, of the exponent in Eq. (7). The rest
of the calculation is just a quadratic fluctuation integral that
can be evaluated by standard means. Its contribution yields an
exponential factor e−τ

∑
k Ek/2 [14] that it is exactly canceled by

the constant term appearing in HF
R . Thus the integration of the

environment is encapsulated in the classical solutions Eqs. (12)
and (13), and through them (taking into account that Scl

R = 0),
in the�R factor. After these explanations one can easily confirm
that the reduced generating functional (7) assumes the form

Z[J ] = 1

ZS (β )

∫
d2a(0)

×
∫

D2a

a∗(β ) = a(0)∗
a(0) = a(0)

e−�S(a∗,a)−∫ β

0 dτ (a∗·J+J ∗·a)−S̃[a∗,a],

(14)
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where

S̃ =
∫ β

0
dτ

[
1

2
(a∗ · ȧ − ȧ∗ · a) + HF

S

]
(15)

−
∑
j,�∈S

∫ β

0
dτ

∫ τ

0
dτ ′a∗

j (τ )μj�(τ − τ ′)a�(τ ′),

with μj� the dissipation kernel:

μj�(τ − τ ′) =
∑
k∈R

γ ∗
kj γk�e

−Ek (τ−τ ′ ). (16)

The functional (14) can be used for the generation of thermal
correlation functions pertaining to the subsystem. However, in
this work, we will use this expression as a mathematical tool
to study the zero-temperature, ground-state properties of the
subsystem. To this end we define the thermal expectation value
of a system’s operator ÔS :

〈ÔS (t )〉β ≡ Tr

{
e−βĤ

Z
ÔS (t ) ⊗ ÎR

}

= TrR

{
ρ̂S (β )ÔS (t )

}
, (17)

where

ρ̂S (β ) ≡ TrR

{
e−βĤ

Z

}
(18)

is the reduced density matrix of the system. If the system’s
ground state is unique, the zero-temperature limit, β → ∞,
projects Eq. (17) on its vacuum expectation value:

〈ÔS (t )〉β ≡
∑

n∈(S+R)

〈n|
(

e−βĤ

Z
ÔS

)
|n〉

−→
β→∞

〈G|ÔS (t )|G〉

= TrS{ρ̂SÔS (t )} = 〈ÔS (t )〉, (19)

where |G〉 is the ground state of the composite system and ρ̂S =
TrR{|G〉〈G|}. In case of degeneracy, the zero-temperature limit
produces an equal probable mixture of all the possible ground
states.

The thermal vacuum expectation values can be derived from
(14) by functional differentiation and by making the Wick
rotation τ = it . For example,

− δ ln Z

δJ ∗
k (τ )

∣∣∣∣
J=0

= 1

ZS[0]

∫
d2a(0)

×
∫

D2a

a∗(β ) = a(0)∗
a(0) = a(0)

e−�(a∗,a)−S̃[a∗,a]ak

= TrS{ρ̂S (β )âk (τ )} ≡ 〈âk (τ )〉β. (20)

This result coincides with (17) if we make the change τ = it

while the limit β → ∞ produces the result (19).

III. THE EFFECTIVE ACTION AND THE MEAN-FIELD
APPROXIMATION

In this section we shall use the effective action approach
to derive equations of motion for the system’s field vacuum
expectation values. To begin with we the mean values

〈ak (τ )〉J = − δ ln Z

δJ ∗
k (τ )

, (21)

〈a∗
k (τ )〉J = − δ ln Z

δJk (τ )
= 〈ak (τ )〉∗J . (22)

Note that Eq. (21) is not (20), since it depends on the
source fields J . They are equivalent only in the limit J = 0.
Equations (21) and (22) can, in principle, be solved with regard
to the source fields J :

J = J [〈a(τ )〉J , 〈a(τ )〉∗J ], (23)

J ∗ = J ∗[〈a(τ )〉J , 〈a(τ )〉∗J ]. (24)

The effective action is defined as follows (see Ref. [21]):

A[〈a(τ )〉J , 〈a(τ )〉∗J ]

≡ − ln Z[J ] −
∫ β

0
dτ [J ∗ · 〈a(τ )〉J + J · 〈a∗(τ )〉J ].

(25)

One can easily confirm that

δA

δ〈ak (τ )〉∗J
= −Jk,

δA

δ〈ak (τ )〉J = −J ∗
k . (26)

Thus, minimization of the effective action yields equations
the solution of which produces the vacuum expectation values
(20).

As is obvious from the preceding discussion, an exact
calculation of the effective action is impossible. However, if the
number of particles is large enough, a systematic approxima-
tion in powers of 1/

√
N is possible. The reason for this can be

traced back to the relation
∑

k 〈a†
k (0)ak (0)〉 = N0 which calls

for the introduction of the rescaled variables a/
√

N0. In such
a case a large factor N0 appears in the definition of the action
S̃ permitting a systematic semiclassical [21,23] calculation of
the effective action. The first step towards this direction begins
from the “classical” equations of motion:

δS̃

δacl∗
k

= −Jk,
δS̃

δacl
k

= −J ∗
k . (27)

The boundary conditions of these equations can be deduced
from the integral (14).

Skipping all the intermediate steps that can be found
elsewhere (see [21]) we find that in leading order,

A ≈ S̃cl ≈
∫ β

0
dτ

(
a∗cl · ȧcl + H

F,cl
S

) −
∑
j,�

∫ β

0
dτ

×
∫ τ

0
dτ ′acl∗

j (τ )μj�(τ − τ ′)acl
� (τ ′). (28)

In this paper we shall not take into account the quantum
corrections in the last equation staying in the mean-field
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approximation of the problem. By minimizing S̃cl we get the
following equation for the mean value (20):

∂τ 〈ak (τ )〉β + ∂

∂〈ak (τ )〉∗β
HF

S

=
∑

j

∫ τ

0
dτ ′〈aj (τ ′)〉βμjk (τ − τ ′). (29)

By performing the Wick rotation, τ = it , and taking the
zero-temperature limit we get the following equation pertain-
ing to the vacuum expectation values (17):

i∂t 〈ak (t )〉 − ∂

∂〈ak (t )〉∗ HF
S

= −i
∑

j

∫ t

0
dt ′〈aj (t ′)〉μjk (t − t ′). (30)

Equations (29) and (30), although formally similar, have
different physical interpretation. Equation (29) is a diffusion
equation and the variable τ ∈ [0, β] parametrizes local varia-
tions of the temperature, while (30) is an evolution equation
where t ∈ [0,∞) is the time. The boundary conditions of
the two equations are also different. In (29) the boundary
conditions are periodic, as are the conditions under which the
conditions the “classical” Eqs. (27) were solved. The boundary
conditions accompanying Eq. (30) need not be the same as
the corresponding physical problem is quite different. In the
mean-field approximation they can be determined through the
requirement

∑
k 〈a†

k (0)ak (0)〉 = N0.
In explicit form the equations of motion (30) read

i
d

dt
〈ak (t )〉 − (ε + U )〈ak (t )〉 + J [〈ak+1(t )〉

+ 〈ak−1(t )〉] − U |〈ak (t )〉|2〈ak (t )〉

= −i

∫ t

0
dt ′

∑
�∈S

μk�(t − t ′)〈a�(t ′)〉. (31)

The left-hand side of Eq. (31) is the well-known discrete
nonlinear Schrödinger equation (DNLS), while the right-hand
side contains a dissipation term which is nonlocal in time and
incorporates all the effects of the non-Markovian environment.
Due to the fact that all the lattice sites are interconnected
through the environment, this dissipation term is also nonlocal
in space.

Before proceeding, we shall make the simplifying as-
sumption that the coupling strengths γkj are the same, in
magnitude and phase, for all sites: γjk ≡ γk . The structure of
the environment is specified by its spectral density:

D(E) =
∑

k

|γk|2δ(E − Ek ). (32)

At the continuum limit, the usually adopted form [3] for this
function reads as follows:

D(E) = λE

(
E

Ec

)n−1

e− E
Ec (E > 0). (33)

Here λ is a dimensionless coupling constant and Ec is an
exponential cutoff. We shall fix the parameters as follows:
λ = 0.005 and Ec = 30 [7]. Depending on the value of n the

environment is classified as sub-Ohmic (0 < n < 1), Ohmic
(n = 1), and super-Ohmic (n > 1) [7]. In what follows we
will consider spectral densities only of the form (33). The site-
independent dissipation kernel in the continuum is the Laplace
transform of the spectral density and it can be calculated from
Eq. (16):

μ(t − t ′) =
∫ ∞

0
dED(E)e−iE(t−t ′ ). (34)

For comparison reasons we shall also examine the mean-
field equation at the Markovian limit. To this end we redefine
the system’s variables as 〈aj (t )〉 → 〈aj (t )〉e−i(ε+U )t [where
ε = max(εj ), j ∈ S] and in what follows we set εj = ε. The
Markovian case corresponds to the case in which the system’s
timescale (∼1/ε) is much larger than the corresponding envi-
ronmental characteristic scale. At this limit, in integrals like
the one appearing in Eq. (31), we can write〈

αj (t ′)
〉 ∼= 〈

αj (t )
〉
. (35)

At the Markovian limit the memory effects due to the presence
of the environment are absent. This is a natural expectation
when the environment is stochastic and much larger than
the system itself. Now the integral on the right-hand side of
Eq. (31) can be calculated, leading to the result

i
d

dt
〈ak (t )〉 − �ε〈ak (t )〉 + J [〈ak+1(t )〉 + 〈ak−1(t )〉]

−U |〈ak (t )〉|2〈ak (t )〉 = −i�
∑
�∈S

〈a�(t ′)〉, (36)

where

�ε ≡ 2(ε + U ) + Pr
∫ ∞

0
dE

D(E)

E − (ε + U )
, (37)

� ≡ πD(ε + U ). (38)

It is worth noting that even in the Markovian approximation
the dissipative term is nonlocal in space.

The dissipation kernel, in both the non-Markovian and the
Markovian cases, is a complex function. As is obvious from
Eqs. (31) and (36) its real part is responsible for the decoher-
ence effects while the imaginary part changes the oscillation
frequency. The real part of μ̄(t ) = ∫ t

0 μ(t − t ′)e−i(ε+U )t ′dt ′
is plotted in Fig. 1. This zeroth-order moment constitutes
the leading dissipative contribution on the right-hand side of
Eq. (31). In the Markovian limit this term is the only dissipative
contribution. In the case of the sub-Ohmic and the Ohmic
environments and for time roughly J t � 1 the difference
between the Markovian and non-Markovian environments
becomes very small (<5%) while for the super-Ohmic case this
happens earlier (J t � 0.25). This figure makes the physical
meaning of the Markovian limit quite clear: Choosing for the
system a coarse-grained time greater than (the minimum of)
the values mentioned above the environment can be safely
considered as Markovian.

Before closing the section and in connection to our nu-
merical applications we note that the numerical solution of
Eq. (31) is by no means a trivial task as the system to be
solved constitutes nonlinear integro-differential equations of
the Volterra type (for a general discussion on this matter
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R
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))
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0

0.05

0.1
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0

0.05

0.1

R
e(

µ̄
(t

))

Jt
0 1 2

0

0.05

0.1

Jt

(a) (b)

(c) (d)

super−ohmicohmic

sub−ohmic

FIG. 1. Dependence of the real part of the averaged dissipation
kernel μ̄(t ). (a) Comparison between sub-Ohmic, n = 0.5 (solid blue
line), Ohmic, n = 1 (red dashed line), and super-Ohmic, n = 2 (green
dash-dotted line) non-Markovian environments. (b)–(d) Comparison
between Markovian (red dashed line) and non-Markovian (blue
solid line) dynamics for sub-Ohmic (� = 0.0855J ) (b), Ohmic (� =
0.0161J ) (c), and super-Ohmic (� = 5.6 × 10−4J ) (d) environments.
In all cases UN0 = 6J .

see Ref. [24]). We applied two different methods to tackle
this problem. The first one uses the Adomian decomposition
method [25] while for the second method we construct an
appropriate Runge-Kutta method [26]. Both methods yield the
same results with satisfying convergence in the timescales we
will be using in the remaining of the paper. The plotted results
have been produced via the Runge-Kutta method due to its
faster convergence.

IV. THE TWO-SITE BH MODEL

The first example we are going to study is the two-site
BH model. In this case we can write the initial conditions of
Eq. (31) in the form

(a1(0), a2(0)) =
√

N0(
√

p,
√

1 − peiq ),

where p ∈ [0, 1], q ∈ [0, 2π ), and N0 is the initial total particle
number.

As expected, the dynamics of the system depend on the
details of the environment. In Fig. 2 we depict the evolution
of the normalized total particle number, nnorm

tot = ntot/N0, for
sub-Ohmic, Ohmic, and super-Ohmic non-Markovian environ-
ments together with their respective Markovian limit. In all
cases we have used UN0 = 6J and (p, q ) = (0.5, 0.58π ). In
accordance with the behavior of the real part of the dissipation
kernel (see Fig. 1), it is seen that the fastest and the slowest
decays correspond to sub-Ohmic and super-Ohmic environ-
ments, respectively. As depicted in Figs. 2(b), 2(c) and 2(d)
the differences between the Markovian and the non-Markovian
cases are rather small but not negligible. For the sub-Ohmic
case [Fig. 2(b)] the difference is about ∼6% after J t = 2 with
the non-Markovian case having the slower decay rate. For the
Ohmic, Fig. 2(c), and super-Ohmic, Fig. 2(d), environments
the difference is about ∼5% and ∼3%, respectively, with
the Markovian case having slower decay rate. Comparing the
results depicted in Figs. 2(b), 2(c) and 2(d) we see that the
important factor for the decay rate is the dependence of the
dissipation function on the exponent n. Indeed the difference

0 1 2
0

0.5

1

n to
t/N

0

0 1 2
0

0.5

1

sub−ohmic

0 1 2
0.7

0.8

0.9

1

n to
t/N

0

Jt

ohmic
0 1 2

0.9

0.95

1

Jt

super−ohmic

(b)

(c) (d)

(a)

FIG. 2. Evolution of the normalized total particle number,nnorm
tot =

ntot/N0. (a) Comparison between sub-Ohmic, n = 0.5 (solid blue
line), Ohmic, n = 1 (red dashed line), and super-Ohmic, n = 2 (green
dash-dotted line) non-Markovian environments. (b)–(d) Comparison
between Markovian (red dashed line) and non-Markovian (blue solid
line) dynamics for sub-Ohmic (b), Ohmic (c), and super-Ohmic (d)
environments. In all cases UN0 = 6J and the initial conditions are
(p, q ) = (0.5, 0.58π ).

between super- and sub-Ohmic cases is about ∼47%, while
between sub-Ohmic and Ohmic about ∼33%.

An interesting question is about the way the interactions
influence the decay rate. In Figs. 3(a) and 3(b) we show the
normalized total particle number, after a fixed propagation
time, for various initial conditions and interaction strengths
(providing that our approximation remains valid). Clearly, with
increasing interaction strength the losses are increased. A quite
interesting observation is that, in all cases, the initial condition
Fπ = (p, q ) = (0.5, π ) presents zero losses. By inspecting
Eq. (31) we can confirm that Fπ is a fixed point on its left-hand
side and, at the same time, the sum on its right-hand side
is initially (t = 0) zero. This observation promotes Fπ to a
fixed point for the full non-Markovian DNLS and yields an
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FIG. 3. The normalized total particle number, nnorm
tot = ntot/N0,

after a fixed propagation time J tf = 2, for different initial conditions
and interaction strengths. (a), (b) We have fixed p and q and we
depict nnorm

tot (tf ) as a function of q and p, respectively, for three
different interaction strengths: UN0 = 0 (blue solid line), UN0 = 3J

(red dashed line), and UN0 = 6J (green dash-dotted line). In (c) and
(d) the color map shows the value of nnorm

tot (tf ) for all (p, q ) initial
conditions, for UN0 = 0 and UN0 = 6J , respectively. In (c), (d)
the black lines depict the classical phase space of the nondissipative
DNLS.
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FIG. 4. Evolution of (a), (b) the phase of the fields, (c), (d) the
normalized fields, and (e), (f) decay rate, for two different interaction
strengths: UN0 = 3J (left column) and UN0 = 6J (right column).
The vertical black dot-dashed line depicts the time when the phase
difference is zero, while the vertical black solid line the time when
the population difference is zero. The initial conditions in both cases
are (p, q ) = (0.5, 0.64π ).

evolution with zero losses. The same analysis can be carried
out for the Markovian DNLS also and the zero-loss evolution
appears again. In the same context, we can understand the
maximum losses observed at the other fixed point of DNLS,
F0 = (p, q ) = (0.5, 0); see Fig. 3(a). Although F0 is a fixed
point on the left-hand side of Eq. (31), the sum on the right-hand
side of this equation is not initially zero but attains its maximum
value.

In Figs. 3(c) and 3(d) we have scanned the initial conditions
and we depict nnorm

tot after a fixed propagation time, for zero
interactions and UN0 = 6J , respectively. The results follow
the classical phase space of the nondissipative system (the
black lines). In the noninteracting case, Fig. 3(c), minimum
losses are observed around Fπ and maximum ones around F0.

In the interacting case, once again maximum losses are around
F0 and minimum losses along the separatrix with zero ones
exactly at Fπ . The above analysis is strictly related with the
two-site system under consideration. As we shall see in the
next section the key feature of the zero-loss evolution is the Z2

symmetry appearing in Figs. 3(c) and 3(d).
To understand better why with increasing interactions we

have, in general, increased losses, in Fig. 4, we have plotted
the time evolution of the phases of the fields 〈ak〉, of the
population in each lattice site, and the corresponding decay
rate for two different interaction strengths. As we observe when
the population difference is maximum, the phases of the fields
are the same and we have the maximum decay rate. When the
population difference is zero, the phases of the fields have the
maximum difference and we have the minimum decay rate.
This behavior is expected since in order to have cancellation
of the dissipative term, on the right-hand side of Eq. (31), at
a given time instant, we must have equal populations in each
site with phase difference of π . As we can see for stronger
interactions we have more frequently maximum population
difference between the sites; thus we have larger losses.

V. THE FOUR-SITE BH MODEL

In the previous section we saw that the initial conditions
leading to particle number conservation are fixed points of
the nondissipative DNLS. In this section we shall see that
this result is exclusively tied to the two-site case. As the
forthcoming analysis will prove, the increase of lattice sites and
the corresponding enriching of the system’s structure reveal the
existence of number-conserving initial conditions that are not
connected with fixed points. More than this, we shall find that
the increase of the number of sites enables the observation of
purely non-Markovian phenomena as the return of particles
from the environment back to the system.

In Fig. 5 we present the four-site dynamics, for four different
sets of initial conditions (first column), and we plot the

FIG. 5. Time evolution of the normalized total particle number (second column) and of the normalized particle density in each lattice site
(third column) for four different initial states (first column): (a)–(c) a(0) = √

N0(1,−1, 1, −1)/2, (d)–(f) a(0) = √
N0(0, 1, −1, 0)/

√
2, (g)–(i)

a(0) = √
N0(1, 0, 0, −1)/

√
2, and (j)–(l) a(0) = √

N0(1,−1, −1, 1)/2. In all cases UN0 = 6J and we have hard-wall boundary conditions.
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FIG. 6. Time evolution of the normalized total particle number. In all cases the initial condition is a(0) = √
N0(1, 0, 0, 0) and UN0 = 0.

For the other parameters vertically we have the sub-Ohmic case (n = 0.5, first column), the Ohmic case (n = 1, second column), and the
super-Ohmic one (n = 2, third column). Horizontally we have λ = 0.001 (a)–(c), λ = 0.005 (d)–(f), and λ = 0.01 (g)–(i).

evolution of the normalized total particle number nnorm
tot =

ntot/N0 (second column) and the normalized particle density
in each lattice site (third column) for the ohmic case and for
UN0 = 6J . In all cases the initial sum on the right-hand side
of Eq. (31) is zero, due to the phase difference between the
initial values of 〈ak〉. In the figures in the first, second, and
third row, we observe that at every time instant there are always
two sites with the same population and a phase difference of
π . As a consequence the total particle number is preserved.
This interesting effect is connected to the Z2 symmetry of the
initial state. More than this, we have confirmed that every Z2-
invariant initial state leads to a particle-conserving evolution.

To demonstrate the importance of the Z2 symmetry we
examine (see Fig. 5, fourth row) an initial state in which the
sum on the right-hand side of Eq. (31) is zero but lacks Z2

invariance. As readily confirmed the particles tunnel from the
inner to the outer sites. In this process the population remains
intact but the π -phase difference disappears and particle losses
appear. At the time J t = 2 the initial configuration is retrieved,
although with fewer particles, and the evolution continues with
a stepwise particle-loss profile. The effect described above
remains the same at the Markovian limit. The reason is that
the crucial factor is connected with the Z2 symmetry that both
the effective action and the initial state share. For this reason,
Eqs. (31) and (36) are Z2 invariant and the same happens for the
boundary conditions accompanying them. Thus, one expects
the same symmetry to characterize their solution. In such a
case the summation on the right-hand side, in both equations,
yields a zero result and the particle loss disappears.

The next quite interesting effect is a purely non-Markovian
phenomenon. In Fig. 6 we depict the time evolution of the
normalized total particle number beginning from a state in
which all the particles are centered at the first site. The results
present the exact dynamics as we have adopted the simplifying
assumption U = 0. The Markovian limit is characterized by
a constant drop of the population as expected for a system
coupled with a stochastic vacuum. In the non-Markovian

cases local recoveries of the population are observed, a phe-
nomenon that becomes increasingly important as the system-
environment coupling increases. This behavior is a result
of memory effects due to the non-Markovian nature of the
environment. The imaginary part of the dissipation function
becomes more important in the non-Markovian case and
gives rise to the observed oscillations of the particle number
while the real part, as already stated, gives the general losses
in the population. As a consequence the particle number
decays slower in the non-Markovian than in the Markovian
case.

VI. CONCLUSIONS

In this paper we studied the influence of a non-Markovian
environment in the mean-field dynamics of a BH chain using
coherent-state path integrals. Starting with a BH chain coupled
to a non-Markovian vacuum, we used coherent-state path
integrals to write the generating functional for the total system.
Integrating out the degrees of freedom of the environment
and minimizing the effective action we derived the mean-field
equations for 〈ak〉.

With this tool at hand, we studied the dynamics of the
two-site BH model. We compared the non-Markovian and
Markovian dynamics for sub-Ohmic, Ohmic, and super-Ohmic
environments and we also compared the dynamics for different
interparticle interaction strengths between the particles. We
saw that the particle loss increases as the interaction strength in-
creases. We also investigated a quite interesting phenomenon:
the initial conditions that support a time evolution without
particle losses. Based on the simplicity of the two-site model,
we connected this particle-preserving behavior with the fixed
point of the corresponding DNLS.

We have also investigated a four-site system in which the
zero-loss evolution cannot be connected with fixed points.
Our analysis revealed the fact that under particle number
preservation lies the fact that the effective action and the
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initial state of the system remain invariant under Z2 rotations.
Finally, we studied a purely non-Markovian effect, the return
of particles from the vacuum environment back to the system,
due to the non-Markovian memory effects.

The present work opens new possibilities for the study of
the dynamics of many-body systems coupled to Markovian or
non-Markovian environments. One of the interesting questions
to be faced is the robustness of the above presented effects

against quantum fluctuations. The path-integral formalism we
presented makes possible the systematic examination of the
quantum corrections in the effective action even in the case of
strong interactions [23]. In the same framework the role of the
finite temperature can be investigated via the Feynman-Vernon
approach. A last but not least remark is that the above presented
analysis can be extended to spin or fermionic systems through
the corresponding coherent-state path integrals [15].

[1] G. Kordas, D. Witthaut, P. Buonsante, A. Vezzani, R. Burioni,
A. I. Karanikas, and S. Wimberger, Eur. Phys. J. ST 224, 2127
(2015).

[2] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).

[3] J.-H. An and W.-M. Zhang, Phys. Rev. A 76, 042127 (2007).
[4] M. W. Y. Tu and W.-M. Zhang, Phys. Rev. B 78, 235311 (2008).
[5] M. Chen and J. Q. You, Phys. Rev. A 87, 052108 (2013).
[6] W. Shi, X. Zhao, and T. Yu, Phys. Rev. A 87, 052127 (2013).
[7] J.-H. An, M. Feng, and W.-M. Zhang, Quantum Inf. Comput. 9,

317 (2009).
[8] J. Jing and T. Yu, EPL 96, 44001 (2011).
[9] J. Jing, X. Zhao, J. Q. You, W. T. Strunz, and T. Yu, Phys. Rev.

A 88, 052122 (2013).
[10] J. Piilo, S. Maniscalco, K. K. Harkonen, and K.-A. Suominen,

Phys. Rev. Lett. 100, 180402 (2008).
[11] H.-P. Breuer, Phys. Rev. A 70, 012106 (2004).
[12] J. Hubbard, Proc. R. Soc. A 276, 238 (1963).
[13] J. H. Wilson and V. Galitski, Phys. Rev. Lett. 106, 110401

(2011).

[14] G. Kordas, S. I. Mistakidis, and A. I. Karanikas, Phys. Rev. A
90, 032104 (2014).

[15] G. Kordas, D. Kalantzis, and A. Karanikas, Ann. Phys. 372, 226
(2016).

[16] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).
[17] S. Longhi, J. Phys. B: At. Mol. Opt. Phys. 44, 051001 (2011).
[18] A. Caldeira and A. Leggett, Phys. A (Amsterdam, Neth.) 121,

587 (1983).
[19] K. K. Rajagopal, Phys. A (Amsterdam, Neth.) 429, 231 (2015).
[20] U. Weiss, Quantum Dissipative Systems (World Scientific Pub-

lishing Company, Singapore, 2012).
[21] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics,

Polymer Physics, and Financial Markets (World Scientific Pub-
lishing Company, Singapore, 2009).

[22] A. Ferraz and E. Kochetov, Phys. Rev. B 86, 247103 (2012).
[23] H. Kleinert, J. Phys. B: At. Mol. Opt. Phys. 46, 175401 (2013).
[24] D. Bahuguna, A. Ujlayan, and D. Pandey, Comput. Math. Appl.

57, 1485 (2009).
[25] J. Biazar, Appl. Math. Comput. 168, 1232 (2005).
[26] A. Filiz, Int. J. Sci. Res. Publ. 3, P211717 (2013).

013637-8

https://doi.org/10.1140/epjst/e2015-02528-2
https://doi.org/10.1140/epjst/e2015-02528-2
https://doi.org/10.1140/epjst/e2015-02528-2
https://doi.org/10.1140/epjst/e2015-02528-2
https://doi.org/10.1103/PhysRevA.76.042127
https://doi.org/10.1103/PhysRevA.76.042127
https://doi.org/10.1103/PhysRevA.76.042127
https://doi.org/10.1103/PhysRevA.76.042127
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevB.78.235311
https://doi.org/10.1103/PhysRevA.87.052108
https://doi.org/10.1103/PhysRevA.87.052108
https://doi.org/10.1103/PhysRevA.87.052108
https://doi.org/10.1103/PhysRevA.87.052108
https://doi.org/10.1103/PhysRevA.87.052127
https://doi.org/10.1103/PhysRevA.87.052127
https://doi.org/10.1103/PhysRevA.87.052127
https://doi.org/10.1103/PhysRevA.87.052127
https://doi.org/10.1209/0295-5075/96/44001
https://doi.org/10.1209/0295-5075/96/44001
https://doi.org/10.1209/0295-5075/96/44001
https://doi.org/10.1209/0295-5075/96/44001
https://doi.org/10.1103/PhysRevA.88.052122
https://doi.org/10.1103/PhysRevA.88.052122
https://doi.org/10.1103/PhysRevA.88.052122
https://doi.org/10.1103/PhysRevA.88.052122
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.106.110401
https://doi.org/10.1103/PhysRevLett.106.110401
https://doi.org/10.1103/PhysRevLett.106.110401
https://doi.org/10.1103/PhysRevLett.106.110401
https://doi.org/10.1103/PhysRevA.90.032104
https://doi.org/10.1103/PhysRevA.90.032104
https://doi.org/10.1103/PhysRevA.90.032104
https://doi.org/10.1103/PhysRevA.90.032104
https://doi.org/10.1016/j.aop.2016.05.012
https://doi.org/10.1016/j.aop.2016.05.012
https://doi.org/10.1016/j.aop.2016.05.012
https://doi.org/10.1016/j.aop.2016.05.012
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1088/0953-4075/44/5/051001
https://doi.org/10.1088/0953-4075/44/5/051001
https://doi.org/10.1088/0953-4075/44/5/051001
https://doi.org/10.1088/0953-4075/44/5/051001
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/j.physa.2015.02.059
https://doi.org/10.1016/j.physa.2015.02.059
https://doi.org/10.1016/j.physa.2015.02.059
https://doi.org/10.1016/j.physa.2015.02.059
https://doi.org/10.1103/PhysRevB.86.247103
https://doi.org/10.1103/PhysRevB.86.247103
https://doi.org/10.1103/PhysRevB.86.247103
https://doi.org/10.1103/PhysRevB.86.247103
https://doi.org/10.1088/0953-4075/46/17/175401
https://doi.org/10.1088/0953-4075/46/17/175401
https://doi.org/10.1088/0953-4075/46/17/175401
https://doi.org/10.1088/0953-4075/46/17/175401
https://doi.org/10.1016/j.camwa.2008.10.097
https://doi.org/10.1016/j.camwa.2008.10.097
https://doi.org/10.1016/j.camwa.2008.10.097
https://doi.org/10.1016/j.camwa.2008.10.097
https://doi.org/10.1016/j.amc.2004.10.015
https://doi.org/10.1016/j.amc.2004.10.015
https://doi.org/10.1016/j.amc.2004.10.015
https://doi.org/10.1016/j.amc.2004.10.015
http://www.ijsrp.org/research-paper-0913.php?rp=P211717



