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Dynamics of one-dimensional quantum droplets
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The structure and dynamics of one-dimensional binary Bose gases forming quantum droplets is studied by
solving the corresponding amended Gross-Pitaevskii equation. Two physically different regimes are identified,
corresponding to small droplets of an approximately Gaussian shape and large “puddles” with a broad flat-
top plateau. Small droplets collide quasielastically, featuring the solitonlike behavior. On the other hand, large
colliding droplets may merge or suffer fragmentation, depending on their relative velocity. The frequency of a
breathing excited state of droplets, as predicted by the dynamical variational approximation based on the Gaussian
ansatz, is found to be in good agreement with numerical results. Finally, the stability diagram for a single droplet
with respect to shape excitations with a given wave number is drawn, being consistent with preservation of the
Weber number for large droplets.
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I. INTRODUCTION

One of the important recent achievements in the studies of
ultracold bosonic gases and superfluids is the realization of
quantum droplets in a number of experiments with anisotropic
interactions between dipolar atoms [1–4], as well as in two-
component Bose gases with contact isotropic interactions
[5–7]. Accordingly, the attractive and repulsive forces, whose
interplay leads to the formation of quantum droplets, are
anisotropic for dipoles and isotropic for the mixture of two-
component gases. In one-dimensional (1D) geometry the
(slightly) repulsive mean-field (MF) contribution to the energy
per particle scales linearly with density n of the gas, getting bal-
anced by the attractive beyond-mean-field (BMF) one, scaling
as −n1/2. As a result, the system’s energy features a minimum,
corresponding to the formation of a liquid droplet [8,9]. No-
tably, its density can be tuned in a wide range, making it possi-
ble to create extremely dilute liquids and thus realize, perhaps,
the most dilute liquid ever observed in any physical setting. An
additional interest in this new class of quantum liquids, as com-
pared to liquid helium, is that the condensate fraction is very
large, permitting one to make accurate quantitative predictions
based on the mean-field theory amended by the BMF correc-
tion. Indeed, the description in terms of the effective Gross-
Pitaevskii equation (GPE), used to model the dipolar con-
densates [10–12], agrees with ab initio quantum Monte Carlo
calculations for dipolar droplets [13–15], and for ones formed
in the binary BEC dominated by the contact interactions [16].
It was argued that the quantum droplets may find an application
to the design of a precise matter-wave interferometer [17–19].

While the present study concentrates on the properties
in one-dimensional geometry, we find it instructive to make
a comparison with a three-dimensional (3D) counterpart in
terms of the sign of the BMF corrections and the value of
the gas parameter where MF theory can be applied. Indeed,
one-dimensional systems might seem counterintuitive in cer-
tain aspects. Suppose we consider a single-component gas

with delta-interacting potential V (r ) = gδ(r ); its potential
energy per particle is E/N = gng2(0)/2 where g2(0) is the
value of the density-density correlation function g2(r ) =
〈n(r )n(0)〉/〈n〉2 at contact position r = 0. The potential energy
per particle scales linearly with the density. The potential
energy can be reduced to zero by making the particle fully
impenetrable, g2(0) = 0. On the other hand in one dimension
the impenetrable condition induces kinetic energy per particle
which scales quadratically with the density, E/N ∝ h̄2n2/m.
It means that in one dimension the mean-field regime, where
one can neglect correlations and set g2(0) = 1, is reached for
large density. Here the mean-field energy n becomes smaller
than n2 dependence of a strongly correlated (Tonks-Girardeau)
gas, which is obtained when g2(0) = 0 (Pauli exclusion). This
is exactly opposite to the “usual” three-dimensional situation
where the mean-field energy scaling ∝ n becomes energeti-
cally preferable at small densities, compared to the kinetic en-
ergy per particle due to Pauli principle ∝ h̄2n2/3/m. As a result,
the regimes of the applicability of the mean-field theory are
swapped and correspond to small (3D) and large (1D) densities.

Another important difference is the sign and the structure
of the beyond-mean-field terms. In three dimensions the BMF
correction was first calculated for a single-component 3D hard
sphere gas by Lee-Huang-Yang [20,21] back in 1957. The
textbook derivation [22] is based on the Bogoliubov theory.
In one dimension, the energy of the δ-pseudopotential gas
was obtained by Lieb and Liniger [23] in 1963 for arbitrary
interaction strength by using Bethe ansatz for the ground-state
wave function and by relating the energy to an integral over
solution of Love integral equations [24]. A perturbative solu-
tion to such integral equations has shown that the Bogoliubov
theory reproduces correctly the leading MF and subleading
BMF terms. Such verification is important as it justifies the use
of MF and BMF theory while, strictly speaking, the condensate
fraction is zero in one dimension due to the Hohenberg
theorem [25].
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Although the BMF terms in one dimension are sometimes
loosely referred to as LHY ones, actually neither of the three
(Lee, Huang, and Yang) ever calculated them. It is rather curi-
ous to note that the related expressions were obtained by Kirch-
hoff in 1877 in a different problem [26]. He was calculating the
capacitance of a circular capacitor as a function of the distance
between two circular plates. The capacitance can be calculated
to an integral over the solution of Love integral equations [24],
that is exactly the same equations as those appearing in the
Bethe ansatz theory. Indeed, within the electrostatic analogy
the density n of 1D Bose gas can be mapped to the conductance
of the circular plates, the energy E to the second moment,
and the coupling constant g is proportional to the radius of
each plate [27]. Kirchhoff comments that “Their computation
is generally cumbersome because it requires finding solution
of entangled, transcendental equations; but it is very simple if
one” takes the limit of small separation. In the leading term,
the capacitor charge is inversely proportional to the separation,
resulting in a linear dependence of the energy per particle on the
density. That is, the standard mean-field Gross-Pitaevskii result
is recovered with the energy per particle proportional to the
density, E/N = gn/2. In the subleading order, the edges of the
capacitor plates have to be considered. With the same accuracy
as Kirchhoff uses the energy per particle becomes [27] E/N =
gn/2 − 2/(3π ) g3/2√nm/h̄. That is, the subleading term is
negative and proportional to

√
n. This correction exactly

coincides with beyond-mean-field terms as found within the
Bogoliubov theory [23] and as a 1D analog of LHY terms.

The same conclusion about the sign can be obtained by a
“hand waving” argument by noting that MF energy scaling
∝ g2(0)n, n → ∞ can be smoothly matched to ∝ n2, n → 0
Tonks-Girardeau energy if the BMF correction is negative. This
corresponds to decreasing gradually g2(0) from 1 (MF) to 0
(TG). A more rigorous explanation for the sign is that the BMF
energy is obtained in a second-order perturbation theory which
has to reduce the energy. The situation is somewhat different in
three dimensions as within the second-order theory the relation
between the coupling constant g and the s-wave scattering
length must be corrected in comparison with the simple MF
expression eventually resulting in a positive LHY correction
in three dimensions [20,21].

The equilibrium densities of both components of the bi-
nary condensate depend on interaction strengths and atomic
masses of the two species. The symmetric case of equal
masses and strengths of intraspecies interactions, with equal
numbers of atoms in each component, allows a simpler and
more elegant description. In this case, the density profiles
of both components coincide and can be described by the
effective three-dimensional single-component GPE with cubic
and quartic nonlinearities, the latter term representing the LHY
correction [8]. This possibility provides an important interdis-
ciplinary connection to the field of nonlinear optics [28], as
concerns the model equations with higher-order nonlinearities
[29–31] and, possibly, controlled generation of solitons in
these systems. On the other hand, in the case when two-
component features in the dynamics are essential, they may be
affected by an additional linear interconversion between the
components [32].

In three and two dimensions, quasi-1D solitons are unstable
with respect to the transverse snake instability, although the

stability can be enhanced by imposing rotation to the quantum
droplets [33]. The advantage of the proper 1D geometry,
imposed by the tight confinement in the transverse directions
(cf. the experimental realization of the Tonks-Girardeau gas
[34,35]), is that such an instability is absent, thus permitting
one to realize a very clean and highly controllable many-body
test bed which may permit the measurement of quantum
many-body effects with very high precision.

Commonly known hallmarks of solitons are being (i) self-
trapped and (ii) robust with respect to soliton-soliton collisions.
While the former feature is definitely present in quantum
droplets, the latter one should be yet verified. It was proposed
to use Gaussian ansätze for gaining an analytical insight in
physics of dipolar [12] and BEC [5] droplets. In particular,
the dynamical version of the Gaussian-based variational ap-
proximation (VA) can be used to predict the frequency of
intrinsic oscillations of the solitonlike objects in an excited
state [36–38]. Excitations in a dipolar quantum droplet have
been experimentally studied and a scissors mode has been
observed in it [39]. Recently, intrinsic modes were theoretically
investigated in Fermi-Bose mixtures [40], spin-orbit-coupled
Bose-Einstein condensates (BECs) [41], including those domi-
nated by the LHY terms [42], and in a discrete BEC model [43].

The collisions between dipolar droplets were experimen-
tally studied in Ref. [44]. The system was confined to an
elongated trap and the interactions were quenched in such a
way that the density distribution was split into multiple pieces.
The droplets which have been formed were shown to be long
lived and their dynamics was studied. Until now no similar
experiment has been performed with short-range interacting
droplets although such experimental studies might be expected
in the near future. The goal of our study is to analyze the
dynamic properties of ultradilute quantum droplets.

In the present work we address collisions of 1D quantum
droplets and intrinsic oscillations of an isolated droplet, along
with excitations generated by imprinting onto it a density mod-
ulation with a certain wave number. The article is organized
as follows. First, we address static droplets in Sec. II, where
we start by introducing the model in Sec. II A. Section II B
addresses the asymptotic analysis in the limits of small and
large droplets. In Sec. II C we develop the Gaussian ansatz for
the study of both stationary and dynamical properties of the
droplet. The conditions of applicability of the Gross-Pitaevskii
equation for describing statical and dynamical properties are
analyzed in Sec. II D. We consider energetic and spatial
properties of stationary states in Sec. II E, minimal number of
atoms, necessary for the creation of the droplet, in Sec. II F, and
calculate the surface tension in Sec. II G. Section III addresses
dynamical effects. In Sec. III A we consider collisions of
two droplets, and the dynamics of a single one is considered
in Sec. III B, including intrinsic monopole oscillations in
Sec. III B 1, and excitations generated by periodic density
modulation in Sec. III B 2. The stability diagram for the
quantum diagram is produced in Sec. III B 3. We finish by
drawing conclusions in Sec. IV.

II. STATIC QUANTUM DROPLETS

In this section we address static equilibrium properties
of a single droplet by considering the exact solution to the
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BMF-amended GPE, as well as getting an additional insight
from the Gaussian-based variational approximation (VA).

A. Model system

We consider the binary BEC with mutually symmetric
spinor components, assuming that the coupling constants de-
scribing the repulsion between the atoms in each one are equal,
g↑↑ = g↓↓ ≡ g, and numbers of atoms in the components
are equal too. In this case, the equilibrium densities of both
components are identical, which makes the analysis essentially
easier, and results clearer.

The underlying time-dependent GPE for the one-
dimensional droplet with the symmetric components is [9]

ih̄ψt = − h̄2

2m
ψxx + δg|ψ |2ψ −

√
2m

πh̄
g3/2|ψ |ψ, (1)

where parameters δg and g are positive and are related to
the coupling constants in the two spinor components as δg =
g↑↓ + √

g↑↑g↓↓ > 0 andg = √
g↑↑g↓↓. The coupling constant

g is relevant for inducing a hard “spin” mode while the
difference δg between attractive intercomponent and repulsive
intracomponent interactions is responsible for appearance of a
soft “density” mode and condition δg � g induces a separation
of scales.

In experiments it is possible to tune δg both to positive
or negative values. The proper sign is chosen in such a
way that the imbalance in the mean-field terms is opposite
to the beyond-mean-field contribution and, consequently, the
imbalance depends on dimensionality of the problem. In one
dimension, the beyond-mean-field terms are directly obtained
from the second-order perturbation theory which produces a
negative correction to the energy [23]. Accordingly, a positive
mean-field imbalance is needed, δg > 0, for producing am en-
ergy minimum in the equation of state. In three dimensions, the
BMF term includes the renormalization correction [22] to the
scattering amplitude within the second Born approximation,
resulting in the positive LHY term and requiring δg < 0 [8].

We define characteristic units of length x0, time t0, and
energy E0:

x0 = πh̄2√δg√
2mg3/2

, (2)

t0 = π2h̄3δg

2mg3
, (3)

E0 = h̄2

mx2
0

= h̄

t0
= 2mg3

π2h̄2δg
, (4)

which yield a characteristic factor for the normalization of the
wave function,

ψ0 =
√

2m

πh̄δg
g3/2. (5)

We demonstrate below that

N0 = ψ2
0 x0 =

√
2

π

(
g

δg

)3/2

(6)

determines a critical number of particles separating two differ-
ent physical regimes.

Thus, rescaling

t = t0t
′, x = x0x

′, ψ = ψ0ψ
′ (7)

casts Eq. (1) in an equation without free coefficients (where
the primes are omitted):

iψt + 1
2ψxx − |ψ |2ψ + |ψ |ψ = 0. (8)

A peculiarity of the 1D geometry is that the ground-state
solution of the GPE for the droplet, Eq. (8), can be found in an
explicit form [9]:

ψexact (x) = − 3μ exp (−iμt )

1 +
√

1 + 9μ

2 cosh(
√

−2μx2)
, (9)

with the relation between normalization N and chemical
potential μ given by

N = 4

3

⎡
⎣ln

⎛
⎝

√
− 9

2μ + 1√
9
2μ + 1

⎞
⎠ −

√
−9

2
μ

⎤
⎦. (10)

The equilibrium density corresponding to the spatially uniform
state (N → ∞), and the respective chemical potential, in units
defined by Eqs. (2) and (4), are

n0

ψ2
0

= 4

9
, (11)

μ0

E0
= −2

9
. (12)

B. Limit cases of small and large droplets

In a large finite-size droplet (“puddle”), μ approaches the
constant value (12) corresponding to the chemical potential
of an infinitely extended uniform liquid at zero pressure. The
chemical potential (10) is expanded as

μ = −2

9
+ 8

9
exp

(
−2 − 3

2
N

)
, (13)

and features an exponentially weak dependence on N . On the
other hand, for small droplets with small N the dependence
has a power-law form:

μ = − 1

21/332/3
N2/3 = −0.382N2/3. (14)

In this case, the dependence on N is much stronger, as long as
|μ| is small.

The total energy E can be obtained by integrating the chem-
ical potential, E(N ) = ∫ N

0 μ(N ′)dN ′. For small N , Eq. (14)
results in a power-law dependence,

E = −1

5

(
3

2

)1/3

N5/3 = −0.229N5/3, (15)

while Eq. (13) produces an asymptotically linear dependence
on large N :

E = − 6

27
N + 16 exp(−2)

27
− 16

27
exp

(
−2 − 3

2
N

)
. (16)

A typical size of the droplet can be easily estimated in
both limits. The large droplet includes a bulk (flat-top) region
with the nearly uniform density given by Eq. (11), with size
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L = N/n0. The respective mean-square size also increases
linearly with the number of particles,

√
〈x2〉 = L

2
√

3
= N

2
√

3n0

= 0.65. (17)

C. The variational approximation (VA) based
on the Gaussian ansatz

In this subsection we approximate the shape of the droplet
by a Gaussian and optimize its width according to the varia-
tional principle. This simple model provides additional insight
in properties of the droplets as the number of particles varies.

The VA is based on the Lagrangian for Eq. (8),

L =
∫ +∞

−∞
Ldx, (18)

L = i

2
(ψψ∗

t − ψ∗ψt ) + 1

2
|ψx |2 + 1

2
|ψ |4 − 2

3
|ψ |3. (19)

To develop the dynamical version of the VA, we adopt the
Gaussian ansatz,

ψ = A(t ) exp

[
iφ(t ) − x2

2(W (t ))2 + ib(t )x2

]
, (20)

where A, φ, W , and b are real amplitude, phase, width, and
chirp, respectively (in the time-independent version of the VA,
b = 0). Although the large-distance Gaussian asymptotic form
of wave function (20) is incompatible with the exponential
decay of the exact solution (9), we demonstrate below that the
overall accuracy provided by the VA is extremely good. The
normalization of the wave function determines the number of
particles in the droplet,

N =
∫ +∞

−∞
|ψ (x)|2dx = √

πA2W. (21)

Substituting the ansatz in Lagrangian density (19) and using
Eq. (21) to eliminate A2 in favor of N , as A2 = N/

√
πW , one

can produce the effective Lagrangian:

LVA

N
= dφ

dt
+ W 2

2

db

dt
+ 1

4W 2
+ W 2b2

+ N

2
√

2πW
− 23/2

√
N

33/2π1/4
√

W
. (22)

The Euler-Lagrange equations for variables b and W are
derived from here:

b = 1

2W

dW

dt
, (23)

d2W

dt2
= 1

W 3
+

√
1

2π

N

W 2
− 23/2N1/2

π1/4(3W )3/2
≡ −dUeff

dW
, (24)

where the effective potential for oscillations of the soliton’s
width is

Ueff (W ) = 1

2W 2
+

√
1

2π

N

W
− 2

π1/4

(
2

3

)3/2
√

N

W
. (25)

This potential gives rise to a shallow well, as shown in Fig. 1.

FIG. 1. The plot of the effective potential (25) for N = 0.1 and
N = 1. The minimum of the potential defines the optimal width W

of the droplet.

In the framework of the VA, the stationary soliton corre-
sponds to the minimum of potential (25). The soliton’s width
is determined by the cubic equation for

√
W , which follows

from the condition for the potential minimum, dUeff/dW = 0,
as per Eq. (24):

1 +
√

1

2π
NW − 1

π1/4

(
2

3

)3/2√
NW 3/2 = 0. (26)

In particular, in both asymptotic limits of N → 0 and N → ∞
the width is large:

W (N → 0) ≈ 3

2
π1/6N−1/3, (27)

W (N → ∞) ≈ 27

16
√

π
N. (28)

It is also possible to find the exact minimum value of the VA-
predicted width,

Wmin = 3
√

3

23/4
≈ 3.09, (29)

which is attained at the value of the norm of the order of one,
namely

N (Wmin) = 25/4√π

33/2
≈ 0.81. (30)

The mean-square size of the droplet with the Gaussian
profile is 〈x2〉 = W 2(N )/2. In the N → 0 limit, the width is
given by Eq. (27), the respective mean-square size increasing
as N−1/3:

√
〈x2〉 = 3

2
√

2
π1/6N−1/3 ≈ 1.28N−1/3. (31)

Comparison with Eq. (17) makes it evident that the droplet has
a minimum size at N ∼ 1.
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The frequencies of low-lying collective excitations are
determined by the eigenvalues of the Hessian matrix evaluated
at the equilibrium position [37]. In the 1D system, it reduces
to the second derivative,

d2Ueff (Wmin)

dx2
= 1

2
ω2, (32)

and corresponds to the “breathing” (compression-dilatation)
mode of frequency ω. For limit values of N the frequency
takes the approximate form,

ω(N → 0) =
2
√

2
3

3 3
√

π
N2/3, (33)

ω(N → ∞) = 3221/4
√

π
3

81

1

N
. (34)

The ground-state energy is obtained by evaluating the
energy functional,

E =
∫ +∞

−∞

(
1

2
|ψx |2 + 1

2
|ψ |4 − 2

3
|ψ |3

)
dx, (35)

and the chemical potential is then obtained as its derivative with
respect to the number of particles, μ = dE/dN . The chemical
potential of a droplet is negative and approaches zero, in the
limit of N → 0, as

μ = −5N2/3

9π1/3
= −0.379N2/3. (36)

Note that the difference of this VA-produced result with the
exact one, given by Eq. (14), is less than 1%.

D. Conditions of applicability

An important issue is to clarify the regions of applicability
of the GPE (1) for describing static and dynamic properties
of the droplets. The GPE has been proven to be immensely
useful for description of experiments with single-component
ultracold Bose gases, as the mean-field description it provides
is sufficient for interpretation of a large variety of quantum
effects [45]. On the other hand, artificial incorporation of terms
with higher powers of the condensate wave function in the
GPE in order to “simulate” LHY terms in the energy may lead
to incorrect dynamics of excitations in the framework of the
amended equation.

The key point here is that the dominant contribution to the
BMF energy comes from distances smaller than or comparable
to the healing length ξ , defined, in terms of the sound velocity
c, by h̄2/(2mξ 2) = mc2. In order to treat the BMF term as a
“local” contribution, the distances at which the density profile
changes should be large in comparison to the healing length.
In a single-component gas this is impossible, as the density
profile changes exactly at distances ∼ξ . In quantum droplets,
the situation is completely different, as the variation in the
density profile is governed by the “soft” healing length,

ξ− = h̄√
2mc−

,

FIG. 2. Density profiles for different values of N . Exact analytical
solution (9) and predictions produced by Gaussian ansatz (20) are
shown by solid and dashed lines, respectively. For the smallest value,
N = 0.1, the lines are indistinguishable. For the largest values of N ,
the bulk region, filled by the density with the value given by Eq. (11),
is observed at the center. For these values (N = 10 and 20), the VA
prediction are not displayed, as they are irrelevant in that case.

while the BMF energy is earned at the distances comparable
to the “hard” healing length,

ξ+ = h̄√
2mc+

.

The speed of sound of the two modes is defined by mc2
± =

(g ± |g↑↓|)n in the symmetric case [8,9]. Thus, the coupling
constant δg defines the speed in the soft mode, mc2

− = (δg)n,
while g � δg produces a much larger speed in the hard mode,
mc2

+ ≈ gn.
The large separation of scales, ξ− � ξ+, justifies the

inclusion of higher-order terms in the GPE as local ones.
Accordingly, the relatively slow dynamics, which takes place
at timescales large compared to the typical “hard” time interval,

t+ = 2mξ 2
+

h̄
,

is correctly described by the amended GPE (1).

E. Static energetic and spatial properties

In this subsection we address different physical states that
can be realized in a single stationary droplet. Exact solution (9)
provides the necessary information for this. The exact solution
can be also used to verify the accuracy of the VA.

We start by considering the spatial profile of the droplet.
A number of characteristic density profiles of static droplets
are displayed in Fig. 2. In the framework of the mean-field
theory, profile n(x) is governed by a single parameter, viz.,
dimensionless norm N , which is the number of particles
divided by N0; see Eq. (6). For N � 1, the shape of the
droplet is essentially nonuniform, the kinetic term (second
derivative) in Eq. (1) being relevant for determining the shape.
To a certain extent, this case is similar to that of “standard”
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FIG. 3. Chemical potential μ as a function of norm N . The bulk
value (10) of chemical potential is shown by the horizontal line. The
large-N expansion, given by Eq. (13), is shown by the dashed-dotted
line. The small-N expansion, given by Eq. (14), and VA prediction
(36) are hardly distinguishable.

single-component bright solitons with the cubic nonlinearity,
where the quantum pressure balances the potential energy. As
N increases, the density at the center of the soliton grows
monotonously until it attains the equilibrium bulk value n0,
see Eq. (11), at N ≈ 10. By increasing N further, formation
of a “puddle” with a flat plateau in its center is observed,
which is filled by the bulk phase with density n0. The action
of the kinetic term is essential near edges of the droplet, being
irrelevant in the plateau region. The situation reminds that of a
classical liquid, where a plateau in the density profile expands
with the growth of the droplet’s mass.

The peculiarity of the present model is that it admits two
distinct regimes, separated by value N ∼ 1, i.e., the number
of particles ∼N0; see Eq. (6). For smaller N , the quantum
pressure is significant, and the density profile is essentially
nonuniform, while for larger N the above-mentioned bulk
region appears, making the pattern similar to a “puddle” filled
by the homogeneous liquid.

In addition, we have tested the density profile derived from
the Gaussian-based VA. Its prediction is shown in Fig. 2 by
the dashed line. For N = 0.1, the Gaussian density profile
is almost indistinguishable from the exact solution, which
justifies the use of the VA for small droplets.

To address the energetic properties, we report the value
of the chemical potential in Fig. 3 as a function of norm
N . The chemical potential is always negative, implying that
the state is self-bound in the equilibrium. One can compare
the expansions derived for small and large N from both the
exact and VA solutions. As anticipated, for small droplets the
chemical potential is very well captured by the VA, being
close to values given by expansion (14), which was obtained
from the exact solution. As the droplet’s size increases, μ

attains the bulk value (12) exponentially fast, in agreement with
prediction (13).

We conclude the study of static properties of the droplets by
the consideration of their size as a function of the norm. The

0.01 0.1 1 10
0

1

2

3

4

5

6

7

x2 1/2

N

FIG. 4. The mean-square size
√

〈x2〉 of the droplet vs norm N ,
compared to the asymptotic expressions given by Eqs. (17) and (31).

mean-square size
√

〈x2〉 of the droplet is reported in Fig. 4.
Measured in units of x0 [see Eq. (2)], the droplet has a minimal
size for N ≈ 1, i.e., for the number of particles close to N0.
A smaller droplet features an approximately Gaussian shape
with width W given by Eq. (29), which diverges at N → 0.
In the opposite limit, the size of large droplets grows linearly
with N . It is worthy to note that, while the VA cannot predict
the flat-top shape of the “puddle” for N � 1, it is still able to
correctly predict that the droplet’s size increases in this regime.
The location of the minimum of the width at N � 1 implies
that N0 [see Eq. (6)] determines the density at which the droplet
has the most compact form.

F. The minimal number of atoms in a droplet

In dimensions lower than three, a purely attractive potential
between two particles always leads to formation of a bound
state, which is different from the 3D case, where a finite
threshold for the formation of a two-body bound state exists.
Therefore, the 3D droplets are formed only if the number of
atoms exceeds a certain critical number. For 3He atoms, a
liquid is formed for N � 20 atoms [46], while in ultradilute
quantum droplets the necessary number may be larger [16].
Contrarily, 1D dimers are always formed for any value of the
s-wave scattering length a↑↓. Once the dimer-dimer interaction
becomes attractive forg/|g↑↓| � 2.2, a many-body bound state
gets formed [47], creating a droplet. This implies an important
advantage of low-dimensional geometry, as experimentally
there is no minimal number of atoms necessary for the creation
of quantum droplets.

Another relevant physical question is how the size of
a single dimer a↑↓, composed of two atoms belonging to
the different components, compares to the mean interparti-
cle distance. Apart from numerical factors ∼1, the appli-
cability condition for the perturbative theory assumes that
n0a↑↓ ∝ (δg/g)−2 � 1, i.e., the size of a single dimer is large
compared to the typical distance to the next particle. This
means that, within the region of applicability of the Bogoliubov
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theory, the dimers can never be considered as separate single
objects, and they only contribute to the collective properties.
On the other hand, the existence of the droplets in the opposite
limit of δg/g � 1 remains an open question, which should be
addressed by nonperturbative approaches (such as Monte Carlo
methods), or measured directly in some future experiment.

G. The surface tension

We conclude the study of stationary droplets by evaluation
of the effective surface tension, a concept which is useful for
understanding some of the dynamical properties which are
considered below in Sec. III. For a 3D droplet, the surface
tension can be extracted from the expansion of the energy
density [48],

E

N
= Ev + EsN

−1/3 + EcN
−2/3, (37)

for N−1 → 0. The coefficients in Eq. (37) define the volume,
surface, and curvature tension, respectively. The surface ten-
sion τ is related to Es as τ = Es/(3πr2

0 ), where the unit-
volume radius r0 is defined by condition (4/3)πr3

0 = 1.
In the 1D system, the expansion parameter is N−1, instead

of N−1/3 in Eq. (37), and the corresponding coefficients can be
obtained analytically. The bulk energy density is Ev = −2/9,
and the surface-energy coefficient is Es = 16/(27e2). In one
dimension, the “surface” is reduced to two points, hence its
size is independent of the size of the droplet. The respective
surface tension is

τ ≡ Es

2
= 8

27e2
= 0.040. (38)

III. DYNAMICS OF THE DROPLETS

This section deals with collisions between droplets and
excitation of a single one. In particular, as concerns the latter
topic, we aim to produce the stability diagram in terms of the
droplet’s norm and wave number of the excitation.

A. Collisions between two droplets

A soliton is the nonuniform coherent wave self-trapped
due to the action of the nonlinear dispersion. It is capable
of maintaining its shape while moving at a constant velocity.
In our case, the wave function ψ (x), given by Eq. (9), is
shaped by the interplay of quadratic and cubic terms in
Eq. (1) for the droplet, similarly to the shape of the usual
bright solitons. The time evolution of the wave function,
ψ (x, t ) = exp(−iμt )ψ (x, t ), preserves the constant density
profile, n(x, t ) = |ψ (x, t )|2, also in the case when the droplet
is moving at a constant velocity.

Another distinct feature of a soliton in (nearly) integrable
systems is that its shape must not be altered in a collision
with another soliton. From this perspective, it is important to
verify a possible persistence of the shape of droplets involved
in the pairwise collisions. To address this issue, we simulated
Eq. (8), using the split-step method based on the fast Fourier
transform. The initial wave function was taken as a set of two
counterpropagating droplets,

ψ (x, t =0) = eikx/2+ϕψ1(x+x0) + e−ikx/2ψ2(x−x0), (39)

where ψ1(x) and ψ2(x) are the stationary shapes of droplets
with normalization N1 and N2, borrowed from Eq. (9), ±x0 are
their initial positions, ±k/2 are initial momenta of the colliding
droplets, and ϕ is the relative phase.

Figure 5 shows density plots of the colliding droplets for
a number of characteristic values of the relative momentum k

and norms N1, N2. The incident profile is the nearly Gaussian
or a “puddle” one, for small and large N , respectively. In
the former case, N1 = N2 = 0.1, the shape of each droplet is
precisely preserved after the collision. At the collision point,
an interference pattern might appear [see Fig. 5(a)], being a
distinctive feature of the interplay of coherent matter waves.
The interference is well visible for k � 1/W , where W is
the width of the droplet. As shown in Sec. II, the droplet’s
properties in this regime, N � 1, are well captured by the
Gaussian-based VA.

The situation is quite different for large droplets; see
Figs. 5(b) and 5(c). In this case, the shape of the droplet is
no longer preserved after the collision. The example shown in
Fig. 5(b) corresponds to the collision of fast-moving droplets
(k = 1, N1 = N2 = 10), with the large momentum, in compar-
ison to the droplet’s inverse width. The interference pattern is
clearly visible at the moment of the collision, resulting in the
formation of three outgoing droplets. Both incoming droplets
undergo fragmentation, forming an additional quiescent one.
The norm of the newly formed stationary droplet is small, with
a majority of the particles being kept in the moving ones.

In the case of slowly moving droplets (k = 0.1, N1 =
N2 = 20), shown in Fig. 5(c), a majority of the particles
stay trapped in the newly formed central droplet, with only
relatively small numbers of particles kept by the outgoing
droplets. The merged central droplet is highly excited, showing
large-amplitude oscillations. In the following subsection we
address in more detail conditions under which a strongly
excited droplet remains stable or suffers fragmentation.

We also analyze collisions of droplets with unequal norms in
Figs. 5(d) and 5(e). In Fig. 5(d) we examine scattering between
two small Gaussian-like droplets. In this case no significant
excitation is visible; the droplets rather behave as unperturbed
objects. Still their scattering is not fully elastic, as the trajecto-
ries are affected by the collision. In Fig. 5(e) a large “puddle”
droplet N = 10 collides with a small droplet with N = 1. It
can be seen that the large droplet becomes highly excited,
exhibiting internal periodic vibrations. On the opposite, the
small droplet remains essentially in an unperturbed shape,
although its trajectory is deflected.

We also study the effect of the relative phase on the
collision. Figures 5(f) and 5(g) show examples of out-of-phase
scattering. The phase difference of π is known to effectively
induce repulsion between solitons [49,50]. We see that both
small [Fig. 5(f)] and large [Fig. 5(g)] droplets with equal norms
indeed bounce back at the moment of the collision, so that
the final trajectory can be interpreted as a total reflection.
While for phase π there is no excitation of the equal-norm
droplets, this is not the case for some other phase differences.
Figure 5(h) shows two large droplets colliding with phase
difference of π/2. In this case the outcoming droplets can
be excited and are unequally distributed in terms of the
normalization. The larger droplet is less deflected, similarly to
the case [Fig. 5(e)] of unequal masses. As the phase difference
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FIG. 5. The density plot of the time evolution showing an interference pattern generated by collisions of two droplets, labeled by the
normalizations (N1 and N2) and the incident momentum k. All cases correspond to the in-phase collisions (ϕ = 0), except when stated
otherwise.

is decreased, the lateral outgoing droplet becomes smaller;
see Figs. 5(g), 5(h) and 5(c). The breaking of the symmetry
between the originally identical droplets in this case can be
explained following the line of Ref. [51], as a consequence
of the mismatch between the “amplitude” and “phase” centers
of the two-droplet configuration with a phase shift different
from 0 and π . Eventually for zero difference [see Fig. 5(c)],
the merged becomes stationary and two lateral droplets are
formed.

B. Intrinsic excitations in a single droplet

In this subsection we study density-modulation excitation
modes with a certain wave number in a single droplet, and
address their stability.

1. The breathing mode

The “breathing” or monopole mode is the lowest com-
pression mode, with the spinor components moving in-phase,

making the droplet size periodically oscillating. We excite
this mode by driving a single droplet out of equilibrium and
study the ensuing dynamics, simulating Eq. (8). The respective
initial excitation is imposed by slightly changing the norm of
stationary solution (9).

Figure 6 presents the dependence of the resultant breath-
ing mode on the droplet’s size. There is a nonmonotonous
dependence with the largest stiffness reached around N ≈ 1,
when the droplet attains its minimal size. Symbols show
results of a single-frequency fit to the density at the droplet’s
center. The solid and dashed lines show, respectively, the
prediction produced by the VA, in the form of Eq. (32),
and asymptotic expansions obtained by means of the same
method. While the underlying Gaussian ansatz is expected to
be quantitatively correct for N � 1, the overall agreement is
remarkably accurate even for large “puddle” droplets, whose
density profile has the flat-top shape.

In three-dimensional droplets for some parameters all ex-
citation modes (both breathing and surface ones) have energy
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FIG. 6. The frequency of the small-amplitude breathing mode
excited in the single droplet ωb versus norm N . Symbols represent
results of simulations of the Gross-Pitaevskii equation (8) with the
input obtained by multiplying the norm of stationary solution (9)
by perturbation factor 1.001. The solid line depicts the prediction
produced by the VA, as per Eq. (32). The dashed and dashed-dotted
lines correspond to the expansions for small and large N , as per
Eqs. (33) and (34), respectively.

larger than the absolute value of the chemical potential [8].
From energetic considerations for such parameters the droplet
is not able to sustain any excitation and if an excited droplet is
generated, it will lose atoms until all excitations are gone. Such
“autocooling” mechanism was argued to generate droplets in
the true ground state, corresponding to the zero temperature [8].
Instead, in one-dimensional geometry we find that h̄ωb < |μ|
for all parameters even if this condition is only marginally
satisfied for small normalization N → 0. This implies that
the “autocooling” mechanism is no longer applicable in one-
dimensional geometry.

It is instructive to confront the breathing mode frequency in
the puddle regime with the energy of a phonon with the minimal
possible momentum. The flat top can be excited to support
linear phonons, E(k) = h̄c|k|, where c is the speed of sound of
the soft mode. The minimal momentum can be approximated as
k ≈ π/L where L = n0/N is the linear size of the droplet ap-
proximated here by the bulk density n0. This results in scaling
ωb ∝ 1/N with the coefficient of proportionality of the order of
one (at this level of accuracy the size L is the same as the width
W of the Gaussian ansatz or the mean-square size 〈x2〉1/2). The
resulting functional dependence on N is the same as for the
breathing mode in the limit ofN � 1; see Eq. (34). This finding
is interesting as the ultradilute dipolar liquids were found to
be essentially incompressible [44] while in the present setting,
the phonons can be excited on the flat-top part of the puddle.

2. The excitation initialized by density modulation with a finite
wave number, and disintegration of the droplet

Another scenario of the excitation of internal dynamics
of the droplet is provided by imprinting periodic density
modulation onto it, with wave number k. The corresponding

FIG. 7. Density plots of the evolution of the droplet, initiated by
the density modulation, imposed as per Eq. (40). Two characteristic
examples (survival and fragmentation of the perturbed droplet) are
shown. Both cases pertain to N = 1, and k = 0.5 in (a), or k = 1
in (b).

initial wave function is

ψ (x, t = 0) = ψexact (x) cos(kx), (40)

where ψexact (x) is the exact solution (9). As a result, in direct
simulations the perturbed droplet may keep its shape entirety
or suffer fragmentation, depending on N and k.

Two possible outcomes of the evolution are illustrated by
typical examples displayed in Fig. 7. If the energy of the
excitation is much smaller than the potential barrier induced
by the surface tension, the droplet avoids fragmentation, as
shown in Fig. 7(a). In this case, almost periodic oscillations
are observed in the width of the droplet. In the opposite limit
of high excitation energy, the droplet splits in two or more
escaping fragments (which are smaller droplets) which fly
away, as shown in Fig. 7(b).

To better understand the mechanism leading to the possible
disintegration of a droplet, we study its oscillations following
the application of the density-modulation momentum [see
Fig. 7(a)] and measure their frequency and amplitude. To do so,
we consider the density at the center of the droplet as a function
of time and fit it to damped harmonic oscillations, |ψ (x =
0, t )|2 = A cos(

√
1 − ζ 2ωt ) exp(−ζωt ) + B, where A is an

amplitude, B an offset, f the frequency, and 0 < ζ < 1 the
damping ratio. Typical dependencies of ω and ζ on k are
shown in Fig. 8. For small wave numbers k, the damping is
absent, ζ ≈ 0, and the droplet oscillates with the frequency of
a small-amplitude breathing mode ωb, as shown in Fig. 6. For
larger k, the frequency starts softening, and for k exceeding
a critical one, kc, the droplet splits into several fragments. In
this case, the density oscillations at the center exhibit strong
damping, with the damping ratio approaching its largest value,
ζ ≈ 1. In the stability region, k < kc, the oscillation amplitude
increases with k and becomes so large that the density at the
center may even vanish, thus making a hole in the condensate,
which periodically opens and closes, while the droplet does not
fall apart yet. The oscillation frequency vanishes in the limit of
k → kc, which corresponds to the infinite period, so that once
the droplet splits in two fragments, they never recombine.
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FIG. 8. The frequency ω (left axis), and damping ratio ζ (right
axis) of oscillations following the application of the density modula-
tion to the droplet, as per Eq. (40), for N = 0.1. The critical value of
wave number kc, above which the perturbed droplet splits, is obtained
by fitting the frequency in the stable region to ω(k) = a

√
kc − k.

The fit is shown by the solid black line. The dashed line shows the
frequency of the breathing mode ωb from Fig. 6.

3. The stability diagram

The stability diagram for the excited droplet in the plane
of (N, k) is displayed in Fig. 9, in which symbols correspond
to values kc extracted from systematic simulations of Eq. (8),
according to the procedure outlined in Sec. III B 2. The droplet
remains undivided at k < kc. It is seen that the strongest sta-
bility corresponds to N ≈ 1. The stability-threshold line may
be interpreted in terms of energy considerations, by comparing
the collisional kinetic energy [52] associated with the imposed
wave number, Ekin = Nh̄2k2/(2m), and the surface energy Es ;

FIG. 9. The stability diagram for a single droplet in the plane of
norm N and wave number k of the initially applied density modulation
(40). Symbols show the stability border kc obtained by fitting the
oscillation frequency; cf. Fig. 8. Lines correspond to different values
of the Weber number, defined as per Eq. (41): We = 1, 2, and 3
(dashed, dashed-dotted, and dashed-dotted-dotted lines, respectively).

see Eq. (38). The ratio of the two energies,

We = Ekin

Es

= Nh̄2k2

4mτ
, (41)

is known as the (modified) Weber number [53,54]. Curved lines
in Fig. 9 correspond to We = 1, 2, and 3. We find that, for
N � 4, the classical prediction based on a fixed value of the
Weber number explains the stability diagram reasonably well.
On the other hand, the stability for N � 1 is quite different.
In this regime the perturbation with wave number k may
efficiently create an excitation in the droplet only at k � 1/W ,
where W is the width of the droplet.

IV. CONCLUSION

The main results reported in this paper are summarized
as follows. We have studied static and dynamical properties
of 1D two-component Bose gases forming quantum droplets,
in the framework of the mean-field theory (GPEs) amended
by the BMF (beyond-mean-field) corrections. Properties of
the droplets greatly differ, depending on their norm N . Small
droplets with N � 1 have an approximately Gaussian shape,
being well described by the corresponding VA (variational
approximation). Collisions between small droplets do not
essentially alter their shape, hence droplets may be considered
as solitons in a nearly integrable setting. On the other hand,
large “puddle” droplets with N � 1 feature a top-flat density
profile, with an approximately constant density corresponding
to its equilibrium value in the uniform liquid. Although the VA
fails to describe the exponential decay of the density profile at
large distances, it is virtually precise for small droplets and even
produces meaningful results for a number of quantities of the
“puddle” droplets. We have observed splitting and merger in
collision of such extended droplets, depending on the collision
velocity. We have produced the stability diagram for a single
droplet with respect to imprinting a spatially periodic density
modulation onto it. It demonstrates a fragmentation threshold
in large (broad) droplets, with the critical Weber number ∼1.

As an extension of the present work, it may be interesting
to verify the validity of the mean-field theory, amended by
the BMF terms, for predicting energies, density profiles, and
frequencies of oscillations, by means of the quantum Monte
Carlo technique. In particular, it will be relevant to check if the
entrainment between two superfluid components, known as the
Andreev-Bashkin effect [55,56], can be observed in intrinsic
oscillations of the droplets.
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