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Dynamics of a few interacting bosons escaping from an open well
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The dynamics of a few ultracold bosons tunneling from a one-dimensional potential well into an open space is
studied. In such a system several decay channels can be distinguished, each corresponding to a different number
of bosons escaping simultaneously. We show that as the interparticle interaction strength is changed, the system
undergoes transitions between distinct regimes characterized by the dominance of different decay channels. These
transitions are reflected in the behavior of the decay rate of the system, which is measurable experimentally. By
means of a simple theoretical description, we show that the transitions occur at the points where a new decay
channel becomes energetically viable. The results provide insight into the behavior of decaying few-body systems
and may have potential interest for experiments.

DOI: 10.1103/PhysRevA.98.013634

I. INTRODUCTION

Tunneling through a classically impenetrable barrier is a
hallmark effect of quantum mechanics. In Gamow’s seminal
work from 1928 [1], a quantum tunneling was used to explain
the phenomenon of α decay that resisted a satisfactory classical
explanation. Gamow expressed the problem in terms of a
particle escaping from a finite potential well into open space.
The model of particles tunneling out of a potential trap has since
seen wide use in the analysis of various phenomena in physics,
including proton emission [2,3], fusion, fission, photoassocia-
tion, and photodissociation [4–7]. While the escape behavior
of a single particle is well understood theoretically [8], and the
tunneling of a dilute Bose-Einstein condensate of a large num-
ber of particles is appropriately captured in the mean-field ap-
proximation [9–12], a thorough description of the dynamics of
interacting few-body systems remains elusive [13,14]. While
extensive work has been done on the dynamics of bosonic
systems tunneling between individual sites of an optical lattice
(see, e.g. [15,16] and the citations therein), the dynamics in
open systems have received comparatively less attention.

Thanks to brand new developments in the field of ultracold
physics, the few-body tunneling problem has seen significant
interest in recent years [13,14,17–27]. New techniques give the
experimentalist precise control over the potential landscape
[28–30], effective dimensionality [31–33], initial state [34],
and interparticle interactions [35–38]. Notable experiments in
the area have been done by the Heidelberg group, where the
decay of a system of a few distinguishable fermions was studied
[39,40].

It is known that the decay of trapped few-body systems can
take place via several different processes. For example, in the
case of a trapped two-body system, the particles may tunnel
sequentially, one by one, or they may escape simultaneously
as a bound pair [41,42]. An interesting question is the relative
contribution of the different tunneling channels to the overall
decay process. A few works have touched on the question
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with regards to two-body systems [21,24,25,40]. However,
a systematic treatment, specifically when systems with more
than two particles are considered, is still missing.

In this work, we aim to qualitatively analyze the few-body
decay processes and investigate the contribution of separate
decay channels. We numerically simulate a one-dimensional
system of a few (two and three) bosons, escaping from a
potential well into open space. We investigate how the nature
of the decay changes with the interaction strength. Our focus is
on attractive forces, which, due to energy conditions, strongly
support many-body tunneling and suppress sequential tunnel-
ing. A simple model is provided for estimating what tunneling
mechanisms are available in different interaction regimes. We
show that predictions of this oversimplified model surprisingly
well reflect the results of the numerical simulations. Our work
is complementary to the results presented in [24,40,42] where
distinguishable fermions were studied.

The work is organized as follows. In Sec. II we describe
the model system under study. In Sec. III we describe the
decay dynamics of a two-boson system, while also establishing
a toolbox of techniques that allow one to closely analyze
the structure of the decay process. In Sec. IV we focus on
the long-time dynamics of the two-boson system. In Sec. V
we describe the decay of a three-boson system. In Sec. VI we
give the results a theoretical foundation by describing a simple
model of few-body decay and showing that its predictions agree
well with the numerical results. In Sec. VII we analyze the
influence of the shape of the potential beyond the barrier on
the dynamics. Section VIII is the conclusion.

II. THE MODEL

We consider an ultracold system of N indistinguishable
bosons of mass m, confined in a one-dimensional external trap.
The many-body Hamiltonian of the system reads

H =
∑

i

[
− h̄2

2m

∂2

∂xi
2

+ V (xi )

]
+ g

∑
i<j

δ(xi − xj ), (1)
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FIG. 1. The trap potential V (x ) as defined by Eq. (2) (red solid
line) and the modified potential V ′(x ) defined by Eq. (3) (red dotted
line). Note that V (x ) and V ′(x ) are identical for x < 3.75. The initial
state of the system is prepared as the interacting ground state in a
harmonic oscillator 1

2 m�2
0x

2 (thick line). Energy and length are given
in units of h̄�0 and

√
h̄/m�0, respectively.

where xi represents the position of the ith boson. The inter-
action potential is modeled by the δ function. This is a good
approximation for ultracold particles, for which the de Broglie
wavelength is larger than the average interparticle distance and
fine spatial details of scattering beyond the s-wave level can
be ignored. The interparticle interaction strength g is related
to the s-wave scattering length [43,44] and in experiments it
can be tuned via the Feshbach resonance technique [35,36] or
by changes of the shape of the confinement in perpendicular
directions [43].

For convenience we assume that initially particles are
confined in a harmonic trap of frequency �0. Then the trap is
suddenly opened and it has the following form (x0 = √

h̄/m�0

is the harmonic oscillator length unit):

V (x) =
⎧⎨
⎩

m�0x
2/2, x < 0

m�x2/2, 0 � x � 2x0

h̄�0e
−2(x/x0−9/4)2

, x > 2x0.

(2)

which corresponds to a potential well, separated from free
space by a finite potential barrier. The modified frequency � ≈
�0/2.26 ensures that the potential shape V (x) is a continuous
function and has a continuous first derivative in the entire
space (see Fig. 1). To make the analysis more complete, later
(in Sec. VII) we also study the influence of the shape of the
potential beyond the barrier. Therefore we examine a small
modification of the external potential with linear ramping
outside the well:

V ′(x) =
{
V (x), x � (15/4)x0

h̄�0[6(x/x0 − 15/4) + 1]/90, x > (15/4)x0.

(3)

Coefficients are chosen so that the function V ′(x) and its first
derivative are continuous everywhere. This modified potential
is shown in Fig. 1 as a dotted line.

In the following, we express all quantities in natural har-
monic oscillator units, i.e., energy, length, and the interaction
are given in h̄�0,

√
h̄/m�0, and

√
h̄3�0/m, respectively.

Since initially all particles are confined in the harmonic trap,
the initial many-body state of the system |�0〉 is identical to the
ground state of N interacting bosons in this trap. For vanish-
ing interactions (g = 0) it is a simple product state |�0〉 =

(â†
0)

N |vac〉, where â0 annihilates a boson in the ground-
state orbital of the corresponding single-particle problem. For
nonvanishing interactions (g �= 0) the N -body ground state
|�0〉 is found numerically by propagating a trial wave function
in the imaginary time. The evolution of the system for t > 0
is performed straightforwardly by solving a time-dependent
many-body Schrödinger equation in position representation.
These calculations are done on a dense discrete grid taking into
account a huge extent of space in the region where the potential
vanishes. For the N = 2 case x ∈ [−10; 90] (in natural units of
a harmonic oscillator), while for the N = 3 case x ∈ [−4; 40].
We have verified that the chosen numerical parameters are
sufficient for the short-time scales considered, i.e., enlarging
the system does not significantly affect the results obtained.

III. TWO-BOSON CASE

First, we focus on the simplest nontrivial system of N = 2
interacting bosons. After the sudden change of the potential at
t = 0 the particles start to escape to the open space through
the barrier. The resulting dynamical properties of the many-
body interacting system can be well described in the language
of appropriate probabilities. In the case of two bosons one
distinguishes three different probabilities which can be quite
easily measured experimentally [40,42]: the probability that
both particles remain in the trap P2(t ), the probability that
exactly one particle occupies the trapP1(t ), and the probability
that exactly both particles are out of the trap P0(t ). These
probabilities are directly encoded in the two-particle density
profile ρ(x1, x2, t ) = |�(x1, x2, t )|2 as appropriate integrals,

Pk (t ) =
∫

Pi

dx1dx2 ρ(x1, x2, t ). (4)

Integrations are performed over appropriate regions Pi of two-
particle positions, i.e., x1, x2 < xw for P2, x1, x2 > xw for P0,
and remaining configurations for P1, where xw ≈ 3x0 is the
position of the barrier. Of course initially one finds P2(0) = 1
and P1(0) = P0(0) = 0.

In Fig. 2 we show a time evolution of the two-particle
density profile ρ(x1, x2, t ) for different interactions between
particles. The dashed lines, located at xw, divide the configu-
ration space into three different regions Pi . At the beginning
(t = 0) the many-body wave function is located only within
the region P2. For a trapped system of two bosons, there are
essentially two mechanisms of particle loss from the trap:
Bosons can tunnel out sequentially (one after the other), or
they can tunnel simultaneously as a bound pair.

In the noninteracting case (g = 0, top row in Fig. 2) the
two particles tunnel completely independently. A significant
amount of probability density flows from P2 into the P1 region.
This is a signature of sequential tunneling, where one boson has
tunneled out while the other still remains in the well. Note the
visible oscillations in the probability density flowing into P1.
They appear because, after the potential landscape is changed
at t = 0, the initial wave function is no longer the ground state
of the Hamiltonian and the density begins oscillating back and
forth inside the well.

There is also a non-negligible concentration of probability
density within the P0 region, corresponding to both bosons
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FIG. 2. Time evolution of the density distribution ρ(x1, x2, t )
in the two-boson system with different interaction strengths g.
The dashed lines demarcate the well boundary xw ≈ 3x0. For the
noninteracting and repulsive systems (g = 0, g = 2) only sequential
tunneling is present, while in the strongly attractive system (g = −2)
essentially the entire decay process takes place via pair tunneling.
Positions are in units of

√
h̄/m�0, interaction strength in units of√

h̄3�0/m, time in units of 1/�0.

having tunneled out. Due to the absence of interactions,
the two-particle density shows no correlations, i.e., the two-
particle wave function is a simple product of two identical
one-particle wave functions.

For repulsive interactions (g = 2, middle row) the sequen-
tial tunneling is enhanced. The probability first flows from
P2 into the P1 region, and subsequently begins to flow from
the areas of increased density in P1 into P0, corresponding
to the second boson escaping the well (when the first one
is already outside). Moreover, we observe a vanishing two-
particle density along the x1 = x2 diagonal in the P0 region. It
means that the pair tunneling (correlated in positions) is almost
completely suppressed.

The situation is markedly different for a strongly attractive
system (g = −2, bottom row). As it is seen, in this case a
pair tunneling is the only decay mechanism present, and the
sequential tunneling is absent. Hence, the probability density
within the P1 region practically vanishes. Instead, density flows
from P2 directly into the P0 region and remains concentrated
in P0 along the x1 = x2 diagonal, representing the bosons
traveling together as a bound pair.

For a more quantitative description of the many-body
tunneling process, in Fig. 3 we show the time dependence of
the probabilities Pk (t ) for different interactions.

For the noninteracting system (g = 0), the sequential decay
of the system constitutes the dominant decay process. Hence
the time evolution of the Pk (t ) resembles a two-stage nuclear
decay. P2(t ) steadily decreases until it reaches zero, P1(t )
grows at first but then reaches a maximum and begins decreas-
ing, and P0(t ) steadily increases throughout the entire process.
Since the potential supports no bound states, for t → ∞ one
expects P2(t ) = P1(t ) = 0 and P0(t ) = 1.
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FIG. 3. Time evolution of the probabilities Pk (t ) of finding
exactly k particles inside the well, for the two-boson system with
different interaction strengths g. For the cases g = 0, g = 2, and
g = −0.5 the evolution is governed mainly by the two-stage process
of sequential tunneling, in which the probability flows alongP2(t ) →
P1(t ) → P0(t ). For the strongly attractive system (g = −2) both
bosons tunnel simultaneously, so that probability flows straight from
P2(t ) to P0(t ). Time and interaction strength g are given in units of
1/�0 and

√
h̄3�0/m, respectively.

For a repulsive system (g = 2.0), as well as for a weakly
attractive system (g = −0.5), the evolution of probabilities
remains similar to the noninteracting case. In the repulsive
case, the interaction causes the first tunneling boson to see a
lower effective potential barrier. Accordingly, the depletion of
P2(t ) is faster than in the noninteracting system. Furthermore,
the single boson left in the trap feels no interaction and tunnels
more slowly than the first. In addition, the probability of finding
exactly one boson in the trap becomes higher, andP1(t ) reaches
a higher maximum value. In the attractive case, the depletion
of P2(t ) is slower and P1(t ) is smaller, for analogous reasons.

The dynamics becomes significantly different in the
strongly attractive regime (g = −2.0). Here the role of the two-
stage sequential decay is negligible. Therefore P1(t ) remains
near zero at all times, while the depletion of P2(t ) is nearly
mirrored by a corresponding increase in P0(t ). However, in
this limit the decay of P2(t ) is very slow compared to the
noninteracting system.

While the short-time dynamics already give a quite good
view of the nature of the decay process, a more in-depth
understanding of the dynamics requires simulating the evo-
lution over longer timescales. This is especially relevant for
strongly attractive systems, where the decay is very slow and
the characteristic qualities of the dynamics only become visible
over a long time. Simulating the system dynamics for longer
times is, however, problematic, as the particles leaving the
well eventually reach the boundary of the box, leading to
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nonphysical reflections that distort the results. To avoid this
problem, we incorporate the simplest method used widely
in the framework of numerical simulation for open systems.
Namely, far from the trap we add an imaginary potential
term −i�(x) to the single-particle Hamiltonian, to absorb
particles [45]. The form of �(x) should be chosen carefully
to minimize reflections and to ensure complete absorption far
from the trap [46]. For this reason, we choose a smoothly rising
function �(x) = 10−3 × (x − 20)2 (for x > 20 in natural units
of harmonic oscillator). We checked that the final results do not
depend on details of �(x).

Of course, with this simplified approach, one cannot predict
all possible properties of the system. In particular, all quantities
which depend on the microscopic state of the system in the
region where the absorbing potential is present are strongly
affected by this nonphysical mechanism [47]. However, quan-
tities which depend only on the state of particles in the region
far from the absorbing border, such as the probability P2(t ),
are well captured by the evolution.

IV. LONG-TIME DYNAMICS OF THE
TWO-BOSON SYSTEM

It is known that for decaying systems such as the one
under study, the survival probability [the probability PS (t ) =
|〈�0|�(t )〉|2 that the system remains in the initial state] obeys
an exponential decay law to a very good approximation [48].
For the two-body trapped system, the survival probability
is mimicked by the probability P2(t ). Therefore, its time
evolution should be approximately given by

P2(t ) ∼ e−γ t , (5)

with some constant decay rate γ . To confirm this assumption,
in Fig. 4 we show the time evolution of the probability P2(t )
over a long timescale, along with an exponential fit. It can
be seen that throughout the decay process the time evolution
of P2(t ) indeed follows an exponential form. For very short
and long times deviations from exponential decay are present.
However, such nonexponential features are expected, since in
a system with an energy spectrum bounded from below the
decay cannot be exponential for all times [49]. Physically,
the nonexponential decay can be interpreted as representing
the possibility of reconstruction of the initial state from the
decay fragments [50,51]. For the studied system, the short-time
deviations are almost invisible on the scale of the plot. On
the other hand, the long-time deviations appear when the
trapped system is practically completely depleted and P2(t ) is
quite negligible. Thus essentially the entire tunneling process
is governed by an exponential regime. Accordingly, we can
describe the decay through a single constant decay rate γ .

Note that for sufficiently large times, the dynamics may
be affected by small reflections from the complex absorbing
potential. However, such fine details are unimportant for the
overall problem studied in the work, since we focus only on the
dynamics in the intermediate times where exponential decay
dominates the dynamics.

As shown in Fig. 5, the decay rate γ essentially depends
on interaction g. For convenience, we also show its suscepti-
bility, defined as χ (g) = γ −1(∂γ /∂g). The decay rate grows
monotonically with g. However, a significant change occurs at
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FIG. 4. Time evolution of the probability P2(t ) over a long
timescale (red, solid) for the two-boson system with various inter-
action strengths g. Blue dashed line shows an exponential fit to P2(t ).
It can be seen that P2(t ) decays exponentially (apart from very long
times). Time and interaction strength g are given in units of 1/�0 and√

h̄3�0/m, respectively.

g ≈ −0.85. The growth of γ (g) becomes significantly faster
above this point, which is accompanied by a sharp, clear peak in
χ (g). This behavior is in agreement with our previous results.
As was discussed, in the strong attraction limit the decay of the
system takes place solely by the pair tunneling. The sequential
tunneling appears as we move closer to g = 0. This observation
suggests that the qualitative change in the dependence of γ (g)
on g corresponds to the activation of the sequential tunneling
channel. To verify this hypothesis, one needs a method of
determining the relative participation of the different tunneling
channels. One of the possibilities is to consider the probability
fluxes instead of probabilities.
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two-boson system. (Inset) The susceptibility χ (g) = γ −1(∂γ /∂g).
A sudden change of the behavior is clearly seen at g = −0.85.
Interaction strength g is given in units of

√
h̄3�0/m, decay rate in

units of �0, susceptibility in units of
√

m/h̄3�0.

013634-4



DYNAMICS OF A FEW INTERACTING BOSONS ESCAPING … PHYSICAL REVIEW A 98, 013634 (2018)
re

la
tiv

e 
pa

rt
ic

ip
at

io
n 

J i
/J

Interaction g

Single-boson
Two-boson

 0

 0.2

 0.4

 0.6

 0.8

 1

-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4  0  0.4  0.8  1.2
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respectively, in the overall tunneling dynamics of the two-boson
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Fig. 5). As can be seen, it matches very well the location of the
transition between the two regimes. Interaction strength g is given
in units of

√
h̄3�0/m.

By the continuity equation, the derivative J (t ) =
−∂P2(t )/∂t is equal to the total flow of probability out of
the P2 region. The total flow J (t ) can be decomposed into two
independent parts that correspond to the two different channels
of P2(t ) decay:

J (t ) = J1(t ) + J0(t ), (6)

where Ji (t ) is the probability flow between the P2 and Pi

regions. For purpose of numerical calculations, J (t ) can be
also calculated as a line integral,

J (t ) =
∮

∂P2

j (x1, x2; t )dl, (7)

where dl is a line element of the boundary ∂P2, and j (x1, x2; t )
is the outgoing probability flux through ∂P2. In this approach
one divides the boundary ∂P2 into two segments B1 and B0,
indicating a border between the region P2 and the regions P1

and P0, respectively. This allows us to calculate J1(t ) and J0(t )
separately, by integrating the outgoing probability flux only
along the corresponding boundary segment.

It should be noted that in this approach there is a tendency
for slight overestimation of the flux J0(t ). This is because in
practice a rapid sequence of single-boson tunnelings cannot
be distinguished from pair tunneling. However, for a careful
choice of the boundaries B1 and B0 this effect is minimized,
and consequently it does not significantly affect the results.

The resulting individual fluxes J1(t ) and J0(t ) vary in time.
However, within the time window in whichP2(t ) decays expo-
nentially, the ratios J1/J and J0/J (indicating participations
of the sequential and pair tunneling in the overall decay) are
essentially constant. In Fig. 6 we plot these ratios as a function
of interaction g. It can be seen that for g < −0.85 the tunneling
process is nearly completely dominated by pair tunneling,
while for g > −0.85 it is dominated by single-boson tunneling,
with a smooth but rapid transition between the two regimes.

This result confirms that the change in the behavior of the
decay rate at g ≈ −0.85 (see Fig. 5) is connected to a very
rapid activation of sequential tunneling.

In tunneling experiments determining the exact proportion
of multiparticle decay can pose significant difficulties [40].
However, our result shows that the behavior of γ (g) can be
used for indirect detection of the transition of the system
between the different decay regimes. Since the decay rate γ (g)
can be obtained experimentally quite easily [40], therefore by
measuring it for different interactions g and calculating the
susceptibility χ (g), it is in principle possible to gain insight
into the form of the decay process.

At this point it is worth noting that in principle, the decay
rates could also be found via time-independent methods. For
example, one can exploit the WKB approximation (see, for
example, [39,42]). However, it is known that the approxima-
tion is oversimplified and may give inaccurate results [24].
Indeed, in the problem under study we found that calculations
performed in the WKB approximation framework yield an
underestimated decay rate for the noninteracting system. In this
work in all cases the decay rates are obtained from exponential
fits to the probabilities extracted from the numerically exact,
time-dependent dynamics.

V. THREE-BOSON CASE

Now let us apply the above methods to analyze the decay
of a three-boson system. The overall dynamics in this case still
obeys the law of exponential decay. The survival probability
PS (t ) is mimicked by the probability of finding all three
bosons in the well, P3(t ). The probability P3(t ) is calculated
by integrating the density ρ(x1, x2, x3, t ) = |�(x1, x2, x3, t )|2
over the region P3 (x1, x2, x3 < xw) and the decay rate γ is
obtained from an exponential fit to P3(t ).

A significant difference is that there are now essentially
three different decay channels possible. In addition to the
single-boson tunneling and two-boson tunneling known from
the two-particle case, the initial state can also decay through
the emission of three bosons simultaneously. In Fig. 7(a) we
show the susceptibility χ (g) of the decay rate as a function of
g. Unlike the two-boson case, where a single peak was visible
in the susceptibility, for a three-boson system two sharp peaks
are clearly visible, at g ≈ −0.65 and g ≈ −0.46. By analogy
to the two-boson case, it is natural to associate these peaks [and
the corresponding rapid change in γ (g)] with changes in the
dominant decay mechanisms. This indicates that there should
be three distinct regimes discernible in the three-boson case,
as opposed to the two regimes of the two-boson case.

To verify this, we apply our previous approach for analyzing
the role of different tunneling channels. We define J (t ) as
the total probability flux out of P3 at time t . Then we divide
the boundary ∂P3 into three parts and we decompose J (t )
into J2(t ), J1(t ), and J0(t ) corresponding to one-, two-, and
three-boson tunneling, respectively. As previously, the ratios
Ji (t )/J (t ) turn out to be almost time independent, and they
can be used to characterize the participation of the different
tunneling mechanisms. In Fig. 7(b) we show the values of Ji/J

for different interactions g. It is clear that the locations of the
peaks in χ (g) coincide with the transition points between three
different regimes. For g < −0.65 the decay is dominated by
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FIG. 7. (a) The susceptibility χ (g) = γ −1(∂γ /∂g), obtained for
the decay rate γ (g) of P3(t ) in the three-boson system. (b) The
ratios J2/J , J1/J , and J0/J as a function of g, showing the relative
participation of the three decay processes: single-particle tunneling,
two-particle tunneling, and three-particle tunneling, respectively.
Three distinct regimes can be identified in the system, corresponding
to dominance of single-, two- or three-particle tunneling. Vertical
dashed lines correspond to locations of maxima in χ (g), which very
well match the points of transitions between the regimes. Interaction
strength g and susceptibility χ are given in units of

√
h̄3�0/m and√

m/h̄3�0, respectively.

three-boson tunneling. For intermediate interactions, −0.65 <

g < −0.46, the two-particle tunneling is prominently present
along with a nonvanishing contribution from three- and
single-boson tunneling. Finally, for g > −0.46, single-boson
tunneling constitutes the dominant decay channel. Notably, the
second of these regimes is characterized by a non-negligible
contribution of all three channels, rather than being completely
dominated by a single decay process. This is an essential
difference from the two-boson case, for which the two sep-
arate regimes are characterized by a total dominance of one
particular channel. Note that this property cannot be captured
by observation of the P3(t ) decay solely, while it is clearly
visible when appropriate fluxes are considered.

VI. SIMPLE PHENOMENOLOGICAL TREATMENT

In order to give an intuitive explanation of the results
obtained, let us employ a simple theoretical description. At
time t = 0, the N -boson trapped system has some energy
EN (g). After one boson escapes the trap, the energy of the
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FIG. 8. The initial energy E2(g) of the two-boson system (blue,
solid), depending on interaction strength g, and the energy E1(g) of a
single particle (green, dotted). The dashed vertical line indicates the
interaction strength g ≈ −0.88 above which E2(g) > E1(g). Energy
and interaction strength g are given in units of h̄�0 and

√
h̄3�0/m,

respectively.

bosons remaining in the trap is equal to EN−1(g). Since the
energy of the escaping boson cannot be negative (it is an
almost free particle), the single-boson tunneling is possible
only when EN (g) � EN−1(g). Consequently, in the two-boson
system under study [E1(g) ≈ 0.43 independently of g], we
find that the single-boson tunneling condition E2(g) � E1(g)
is satisfied for g � −0.88 (see Fig. 8). This is remarkably close
to the previously found transition point g ≈ −0.85. In the case
of three bosons, the corresponding condition E3(g) � E2(g)
is satisfied for g � −0.47 (see Fig. 9). The result is again
very close to the previously found transition point g ≈ −0.46,
below which single-boson tunneling is suppressed.
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FIG. 9. The initial energy E3(g) of the three-boson system (red,
solid), the initial energyE2(g) of the two-boson system (blue, dashed),
and the bound pair energy plus the energy of a single boson Epair (g) +
E1(g) (green, dotted), depending on interaction strength g. Vertical
dashed lines indicate the interaction strength g ≈ −0.47 above which
E3(g) > E2(g), and the interaction strength g ≈ −0.67 above which
E3(g) > Epair (g) + E1(g). Energy and interaction strength g are

given in units of h̄�0 and
√

h̄3�0/m, respectively.
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In the case of pair tunneling, the situation is more com-
plicated, since one has to take into account the total energy
of the tunneling pair. As noted in [52], the internal energy of
a freely moving bound pair is Epair (g) = −g2/4 (in natural
units of the problem). Accordingly, pair tunneling is possible
when EN (g) � EN−2(g) − g2/4. Applying this result to the
three-boson system, we find (as shown in Fig. 9) that the
two-boson tunneling condition is satisfied for g � −0.67.
This agrees very well with the transition point g ≈ −0.65
below which pair tunneling is suppressed. Extending this
phenomenological treatment to tunnelings of larger numbers
of particles is straightforward.

Note, however, that this simplified description is limited,
since it cannot predict the relative importance of the different
available tunneling channels. For example, within this ap-
proach one cannot predict that for intermediate interactions
in the N = 3 case the decay is governed by all three channels.
However, the positions of transitions between different regimes
can be predicted with very good precision.

VII. ROLE OF THE POTENTIAL SHAPE

A key feature of the studied potential is that it is constant in
the region outside the well. This makes the phenomenological
treatment described above possible, since precise energetic
conditions for specific tunneling channels can be formulated.
However, potentials used in experimental work may also take
other forms. For example, in the Heidelberg experiment [40] an
external trapping potential ramps down outside the barrier and
is not bounded from below at infinity (x → ∞). Obviously in
such a case our simplified phenomenological treatment breaks
down, as there is no longer a specific lower bound for the energy
of escaped particles. In consequence, a question arises how
much the properties found previously are affected by the shape
of the potential. To answer this question, we have analyzed the
dynamics of two bosons in a modified potential, which is not
bounded from below outside the well. We model this situation
with the modified potential V ′(x) given by (3).

In Fig. 10 we show the susceptibility χ (g) of the two-boson
system obtained in the unbounded potential V ′(x), contrasted
with χ (g) obtained for the bounded potential V (x). It can be
seen that the peak in susceptibility is still present, but it is
significantly smaller and wider. This is an indication that the
rapid, sharp transition observed earlier for V (x) is significantly
smoother for V ′(x). This follows naturally from the fact that
strict energy conversation conditions can no longer hold when
the potential energy beyond the barrier has no constant value.
Additionally, since the potential takes on negative values (with
respect to the local minimum of the well), bosons with negative
energies can escape the well without violating the conversation
of energy. This slows down the suppression of the single-
boson tunneling for strongly attractive systems. Consequently,
the maximum of χ (g) can be seen to move towards greater
attractive interactions.

The results indicate that the previously observed rapid
transition between the different regimes is tied to the existence
of precise energetic conditions for the different tunneling
processes. In an unbounded potential, the separation into two
distinct regimes is much less clear.
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fied, unbounded from below potential V ′(x ) (thick black), compared
to χ (g) in the bounded from below potential V (x ) (thin red). Due
to the lack of precisely defined energy conversation conditions, the
sharp peak becomes much more diffused in the unbounded potential.
The maximum moves towards stronger attractions, since bosons with
below-zero energies can now escape the well and the suppression of
single-boson tunneling is diminished. Interaction strength g is given
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VIII. CONCLUSION

We have analyzed the decay of a two- and three-boson
system trapped in a one-dimensional potential well. In partic-
ular, we have investigated how the nature of the overall decay
process changes as the interaction strength g is changed. We
show that the system undergoes transitions between several
distinct regimes characterized by the dominance of different
decay processes. Each such transition is reflected by a change in
the behavior of the overall decay rate γ (g) as g is changed. This
is seen clearly in the susceptibility χ (g) = γ −1(∂γ (g)/∂g).

For the two-boson system, we find a simple transition be-
tween two regimes, one dominated by single-boson tunneling
and one by pair tunneling. For the three-boson system, we find
three distinct regimes, characterized by the dominance of one-,
two-, and three-boson tunneling channels. Importantly, we
show that the intermediate regime with two-boson tunneling
has non-negligible contributions from the other tunneling
processes. Thus, one cannot neglect these processes when
studying the dynamics in this regime. This result cannot be
obtained basing on the rate γ (g) alone, but it can be found by
analyzing the appropriate fluxes of probability between various
regions of configuration space. The interaction strengths for
which the transitions occur can be approximately determined
via a simple theoretical description. While we only present
results for two and three bosons, the overall approach can be
quite easily extended to a larger number of particles.

We have also investigated the effects of the asymptotic form
of the external potential at infinity. We find that the transition
between the two regimes is sharp and clearly discernible when
the potential remains bounded at infinity (x → ∞). In contrast,
when the potential is not bounded from below, the transition is
much smoother and the individual regimes are less distinct.

This work builds upon existing research on escaping few-
body systems. In particular, the distinction between regimes
dominated by single and pair tunneling was considered already
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[40,42]. Moreover, in [24] the analysis of flux dynamics was
used to estimate the relative importance of single- and two-
particle tunneling. However, we expand upon these results by
applying the method to a three-particle system, showing that
flux analysis can be applied to systems with a greater number
of particles. Furthermore, we provide a detailed description of
how the separate tunneling channels contribute to the overall
decay process. In this way we show that in an in-depth analysis
of bosonic tunneling dynamics, several distinct decay channels
must be jointly taken into account to obtain accurate results. We
also show that the transitions between the individual regimes
can be indirectly detected through measurement of just one
observable: the probability of finding all bosons in the trap.

The results are potentially relevant to experimental practice.
Determining the decay rate γ (g) for different interactions is
possible experimentally, and the peaks in its susceptibility χ (g)
can be used to indirectly detect a transition between specific
tunneling regimes, providing an alternative method of probing
the system dynamics.
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