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We establish a theoretical framework for exploring the quantum dynamics of finite ultracold bosonic
ensembles based on the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy for equations of motion
for few-particle reduced density matrices (RDMs). The theory applies to zero as well as low temperatures and is
formulated in a highly efficient way by utilizing dynamically optimized single-particle basis states and representing
the RDMs in terms of permanents with respect to those. An energy, RDM compatibility, and symmetry conserving
closure approximation is developed on the basis of a recursively formulated cluster expansion for these finite
systems. In order to enforce necessary representability conditions, two minimally invasive and energy-conserving
correction algorithms are proposed, involving the dynamical purification of the solution of the truncated BBGKY
hierarchy and the correction of the equations of motion themselves, respectively. For gaining conceptual insights,
the impact of two-particle correlations on the dynamical quantum depletion is studied analytically. We apply this
theoretical framework to both a tunneling and an interaction-quench scenario. Due to our efficient formulation
of the theory, we can reach truncation orders as large as twelve and thereby systematically study the impact
of the truncation order on the results. While the short-time dynamics is found to be excellently described
with controllable accuracy, significant deviations occur on a longer timescale in sufficiently far off-equilibrium
situations. Theses deviations are accompanied by exponential-like instabilities leading to unphysical results.
The phenomenology of these instabilities is investigated in detail and we show that the minimally invasive
correction algorithm of the equation of motion can indeed stabilize the BBGKY hierarchy truncated at the second
order.
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I. INTRODUCTION

Solving the full stationary or time-dependent Schrödinger
equation for an interacting many-body system is an intriguing
task, which is why various theoretical approaches rely on a
description based on much fewer, effective degrees of freedom
in order to avoid the exponential scaling of complexity with
respect to the number of particles. These effective degrees
of freedom involve a fictitious single-particle system in the
density functional theory [1,2], a subsystem consisting of few
modes (Wannier functions in a lattice problem) in the large
coordinate-number expansion [3–7] or a subsystem consist-
ing of a few particles in Green’s function [8,9] as well as
reduced density matrix approaches [10–14]. Having solved
the problem for the effective degrees of freedom, predictions
for certain classes of observables can be made without the
knowledge of the full many-body wave function. Expectation
values of arbitrary o-particle operators can be computed from
the o-body reduced density operator for instance, implying
that, e.g., the energy expectation value of the full many-
body system can be determined from the reduced two-body
density operator alone if only binary interactions are involved
[15]. Besides the computational advantage of being poten-
tially size-intensive, these subsystem-based methods constitute
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natural approaches for investigating, e.g., whether and how
certain subsystem properties of a closed many-body system
thermalize when starting from a nonequilibrium initial state
[16].

On the other hand, the lowest order reduced density matrices
constitute a comprehensive analysis tool for characterizing
many-body states [17–23]. This holds in particular for bosonic
ultracold quantum gases where intriguing states of quantum
matter such as a Bose-Einstein condensate or fragmented con-
densates [18,19,21,22,24–26] can be diagnosed by analyzing
the one-body reduced density matrix. Due to the immense
flexibility and the controllability of essentially all relevant
parameters, these systems serve as an ideal platform for
systematically studying the impact of correlations on the many-
body quantum dynamics in a unprecedented manner [27–29].
For these systems, an efficient description of the quantum
dynamics dealing only with a few effective degrees of freedom
is highly desirable since experiments on ultracold ensembles
can easily involve several hundred thousands or even millions
of atoms. Because few-particle reduced density matrices are
very handy for characterizing correlated many-body states, we
aim here at a closed theory for the dynamics of these entities in
the context of ultracold bosonic systems, i.e., the appropriately
truncated quantum version of the Born-Bogoliubov-Green-
Kirkwood-Yvon (BBGKY) hierarchy of equations of motion
[10,30–34].

While exactly solvable systems with analytically known
reduced density operators are rare [35–41], truncating the
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BBGKY hierarchy usually involves a closure approximation
(see [42] for an exception). For ultracold quantum gases being
extremely dilute, a binary-collision closure approximation,
neglecting three-particle correlations, is expected to be very
suitable [43,44]. The latter can be extended to higher-order
correlations by means of a cluster expansion [45–54] and
by using the particle-hole duality or a Green’s function
method [55–58]. The Bogoliubov backaction method [59–64]
as well as noncommuting cumulants [65,66] constitute alter-
native but conceptually similar approaches. Recently, novel
approaches using semiclassical correlations [67] or solving
a time-dependent variational optimization problem [68] have
been pursued.

At this point, it should be noted that while there are
numerous theoretical works on the BBGKY hierarchy and
its truncation, the literature on the accuracy and numerical
stability of this approach in dependence on the truncation order
by explicit simulations is limited to the best of our knowledge
[67–73]. A comprehensive study [69] unravels that instabilities
as a consequence of the nonlinear closure approximation can
occur and lead to unphysical states, i.e., reduced density
matrices that are not representable. In the context of electronic
dynamics in atomic and molecular systems subjected to strong
laser pulses, significant progress has been made by enforcing
compatibility to lower-order reduced density matrices and
stabilizing the truncated BBGKY equations of motion by a
dynamical purification of their solution [72,73].

Since most studies deal with fermions (for bosons, see
[50–52] as well the BBGKY-related approaches [59–66]) and
are based on the truncation of the BBGKY hierarchy after the
second order, this work aims at a highly efficient formulation
of the BBGKY such that it can be truncated at high orders by
a closure approximation tailored to ultracold bosonic systems
featuring a fixed number of atoms.

Our starting point here is an efficient representation of
the few-particle reduced density operators by tracing out
particles from the variational ansatz for the full many-
body wave function of the established multiconfiguration
time-dependent Hartree method for bosons (MCTDHB) [74]
(Sec. II). Similarly to the fermionic case [72,73], we thereby
employ an efficient, dynamically optimized single-particle
basis. Representing the reduced density operators in terms of
the bosonic number states with respect to this time-dependent
single-particle basis, we derive the truncated BBGKY hier-
archy of equations of motion (EOMs) from the MCTDHB
EOMs and provide a compact formulation of the result in
the second-quantization picture (Sec. III). The properties of
theses equations are carefully discussed, their validity at also
low but finite temperatures proven, and a technically as well
as conceptually useful spectral representation is provided.
Thereafter, we discuss requirements on the truncation approx-
imation for fulfilling certain conservation laws and introduce
a compatible cluster expansion for bosonic systems with a
fixed number of atoms, where an appropriate normalization
of the reduced density operators and symmetrization operators
is essential (Sec. IV). This cluster expansion is formulated in
a recursive way, which allows for going to truncation orders
as large as twelve in our numerical simulations. In addition,
we provide conceptual insights into the role of two-body cor-
relations for dynamical quantum depletion and fragmentation.

Since the truncation scheme does not ensure that important
necessary representability conditions such as the positive
semidefiniteness of the reduced density matrices are fulfilled
in the course of the time evolution, two minimally invasive and
energy-conserving correction schemes are developed, aiming
at a dynamical purification of the solution of the truncated
BBGKY EOMs and at a correction of the EOMs themselves,
respectively (Sec. V).

Thereafter, we apply this methodological framework to two
examples. The first scenario is concerned with the tunneling
dynamics of bosonic atoms in a double-well potential. Treating
the system in the tight-binding approximation allows us to go
to large truncation orders without the need of dynamically
optimizing the single-particle basis via the corresponding
MCTDHB EOMs. Thereby, we probe solely effects stemming
from the truncation of the BBGKY hierarchy. Here, we find
the short-time dynamics to be excellently described by the
truncated BBGKY hierarchy and the accuracy to increase
monotonically with increasing truncation order. For longer
times, strong deviations are observed, which are linked to high-
order correlations becoming dominant as well as exponential
instabilities of the truncated BBGKY EOMs resulting in
unphysical solutions. The phenomenology of these instabilities
is analyzed in detail and we show that the minimally invasive
correction scheme for the BBGKY EOMs truncated at the
second order can stabilize these EOMs indeed.

In the second scenario, we consider a harmonically trapped
bosonic ensemble subjected to an interaction quench. Here, we
solve the full system of coupled EOMs for the reduced density
matrices and the dynamically optimized single-particle basis.
For low excitation energies, we find the system to be highly
accurately described by the truncated BBGKY approach. For
higher excitation energies, however, exponential instabilities
again occur. Also in this case, we can stabilize the BBGKY
EOMs truncated at the second order by our EOM correction
scheme and obtain reasonably accurate results for longer
times. Finally, we conclude and provide our perspectives in
Sec. VII.

II. SETTING AND FORMAL FRAMEWORK

In the following, we first specify the general physical
setting for which we aim to develop a theoretical description.
Thereafter, we describe how the state of the whole many-body
system is efficiently represented by means of a dynamically
adapted, truncated single-particle basis. Our ultimate goal,
however, is not to theoretically describe the dynamics of the
complete many-body system but to find an effective description
for the dynamics of few-particle subsystems. Here, an efficient
representation of such subsystem states is crucial, which we
derive from the efficient representation of the total system
state.

A. Physical setting

In this work, we are interested in effectively describing the
nonequilibrium quantum dynamics of N identical bosons gov-
erned by the Hamiltonian Ĥ =∑N

κ=1 ĥκ +∑κ<κ ′ v̂κκ ′ . Here,
ĥκ denotes the one-body Hamiltonian acting on the particle
κ , which typically consists of kinetic and external trapping
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potential contributions, and v̂κκ ′ refers to the binary interaction
potential between the particles κ and κ ′, an example of which
is the contact potential v̂12 ∝ δ(x̂(1) − x̂(2)) in the context of
s-wave scattering ultracold atoms [27]. In what follows, all
terms of the Hamiltonian may be explicitly time-dependent
and for simplicity we mainly focus on the zero-temperature
case while commenting on the validity of the resulting theory
for low but finite temperatures in Sec. III B 1. Although we are
in the end interested in effectively describing the dynamics of
few-particle subsystems, we nevertheless have to first describe
how the total system state is represented, i.e., the many-body
wave function in the mainly considered zero-temperature case.

B. Representation of the many-body wave function

Instead of relying on some fixed a priori basis as commonly
pursued, we employ the wave function representation of the
multiconfiguration time-dependent Hartree method for bosons
(MCTDHB) [74]. Here, the central idea is to use m time-
dependent, dynamically optimized single-particle functions
(SPFs), |ϕi(t)〉 with i = 1, . . . ,m, as a truncated single-particle
basis. By considering all bosonic number states |n1, . . . ,nm〉t
with the SPFs as the underlying single-particle states and
its occupation numbers summing up to the total number of
particles,

∑m
r=1 nr = N , a time-dependent many-body basis

is constructed, with respect to which the many-body wave
function is expanded:

|�t 〉 =
∑
n|N

An(t) |n〉t . (1)

Here, n = (n1, . . . ,nm) abbreviates a vector of occupation
numbers and the summation is restricted to all n with∑m

r=1 nr = N , which we indicate by the symbol |N . Using
a variational principle, equations of motion (EOMs) can be
derived for both the expansion coefficients An(t) and the SPFs
|ϕi(t)〉 [74]. These EOMs, which we explicate in Sec. III A,
ensure that the SPFs move in an optimal manner such that
the number of SPFs m, i.e., the numerical control parameter
by increasing of which convergence can be achieved, can be
drastically reduced compared to the case of a time-independent
single-particle basis. In particular, m may often be chosen to
be much smaller than the number of time-independent basis
states (i.e., grid points) with respect to which the SPFs |ϕi(t)〉
are represented. Nevertheless, the number of terms in the full
configuration-interaction expansion (1) equals CN

m ≡ N + m − 1
m − 1 ,

which increases drastically with an increasing number of
bosons N . Even if convergence can be achieved with m � N ,
which is often the operating regime of MCTDHB, we have the
scaling CN

m ∼ Nm−1/(m − 1)!, which is not exponential in N

but prevents going to huge systems of N = O(106) particles
(unless m = 2). In the following, we omit the time dependence
of all entities in our notation and stress that all number states
|n〉 are always given with respect to the time-dependent SPF
basis |ϕi〉 unless stated otherwise.

C. Representation of reduced density operators

Instead of describing the complete N -body system in terms
of the wave function |�t 〉 being expanded according to (1), we
are concerned with the state of an o-particle subsystem, o < N ,

given by the o-body reduced density matrix1 (o-RDM) of the
wave function |�t 〉:

Do
(i1,...,io),(j1,...,jo)(t) = 〈�t |â†

j1
. . . â

†
jo
âio . . . âi1 |�t 〉. (2)

Here âi (â†
i ) denotes the time-dependent bosonic annihilation

(creation) operator corresponding to the ith time-dependent
SPF, |ϕi〉, and obeying the canonical commutation relations
[âi ,â

†
j ] = δij and [âi ,âj ] = 0. Since we aim at a closed

theory for the states of few-particle subsystems taking o-
particle correlations systematically into account up to high
orders o, an efficient representation of RDMs is vital. Start-
ing with the abstract density operator of oth order D̂o =∑

i1,...,jo
Do

(i1,...,io),(j1,...,jo) |ϕi1 . . . ϕio〉〈ϕj1 . . . ϕjo
| and using the

bosonic symmetry, manifesting itself in an invariance of (2)
under permutations of the first (last) o indices, we may expand
the o-RDM with respect to SPF-based, bosonic o-particle
number states:

ρ̂o =
∑

n,m|o
ρo

n,m |n〉〈m| with

ρo
n,m =
(

N

o

)−1 ∑
l|N−o

A∗
l+mAl+n

m∏
r=1

(
lr + mr

mr

) 1
2
(

lr + nr

nr

) 1
2

.

(3)

We use the probabilistic normalization tr(ρ̂o) = 1 in this work,
meaning ρ̂o = D̂o (N − o)!/N!, which turns out to be crucial
for the definition of few-particle correlations for finite bosonic
systems in Sec. IV.

As a matter of fact, the representation (3) of RDMs is
beneficial in a threefold manner: (i) Employing m dynam-
ically adapted SPFs as the underlying single-particle basis
can drastically reduce the necessary number of basis states
for convergence [75]. (ii) Exploiting the bosonic symmetry
strongly reduces the number of complex coefficients needed
for representing an o-RDM, namely from m2o for (2) to (Co

m)2

(if one does not make use of the Hermiticity). In Fig. 1,
we show the number of coefficients in dependence on o and
m, showing clearly that we may effectively represent RDMs
of relatively high order with Eq. (3) in contrast to Eq. (2).
We note that the depicted range of m is highly relevant for
practical applications since for not too strong correlations
in the system, few (optimized) SPFs are often enough to
properly capture the relevant physical processes due to the
bosonic bunching tendency [76–78]. (iii) Explicitly using
bosonic number states as the many-body basis for expanding
RDMs is very convenient for analytical manipulations and
leads to equations of motion in a compact second-quantization
representation, which is highly suitable for programming.

Having discussed an efficient representation of RDMs, we
also have to consider how to efficiently perform operations
on them. The superoperators that are crucial for this work
cover the partial trace tr1(·), which maps a bosonic o-body
operator to an (o − 1)-body operator, a raising operation R̂1(·),
which maps an o-body to an (o + 1)-body operator, and a

1For simplicity, we employ the same acronym “RDM” for referring
to both the abstract reduced density operator and its representation as
a matrix with respect to a given basis.
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FIG. 1. Complexity of representing the o-RDM, being measured
by the number of complex-valued coefficients, in dependence on the
order o for various numbers of SPFs m. Solid lines refer to bosonic
number states as underlying basis functions, see Eq. (3), dashed ones
to Hartree products, see Eq. (2). For m = 1, the solid and dashed
lines lie on top of each other. The Hermiticity of RDMs is not taken
into account. Making use of it would roughly reduce the number of
coefficients by a factor of two.

joining operation Ĵ o2
o1

(·,·), which maps an o1- and o2-body
operator to an (o1 + o2)-body operator. In Appendices A
and B, we introduce these operations and discuss their efficient
application to, e.g., RDMs being represented as (3). Using
the formulas provided in these appendices, one can easily
see that the o-RDM (3) stems from integrating out (N − o)
degrees of freedom from the N -RDM, i.e., the total system
state ρ̂N = |�t 〉〈�t |, meaning ρ̂o = trN−o(ρ̂N ), which implies
the compatibility tr1(ρ̂o+1) = ρ̂o of the RDMs.

III. EQUATIONS OF MOTION

Instead of starting with the time-dependent Schrödinger
equation for deriving the EOMs for the RDMs, we take the
MCTDHB EOMs of [74] for the wave function ansatz (1)
as our starting point (see also [72] for the fermionic case).
Thereby, we tacitly assume that the considered number m of
dynamically optimized SPFs in the MCTDHB ansatz (1) is
sufficient for obtaining converged results of desired accuracy
up to some time tf of interest. At the same time, our starting
point also covers the case of the Schrödinger equation in the
limiting case m → ∞. After briefly reviewing the MCTDHB
EOMs and their properties in Sec. III A, we present the
corresponding hierarchy of EOMs for the RDMs derived
from the wave function ansatz (1) in Sec. III B and discuss
equivalent representations in Sec. III C. By means of the latter,
we draw important conclusions about the role of few-particle
correlations for the dynamics in Sec. IV, where truncation
approximations for the hierarchy of EOMs are discussed.

A. MCTDHB equations of motion

The EOMs of the MCTDHB theory [74] can be derived
by applying the Lagrangian variational principle to the wave
function ansatz (1), which ensures that the SPFs are dynam-
ically adapted in a variationally optimal manner. As a result,
one obtains a family of equivalent EOMs, whose members are
specified by fixing the gauge 〈ϕj (t)|i∂t |ϕk(t)〉 = gjk(t) with
an arbitrary, possibly time-dependent Hermitian m × m matrix
gjk , the so-called constraint operator [75]. For a given gauge
gjk , the expansion coefficients obey a Schrödinger equation
with a time-dependent Hamiltonian matrix because of the
employed time-dependent many-body basis (setting h̄ = 1):

i∂tAn =
∑
m|N

〈n|
⎡
⎣Ĥ −

m∑
j,k=1

gjk â
†
j âk

⎤
⎦|m〉Am. (4)

We stress here again that all time dependencies are suppressed
in the notation. Correspondingly, the dynamics of the SPFs
is governed by the following nonlinear integro-differential
equations

i∂t |ϕl〉 = ĝ|ϕl〉 + [1 − P̂]

⎛
⎝ĥ|ϕl〉 + (N − 1)

×
m∑

q,p,r,s=1

fqpfrs

[
ρ̂−1

1

]
rl

ρ2
eq+ep,er+es

[v̂]sp |ϕq〉
⎞
⎠,

(5)

where ĝ ≡∑m
i,j=1 gij |ϕi〉〈ϕj | and P̂ =∑m

i=1 |ϕi〉〈ϕi | projects
onto the subspace spanned by the instantaneous SPFs. Besides
the constraint operator, both the single-particle Hamiltonian
ĥ ≡ ĥ1 and the coupling to the “other” (N − 1) bosons via
the mean-field operator matrix [v̂]sp ≡ (2)〈ϕs |v̂12|ϕ̂p〉(2) [the
superscript (2) denotes a particle label] drive the time evolution
of the SPFs. We remark that despite the name “mean-field oper-
ator matrix” no mean-field approximation is involved (except
for the limiting case m = 1). The matrix [ρ̂−1

1 ]rl refers to the
inverse of the regularized2 1-RDM in SPF representation. As
we expand also the 2-RDM with respect to two-particle number
states, we attain the additional factors fij ≡ √(1 + δij )/2 as
compared to [74]. Moreover, the occupation-number vectors
like eq , which occur in the indices of the 2-RDM, describe a
state where one boson resides in the qth SPFs and all other
SPFs are unoccupied. Thereby, eq + ep refers to a two-particle
state with one boson residing in the qth and one boson residing
in the pth SPF. We note that the density matrices entering the
MCTDH(B) EOMs in the literature [74,75] are the transposed
of the RDM definition in this work, for which we have decided
since it allows for evaluating expectation values of few-body
operators in the usual manner, namely as the trace over the
observable times the corresponding RDM, e.g., 〈∑N

κ=1 ĥκ〉 =
N tr(ĥρ̂1).

The solutions to Eqs. (4) and (5) for different gauges actually
correspond to the same solution for the total wave function

2See [75] for a regularization recipe and [79,80] for two recent
alternatives to this regularization.
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(1) since ĝ in Eq. (5) only induces a unitary transformation
within the subspace spanned by the instantaneous SPFs, which
is compensated by a corresponding unitary transformation of
the coefficients An induced by the gjk term in Eq. (4) [74,75].
For any number of SPFs m, the MCTDHB EOMs were shown
to obey norm as well as energy3 conservation [74,75] and to
respect single-particle symmetries such as a parity symmetry
if existent [81]. Finally, we remark that MCTDHB covers both
Gross-Pitaevskii mean-field theory for fully Bose-Einstein
condensed systems (given contact interaction) in the case of
m = 1 and the exact Schrödinger equation4 in the formal limit
m → ∞ where P̂ becomes the identity.

B. BBGKY equations of motion

There are at least three ways in which the EOMs of the
RDMs can be derived from the MCTDHB theory. (i) Since
the elements of the o-RDM ρo

n,m only depend explicitly on
the expansion coefficients An (and not on the SPFs), one may
differentiate Eq. (3) with respect to time and use the EOM
(4). (ii) One could also take the time derivative of |�t 〉〈�t |
using both Eqs. (4) and (5), then trace out (N − o) particles
via Eq. (B5) and finally project onto o-particle number states
from the left and right. (iii) Instead of MCTDHB, one can
equivalently start with the corresponding MCTDH EOMs [75]
such that individual particles are addressable via artificial
labels. Thereby, one can directly apply the standard derivation
of the BBGKY EOMs (see, e.g., [10]) and successively trace
out particles in the von Neumann–like EOMs for the N -RDM
elements. After translating this first-quantization result to the
second-quantization picture, one obtains the following EOM
for the o-RDM:

i∂tρ
o
m,n − 〈m| [ ˆ̃H,ρ̂o] |n〉 = 〈m| Îo(ρ̂o+1) |n〉. (6)

Here, the von Neumann–like term [ ˆ̃H,ρ̂o] with the Hamiltonian

ˆ̃H =
m∑

i,j=1

(hij − gij ) â
†
i âj + 1

2

m∑
i,j,q,p=1

vijqp â
†
i â

†
j âq âp, (7)

where hij ≡ 〈ϕi |ĥ|ϕj 〉 and vijqp ≡ 〈ϕiϕj |v̂12|ϕqϕp〉, describes
the unitary evolution of the o-particle subsystem in the state ρ̂o

and accounts for all interactions within this subsystem. Interac-
tions with the subsystem’s environment consisting of (N − o)
particles, however, render the overall dynamics nonunitary in
general, which becomes manifest in the inhomogeneity of the
EOM (6), the so-called collision integral

Îo(ρ̂o+1) = N − o

o + 1

m∑
i,j,q,p=1

vqjpi[â
†
q âp,âi ρ̂o+1 â

†
j ] (8)

coupling the dynamics of ρ̂o to ρ̂o+1. Since this second-
quantization formulation of the collision integral might appear
less familiar compared to, e.g., [10], let us reformulate the

3Higher order moments of a time-independent Hamiltonian are,
however, not conserved in general [75].

4Setting furthermore gjk = 0 leads to the Schrödinger equation in a
time-independent many-body basis.

above expression. Using the mixed first and second quanti-
zation representation of Appendix B [see formula (B2)] and
the representation (3), one easily verifies âi ρ̂o+1 â

†
j /(o + 1) =

(o+1)〈ϕi |ρ̂o+1|ϕj 〉(o+1), which may loosely be interpreted as
the “state” of the o-particle subsystem conditioned on the
|ϕi〉 ↔ |ϕj 〉 transition of a further particle. By employing
the mean-field operator matrix [v̂](κ)

ji ≡ (o+1)〈ϕj |v̂κ,o+1|ϕi〉(o+1)

with κ = 1, . . . ,o, we can translate
∑m

q,p=1 vqjpi â
†
q âp into the

first-quantization picture in the o-particle sector, namely to∑o
κ=1 P̂

(κ)
[v̂](κ)

ji P̂
(κ)

where the mean-field operator matrix and
the projector act on the particle κ as indicated by the superscript
index. Putting both ingredients together, we obtain a more
familiar representation

Îo(ρ̂o+1)

(N − o)
=

o∑
κ=1

m∑
i,j=1

[
P̂

(κ)
[v̂](κ)

ji P̂
(κ)

,(o+1)〈ϕi |ρ̂o+1|ϕj 〉(o+1)],
=

o∑
κ=1

P̂
(κ)

tr1([v̂κ,o+1,ρ̂o+1])P̂
(κ)

, (9)

where the partial trace effectively runs over the SPFs only. The
latter representation directly shows that the collision integral
describes the interaction of any particle of the considered o-
particle subsystem with one particle of its environment. Next,
we briefly comment on some properties of the EOMs.

1. Properties

Solved together with the EOM for the SPFs (5), the
complete hierarchy of RDM EOM (6) (with o = 1, . . . ,N )
is equivalent to MCTDHB, of course, and thereby inherits
all properties such as gauge invariance, norm, energy, and, if
existent, single-particle symmetry conservation. In particular,
the solution of the complete hierarchy corresponds to an exact
solution of the many-body Schrödinger equation for m → ∞.
Trivially, the RDM EOMs respect the compatibility of the
RDMs by construction, meaning ∂tρ

o
n,m = 〈n|tr1(∂t ρ̂o+1)|m〉.

Although the above EOMs are derived from MCTDHB and
the RDMs are represented with respect to a dynamically
optimized basis, the EOMs for the matrix elements ρo

n,m are
formally identical to the BBGKY EOMs derived from the
time-dependent Schrödinger equation [10], which one can
see by using the representation (9) for the collision integral
and translating the Hamiltonian (7) into the first-quantization
picture for the o-particle sector. This is due to the fact that the
elements ρo

n,m depend only on the expansion coefficients An
[see Eq. (3)], which obey the linear Schrödinger-like equation
(4). Moreover, in the limit m → ∞ and the gauge gij = 0, the
above equations exactly coincide with the BBGKY hierarchy
of EOMs represented in some time-independent basis (see,
e.g., [10]). In the opposite limit m = 1, where all bosons are
forced to reside in the same SPF, the time-derivative of the
RDM elements vanishes and the dynamics is solely governed
by Eq. (5), which becomes equivalent to the Gross-Pitaevskii
mean-field equation for the case of contact interaction [74].

Since the BBGKY EOMs derived from MCTDHB are
formally identical to the BBGKY EOMs stemming from the
von Neumann equation, the question of their validity at finite
temperatures boils down to the question of whether Eq. (5)
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results in an optimal dynamics for the SPFs in this case. By
purifying the N -RDM (see also [82]), we show in Appendix C
in which sense Eq. (5) ensures optimality of the SPFs also
for arbitrary mixed initial states ρ̂N (0) of the total N -particle
system, given that the N -particle dynamics is unitary. Thereby,
the above equations can safely be applied also to the case
of low temperatures as long as one can computationally
account for sufficiently many SPFs to resolve all significantly
populated single-particle states. Otherwise, one would have
to combine the BBGKY approach with some suitable Monte
Carlo sampling technique, which, however, goes far beyond
the scope and aims of this work.

In order to use the above BBGKY EOM for simulating
the quantum dynamics of systems which are too large for a
MCTDHB calculation, one needs to truncate the hierarchy
of EOMs at a certain order ō and approximate the unknown
collision integral Îō[ρ̂ō+1]. This closure approximation may
therefore be regarded as an additional approximation to the
MCTDHB theory in the case of a finite number of SPFs m.
If successful, the total particle number N would directly5

enter the resulting theory only as a prefactor of the collision
integral (8). While truncation schemes are discussed in Sec. IV,
we provide in the following comments on (i) how to find
an appropriate initial state for the o-RDM with o = 1, . . . ,ō

(Sec. III B 2) and (ii) different representations of the BBGKY
hierarchy (Sec. III C).

2. Initial-state calculation

In the following, let us assume that we have already
truncated the BBGKY at the order ō by means of an ap-
propriate closure approximation (see Sec. IV) and discuss
different approaches for determining the initial RDMs [ρ̂1(t =
0), . . . ,ρ̂ō(t = 0)].

First, if the system is initially fully condensed or in a
noninteracting thermal state, the initial o-RDM can be stated
(semi)analytically for arbitrary orders, given that the occupied
single-particle state(s) are known.

Second, if, however, correlations do play a role initially,
e.g., if the system is initially in the correlated ground state of
some reference Hamiltonian Ĥ0, numerical methods such as
MCTDHB with imaginary-time propagation or improved re-
laxation [83] can be employed. Due to the closure approxi-
mation, however, the resulting o-RDM ceases to be an exact
stationary point of the EOM (6) (with Ĥ replaced by the
reference Hamiltonian Ĥ0). In such a situation, the initial
RDMs can be improved by propagating the RDM EOM
(6) with fixed SPFs and Ĥ still replaced by the reference
Hamiltonian Ĥ0 for some time and performing a time average
over the solution as done in [73].

Third, one may alternatively make some initial guess for
ρ̂o(t = 0) with o = 1, . . . ,ō, obtained, e.g., from an accurate
MCTDHB calculation or, if infeasible, a rough one taking

5In some situations, however, the number of particles does affect
the minimal number of SPFs required for convergence; cf. the Mott-
insulating state of ultracold bosons in an optical lattice at unit filling
where one needs m = N .

too few SPFs into account,6 and aim at finding a fixed point
of the EOMs (5), (6), where Ĥ is again replaced by the
reference Hamiltonian Ĥ0. The MCTDHB EOM (4) in negative
imaginary time leads to the following trace-conserving EOM
for the N -RDM ∂τρ

N
n,m = 〈n|{tr(Ĥ0ρ̂N ) − Ĥ0, ρ̂N }|m〉 with

{·,·} denoting the anticommutator. Given a gapped reference
Hamiltonian Ĥ0, the latter EOM exponentially contracts all
initial states with 〈E0|ρ̂N (0)|E0〉 = 0 to a state proportional to
the projector onto the (approximate) ground state7 |E0〉.

Taking partial traces of the above equation for the N -particle
density operator, however, appears cumbersome to us. Instead,
we find it technically more convenient to directly differentiate
the RDMs with respect to (negative imaginary) time and
perform manipulations similarly to the derivation of contracted
Schrödinger equations [12,13,56,58]. In Appendix D, we
explicate this derivation for the 1-RDM. As in the case of
contracted Schrödinger equations, one finds that the EOM
for the o-RDM couples to both the order o + 1 and o + 2,
which can be traced back to the N -RDM EOM featuring
an anticommutator instead of the commutator occurring for
real-time dynamics. With the help of an appropriate truncation
approximation (see Sec. IV), one can then relax an initial guess
for the o-RDM to the (approximate) ground-state o-RDM.
It would be very interesting to compare the performance of
these EOMs, which includes also an adaptive single-particle
basis, to the conventional contracted Schrödinger equation
approach [12,13,56,58] and its anti-Hermitian variant [84]
(which could also used for calculating the initial o-RDM,
of course). Since we, however, focus on the properties of
the (truncated) BBGKY equations (5), (6) for many-body
dynamics here, only situations with analytically known initial
states are considered in the applications of Sec. VI.

C. Special representations of the BBGKY equations of motion

Before discussing truncation approximations in Sec. IV,
we briefly inspect selected equivalent representations of the
BBGKY EOMs (5), (6) here, which turns out to be useful for
both computational purposes and conceptional insights.

1. Single-particle Hamiltonian gauge

While any chosen gauge gij leads to the same solution for
the o-RDM ρ̂o as argued before, we empirically found that
the single-particle Hamiltonian gauge gij = hij is numerically
more favorable for integrating the EOMs (see also [75] for a
similar observation for MCTDH). We suspect the following
mechanism of being responsible for this effect. The commuta-
tor [ ˆ̃H,ρ̂o], expressed in the eigenbasis of ˆ̃H , results in terms
being proportional to the difference of two eigenenergies in
the EOM (6), which might lead to stiff equations and small

6In order to perform the subsequent calculations accurately, one
has to add further, e.g., randomly chosen SPFs and embed the given
o-RDM with smaller m into an o-RDM with larger m such that those
additional SPFs are unoccupied.

7For a degenerate ground state, the asymptotic solution is propor-
tional to ρ̂N (0) projected from the left and right onto the ground-state
manifold.
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integrator time steps. In the above gauge, however, the single-
particle terms are removed from the Hamiltonian (7) such that
the impact of these energy differences is reduced. Possibly,
one might boost the integration further by incorporating also a
fraction of the interaction energy into the constraint operator
in an appropriate mean-field sense.

2. Natural-orbital gauge

Conceptional insights into the role of correlations can be
gained by spectrally decomposing the o-RDM

ρ̂o =
Co

m∑
r=1

λ(o)
r

∣∣φo
r

〉〈
φo

r

∣∣ (10)

and reformulating the BBGKY EOMs as EOMs for the so-
called natural populations (NPs)8 λ(o)

r and natural orbitals
(NOs) |φo

r 〉 [17]. For ultracold bosonic systems, the dynamics
of the 1-RDM NPs is of particular interest for diagnosing quan-
tum depletion and fragmentation into several Bose-Einstein
condensates [18,22,25]. In the context of the MCTDH theory,
it is well-known that one can enforce the SPFs to coincide
with the 1-RDM NO given that this coincidence is also ensured
initially [75,85,86] by an appropriate choice of the constraint
operator, which reads9 for indistinguishable particles and two-
body interactions

gij = hij − (1 − δij )

〈
φ1

i

∣∣ Î1(ρ̂2)
∣∣φ1

j

〉
λ

(1)
i − λ

(1)
j

. (11)

Thereby, one finds that the 1-RDM NP dynamics is driven by
the collision integral

i∂tλ
(1)
r = 〈φ1

r

∣∣ Î1(ρ̂2)
∣∣φ1

r

〉
, (12)

and the corresponding NOs obey

i∂t

∣∣φ1
r

〉 = ĥ
∣∣φ1

r

〉− m∑
l=1
l =r

〈
φ1

l

∣∣ Î1(ρ̂2)
∣∣φ1

r

〉
λ

(1)
l − λ

(1)
r

∣∣φ1
l

〉+ (N − 1)

λ
(1)
r

× [1 − P̂]
m∑

q,p,s=1

fqpfrs ρ2
eq+ep,er+es

[v̂]sp
∣∣φ1

q

〉
,

(13)

where the mean-field operator matrix [v̂]sp has to be evaluated
with respect to the NO basis. Before we proceed, some
comments are in order here. (i) The EOMs (12), (13) turn into
the exact EOMs for the 1-RDM NPs and NOs [42,87–91] in
the limit m → ∞ where the last term in (13) vanishes. For
a truncation of the single-particle basis to some finite m, the
above EOMs describe the variationally optimal dynamics of
the NOs (see also [92]). (ii) The reciprocal eigenvalue 1/λ(1)

r

in (13) has to be regularized as usual (see footnote 2). (iii)
In the case of NP degeneracies, both the constraint operator

8The terms “natural population” and “natural orbital” have origi-
nally been introduced for the 1-RDM only [17] but are employed for
all orders in this work.

9We note that the real-valued diagonal elements gii may be chosen
arbitrarily.

(11) and the NO EOM (13) can become undefined due to
the ambiguity of the NOs within the degenerate subspace(s).
One can cope with this issue by setting the gij to zero if
λ

(1)
i = λ

(1)
j [92] or regularize the difference λ

(1)
i − λ

(1)
j in the

equations [75]. Alternatively, a Taylor expansion of ρ̂1(t + �t)
up to second order in �t as performed in [79] should lift the
ambiguity in many cases. In any case, initially nondegenerate
NPs typically repel each other during the dynamics according
to the Wigner–von Neumann noncrossing rule [93] with the
time t as the only “external” parameter, unless symmetries
lead to nonincidental crossings [94]. Due to these technical
subtleties, we do not employ the natural-orbital gauge for
simulations but only for analytical insights into the essential
features of the 2-RDM which actually drive the NP dynamics
according to Eq. (12) (see Sec. IV C).

3. Spectral representation on all orders

While the constraint operator can only be used for deriving
the spectral representation at the order o = 1, one may proceed
for orders o > 1 by inserting the representation (10) into the
EOM (6) and projecting the result onto NOs (see [42,88–91]
for the application of this strategy to the order o = 1). The
result of this calculation is similar to Eq. (12) and the first line
of Eq. (13), and reads

i∂tλ
(o)
r = 〈φo

r

∣∣ Îo(ρ̂o+1)
∣∣φo

r

〉
, (14)

i∂tφ
o
r;n = 〈n| ˆ̃H

∣∣φo
r

〉− m∑
l=1
l =r

〈φo
l | Îo(ρ̂o+1)

∣∣φo
r

〉
λ

(o)
l − λ

(o)
r

φo
l;n, (15)

where φo
r;n ≡ 〈n|φo

r 〉. So again, only the collision integral
drives the nonunitary dynamics of the o-RDM NPs, as ex-
pected. We note that the EOM (14) will be the starting point
for our construction of a novel correction algorithm for the
truncated BBGKY EOMs, which nonperturbatively enforces
necessary representability conditions such as the positive
semidefiniteness (see Sec. V B 2).

IV. TRUNCATION APPROXIMATION AND THE ROLE
OF CORRELATIONS

Having discussed the BBGKY hierarchy of EOMs stem-
ming from the MCTDHB theory without further approxima-
tions, we investigate closure approximations for truncating
the hierarchy at order ō here. This is to impose further
approximations to the MCTDHB theory. While one effectively
has to find an approximation for the unknown collision integral
Îō only, we pursue here the standard path of approximating the
unknown (ō + 1) RDM by ρ̂

appr
ō+1 such that we obtain for the

approximate collision integral Î
appr
ō = Îō(ρ̂appr

ō+1 ). The general
strategy in the following is to appropriately decompose the
o-RDM into a part which can be constructed from lower order
RDMs and the rest, which defineso-particle correlations. Then,
the truncation approximation consists in neglecting the thereby
defined (ō + 1) correlations. Such an approach is expected to
be appropriate for weak and intermediate interaction strengths,
e.g., for studying the emergence of correlations on top of a
Bose-Einstein condensate or fragmented condensates.
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In the following, we first discuss requirements on such a
closure approximation, which have to be fulfilled for respect-
ing important conservation laws (Sec. IV A). Then, different
cluster-expansion schemes and thereby different definitions of
few-particle correlations are critically discussed in Sec. IV B.
After these rather technical considerations, we conceptually
analyze the role of two-particle correlations for the dynamics
of 1-RDM natural populations, i.e., for dynamical quantum
depletion or fragmentation of a bosonic ensemble (Sec. IV C).

A. Truncation approximation and conservation laws

While the bosonic symmetry is explicitly incorporated in
our formal framework and thus trivially conserved, other sym-
metries and conservation laws are only obeyed by the truncated
BBGKY EOMs (5), (6) if the closure approximation ρ̂

appr
ō+1

fulfills certain conditions. For analyzing these requirements,
we partly follow the lines of [10] and [69] while taking the time
dependence of the SPFs into account, whenever necessary.

First of all, the traces of the RDMs are conserved for any
truncation approximation ρ̂

appr
ō+1 due to the commutator structure

of the EOM (6). Second, any Hermitian closure approximation
ρ̂

appr
ō+1 results in the conservation of Hermiticity of the o-RDMs,

again by virtue of the commutator structure of their EOMs.
Third, the conservation of compatibility can be studied by
inspecting

i∂t 〈n|[tr1(ρ̂o+1) − ρ̂o]|m〉 = 〈n|[ ˆ̃H,tr1(ρ̂o+1) − ρ̂o]|m〉
+ κ 〈n|Îo(tr1(ρ̂o+2) − ρ̂o+1)|m〉

(16)

with κ = (N − o − 1)/(N − o). As in the case of the BBGKY
hierarchy represented in some time-independent basis, the
compatibility of the closure approximation, tr1(ρ̂appr

ō+1 ) = ρ̂ō for
all times, constitutes a sufficient condition for the conservation
of compatibility of all lower order RDMs, given that these
RDMs are compatible at the initial time of the propagation.

Fourth, we discuss energy conservation in the sense of
d
dt

〈Ĥ 〉t = 〈( ∂
∂t

Ĥ )〉t , where the partial derivative on the right-
hand side relates to a potential explicit time dependence of
the Hamiltonian Ĥ . Focusing on truncation orders ō � 2, one
obtains the same results for the EOMs (5), (6) as found for
the BBGKY EOMs being represented in a time-independent
basis [69]. Namely, if the total energy expectation value of the
system is calculated as

〈Ĥ 〉t = N tr(ĥ1 ρ̂1) + N (N − 1)

2
tr(v̂12 ρ̂2) (17)

then energy conservation is ensured by the bosonic symmetry
of the RDMs, independently of the chosen truncation approx-
imation. If, however, one alternatively computes the energy
expectation value as 〈Ĥ 〉t = N tr(k̂2 ρ̂2) with the auxiliary
2-particle Hamiltonian k̂2 = [ĥ1 + ĥ2 + (N − 1)v̂12]/2 [15],
then energy conservation requires the truncation approxima-
tion to respect the compatibility requirement.

Fifth, single-particle symmetries are conserved as long as
the truncation approximation respects this symmetry, which
means the following. Let π̂κ denote a symmetry operation (e.g.,
parity transformation or translation) acting on the κth particle
and ̂n =⊗n

κ=1 π̂κ the corresponding symmetry operation
acting on n particles. Furthermore, we consider a Hamiltonian

featuring this symmetry, i.e., [̂N,Ĥ ] = 0, and assume an
initial state of definite symmetry. By transferring the line
of arguments of [81] to the current situation, one can show
that the truncated EOMs (5), (6) conserve this symmetry,
i.e., [̂o,ρ̂o(t)] = 0 for o = 1, . . . ,ō, if the following two
conditions are met. (i) All initial SPFs, i.e., also initially
unoccupied ones, are of definite symmetry, meaning π̂1|φj (t =
0)〉 = eiθj |φj (t = 0)〉 for some θj ∈ R. (ii) The reconstruction
approximation ρ̂

appr
ō+1 features this symmetry, [̂ō+1,ρ̂

appr
ō+1 (t)] =

0 at time t , given that the RDMs of lower order, from which
ρ̂

appr
ō+1 (t) is constructed, commute with the corresponding ̂o

transformation.
Sixth, one can show that the gij gauge invariance of the

EOMs (5), (6) remains untouched under truncation if the
truncation approximation ρ̂

appr
ō+1 (t) transforms as a bosonic (ō +

1)-RDM under unitary transformation of the single-particle
basis. When discussing the construction of compatible cluster
expansions in Secs. IV B 2 and IV B 3, this transformation
behavior turns out to be a subtlety which has to be carefully
analyzed.

Finally, we refer the reader to [95] for a comprehensive
discussion of the impact of closure approximations on the time-
reversal invariance of the BBGKY hierarchy.

B. Cluster expansions for finite bosonic systems

In the following, we first review the so-called clus-
ter expansion for indistinguishable but spinless particles
(Sec. IV B 1) and analyze its symmetrized variant for bosons
(Sec. IV B 2). When critically inspecting the resulting defi-
nition of few-particle correlations, also in comparison to the
corresponding cluster expansion for fermions, we pinpoint an
issue concerning size extensivity being related to a particularity
of the bosonic symmetrization operator. For this reason, we
briefly touch upon an alternative cluster expansion, being out-
lined in more detailed and critically discussed in Appendix E.
Eventually, we arrive at a compatible, recursively formulated
cluster expansion for bosons, which allows for going to large
truncation orders (Sec. IV B 3). It is this cluster expansion
which we employ in the applications of Sec. VI.

1. Cluster expansion for indistinguishable spinless particles

Following, e.g., [10], the cluster expansion for a system of
indistinguishable but spinless particles reads

ρ̂
(1,2)
2 =: ρ̂

(1)
1 ρ̂

(2)
1 + ĉ

(1,2)
2 ,

ρ̂
(1,2,3)
3 =: ρ̂

(1)
1 ρ̂

(2)
1 ρ̂

(3)
1 + [ĉ(1,2)

2 ρ̂
(3)
1 + ĉ

(1,3)
2 ρ̂

(2)
1

+ ĉ
(2,3)
2 ρ̂

(1)
1

]+ ĉ
(1,2,3)
3 ,

ρ̂
(1,2,3,4)
4 =: ρ̂

(1)
1 ρ̂

(2)
1 ρ̂

(3)
1 ρ̂

(4)
1 + [ĉ(1,2)

2 ρ̂
(3)
1 ρ̂

(4)
1 + . . .

]
+ [ĉ(1,2,3)

3 ρ̂
(4)
1 + . . .

]+ [ĉ(1,2)
2 ĉ

(3,4)
2 + . . .

]
+ ĉ

(1,2,3,4)
4 , (18)

etc. Here, the superindex in, e.g., ρ̂
(κ)
1 indicates onto which

particle the respective operator will act. The occurring terms
in this cluster expansion have an intuitive interpretation; e.g.,
ĉ

(1,2)
2 ρ̂

(3)
1 describes the situation in which the first two particles

are correlated while the third one constitutes an independent
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“spectator.” Let us now briefly summarize the properties of this
expansion and the resulting closure approximation: (i) Given
a compatible family of RDMs ρ̂(1,...,o)

o , it is straightforward
to see that all cluster operators are contraction-free, i.e.,
tr1(ĉ(1,...,o)

o ) = 0. This implies that the truncation approxima-
tion of setting ĉ

(1,...,ō+1)
ō+1 to zero is compatible so that the

truncated BBGKY EOMs would conserve the compatibility
of the RDMs. (ii) It is moreover easy to see that the above
expansion is even termwise compatible, meaning that for each
class of terms on the right-hand side of order (o + 1) (indicated
by square brackets), there exists a corresponding class of terms
at order o that constitutes its partial trace, e.g., tr1([ĉ(1,2)

2 ρ̂
(3)
1 +

. . .]) = ĉ
(1,2)
2 if the partial trace is taken over the “third”

particle. (iii) Given that the RDMs are invariant under the
symmetry operation ̂(1,...,o)

o =⊗o
κ=1 π̂ (κ) where π̂ denotes a

single-particle symmetry operator, i.e., [̂(1,...,o)
o ,ρ̂(1,...,o)

o ] = 0,
one can show by induction that also the clusters [and thus
also the reconstruction functional at order (ō + 1)] feature this
symmetry [̂(1,...,o)

o ,ĉ(1,...,o)
o ] = 0. (iv) While the clusters and

therefore the corresponding reconstruction functional do not
single out any particle, meaning P̂π ĉ(1,...,o)

o P̂π = ĉ(1,...,o)
o for

any permutation π ∈ S(o) and P̂π denoting the corresponding
particle-permutation operator, they lack bosonic symmetry,
i.e., P̂π ĉ(1,...,o)

o = ĉ(1,...,o)
o in general. Thus, projecting onto the

bosonic sector is in order here (see [10] and references therein
for a more detailed line of argument), which is discussed in the
following section.

2. Symmetrization of the cluster expansion
for indistinguishable bosons

Since the clusters as defined in Eq. (18) commute with
the respective particle-transposition operators, it is suffi-
cient to apply the respective symmetrization operator Ŝo =∑

π∈S(o) P̂π/o! only from the right:

ρ̂2 =: ρ̂
(1)
1 ρ̂

(2)
1 Ŝ2 + ĉ2,

ρ̂3 =:
(
ρ̂

(1)
1 ρ̂

(2)
1 ρ̂

(3)
1 + [ĉ(1,2)

2 ρ̂
(3)
1 + · · · ])Ŝ3 + ĉ3,

ρ̂4 =:
(
ρ̂

(1)
1 ρ̂

(2)
1 ρ̂

(3)
1 ρ̂

(4)
1 + [ĉ(1,2)

2 ρ̂
(3)
1 ρ̂

(4)
1 + · · · ]

+ [ĉ(1,2,3)
3 ρ̂

(4)
1 + . . .

]+ [ĉ(1,2)
2 ĉ

(3,4)
2 + · · · ])Ŝ4 + ĉ4,

(19)

etc. Apparently, the number of terms in this expansion in-
creases rapidly with increasing order. While we provide a
recursive scheme for efficiently evaluating clusters of high
order in Sec. IV B 3, we address here the following more
fundamental problems and the corresponding properties of
the above cluster expansion: (i) ideal BECs of fixed particle
number as correlation-free reference states, (ii) compatibility,
(iii) invariance under symmetries, and (iv) size extensivity.
Finally, we briefly comment on differences from the corre-
sponding cluster expansion for fermions.

First, it is natural to require that a correlation measure should
not testify to correlations if the N -particle system is fully
condensed, i.e., if the system is in a Gross-Pitaevskii mean-field
state |�〉 = ⊗N

j=1|φ〉 with the condensate wave function |φ〉.
Here, we show that this is indeed the case for the clusters ĉo

defined by (19). Obviously, the 1-RDM of such a BEC reads

ρ̂1 = |φ〉〈φ|. Evaluating the first class of terms on the right-
hand side of Eq. (19), we find at order o that (ρ̂(1)

1 . . . ρ̂
(o)
1 )Ŝo =

|φ . . . φ〉〈φ . . . φ|, i.e., the projector onto the o-fold Hartree
product of the condensate wave function, which equals exactly
ρ̂o. Thereby, all clusters vanish for this state.

We have explicated this illustrative calculation here only
in order to demonstrate why we have decided to use the
idempotent symmetrization operator Ŝo = Ŝ2

o and trace-one
RDMs in the expansion (19). This is namely in contrast to most
other works which typically use Do

(i1,...,io),(j1,...,jo) [featuring

trace N !/(N − o)!] as RDMs and o! Ŝo as the symmetrization
operator for the cluster expansion, which is then also called
cumulant expansion10 [10,12,13]. While the cumulant expan-
sion is perfectly suitable for systems with vanishing chemical
potential, e.g., photons [48], it testifies to nonvanishing corre-
lations on all orders for an ideal BEC with a fixed number N of
atoms, even if N becomes large [50]. Thereby, this approach is
not suitable for systematically taking correlations into account
on top of a BEC. In numerical experiments, we have indeed
observed that the truncated BBGKY EOMs become almost
immediately exponentially unstable and give wrong results if
the cumulant expansion is used for the truncation (data not
shown). To cure this flaw, we employ the trace-one RDM
and the idempotent symmetrization operator for the cluster
expansion in this work. In passing, we note that recently also
an alternative solution to this problem based on a nonunitary
transformation into the so-called excitation picture of a BEC
has been developed [50–52].

Second, in order to conserve the compatibility of the initial
RDMs, a cluster expansion should ideally respect compatibil-
ity; i.e., its clusters should be contraction-free. In contrast to the
case of identical but spinless particles (Sec. IV B 1), however,
neither is the expansion (19) termwise compatible nor are the
thereby defined clusters contraction-free in general. This can
be easily seen by inspecting the second order, for which a
straightforward calculation gives tr1(ĉ2) = (ρ̂1 − ρ̂2

1 )/2 (see
also [46]). Thus, the partial trace of ĉ2 vanishes only if
ρ̂1 is idempotent, which is equivalent to the total system
being in a Gross-Pitaevskii mean-field state where all clusters
vanish anyway (see also [34]). In Sec. IV B 3, we restore the
compatibility of the cluster expansion (19) by means of a
unitarily invariant decomposition of the cluster.

Third, as in the case of indistinguishable spinless particles,
the clusters ĉo defined by Eq. (19) commute with the symmetry
operator ̂o given that the state of the total system features such
a symmetry. This is an immediate consequence of [̂o,Ŝo] = 0.

Fourth, a cluster expansion should ideally be size-extensive
in the sense that it does not testify to correlations between
two subsystems which feature no mode entanglement between
each other. Even in the absence of mode entanglement, the
bosonic particle-exchange symmetry does in general induce
correlations between particles, which should be appropriately
described by our methodological approach, of course. Such
correlations should, however, be excluded from the correlation

10The cumulants can be calculated as derivatives of the generating
function ξ ({αr},{α∗

r }) = ln[〈exp(
∑

r αr â
†
r ) exp(−∑r α∗

r âr )〉] with re-
spect to αi and α∗

j and setting all α′s to zero (see, e.g., [13]).
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definition, on which a cluster expansion is based, so that higher
order clusters can be neglected without impeding physical
mechanisms that are induced by such bosonic-symmetry-
induced correlations. Here, we relax this requirement and only
demand that a system consisting of two independent ideal
BECs, i.e., the simplest case of a twofold fragmented conden-
sate, should not feature ĉo correlations. While a single BEC
is correlation-free as discussed above, the cluster expansion
(19) unfortunately diagnoses correlations between these two
independent BECs, which can be seen as follows. Suppose that
NA/B atoms reside in the condensate wave function |φA/B〉 such
that the total system state reads |�〉 = |NA,NB〉. A straight-
forward calculation shows that two-particle correlations ĉ2

are present in this case, even in the infinite particle limit
N = NA + NB → ∞ with λ = NA/N kept constant where
one obtains the following expression:

ĉ2 = λ(1 − λ)|φ+
AB〉〈φ+

AB | + O(1/N ) (20)

with |φ+
AB〉 = (|φAφB〉 + |φBφA〉)/√2. So the correlation mea-

sure ĉ2 testifies to correlations between the two independent
condensates, which stem solely from the bosonic particle-
exchange symmetry.

In order to approximately cure this flaw of lacking size
extensivity, we have explored the construction of an alternative
bosonic cluster expansion, which we, however, discard in the
end due to a mathematical subtlety. Let us nevertheless briefly
report on the concepts as well as the pitfall here. Inspired
by [96], the central idea is to modify the different classes of
terms of the expansion (19) such that termwise compatibility
is ensured and so-called multiorbital mean-field states [97,98]
possess vanishingly small correlations. The latter means that
there are an occupation-number vector k and single-particle
basis states such that the total wave function can be represented
by a single permanent |�〉 = |k〉. The second order of this
alternative cluster expansion has been discussed in [99,100] as
well as applied for an in-depth analysis of quantum many-
body dynamics far off-equilibrium [100]. In Appendix E,
we exemplarily outline the construction of this expansion.
Unfortunately, however, it turns out that the thereby defined
cluster operators may depend on the choice of the single-
particle basis in the case of NP degeneracies, which hinders
us from utilizing this approach for truncating the BBGKY
hierarchy. For this reason, we stick to the symmetrized cluster
expansion (19) and make it compatible (see Sec. IV B 3).

Finally, we briefly compare the above properties to the
fermionic case (with fixed particle number N ). Here, the cumu-
lant expansion is the appropriate approach since it ensures that
Hartree-Fock states do not feature correlations [49] (whereas
using the idempotent antisymmetrization operator and trace-
one RDMs leads to correlations in this case). Analogously to
the bosonic case, the cumulants turn out to be only contraction-
free if the system is in a Hartree-Fock state. Yet surpris-
ingly, the cumulants prove to be size-extensive [13,101,102].

3. Recursive formulation of the compatible symmetrized
cluster expansion

We now come back to the symmetrized cluster expansion
(19), make it compatible by means of a unitarily invariant
decomposition [103–106], and finally give a recursive formu-
lation allowing for an efficient evaluation at high orders.

Apparently, the cluster ĉō+1 defined by (19) contains infor-
mation about the RDMs of lower order such that neglecting it
violates compatibility. These important pieces of information
can be identified by the so-called unitarily invariant decompo-
sition (UID) of Hermitian bosonic operators [105,106], which
allows for uniquely decomposing any o-body operator B̂o ∈ Bo

into B̂o = B̂red
o ⊕ B̂ irr

o where B̂red
o contains all information

about the partial traces of B̂o, i.e., tr1(B̂red
o ) = tr1(B̂o), and B̂ irr

o

covers what may be termed irreducible o-particle properties.
This decomposition is unique in the sense of being invariant
under unitary transformations of the single-particle basis. We
further note that B̂red

o is a linear functional in all partial traces
trk(B̂o) of B̂o, which we explicate in Appendix F.

Analogously to [72,73] dealing with fermions, we now
define the (ō + 1)-particle correlations which are neglected
in the truncation approximation to be the irreducible, i.e.,
contraction-free, component of the cluster ĉō+1 of the expan-
sion (19) (see [46] for an alternative approach for ensuring
compatibility). If we abbreviate the approximation for ρ̂ō+1

as induced by (19) by η̂ō+1 := ρ̂ō+1 − ĉō+1, we obtain the
following compatible closure approximation

ρ̂
appr
ō+1 := η̂ō+1 + ĉred

ō+1 = ρ̂red
ō+1[ρ̂1, . . . ,ρ̂ō] ⊕ η̂irr

ō+1. (21)

Practically, this means that we have to calculate (i) η̂ō+1, which
equals the right-hand side of (19) when neglecting the unknown
ĉō+1, (ii) its contraction-free component η̂irr

ō+1 via the UID, and
(iii) the reducible component ρ̂red

ō+1 of the unknown ρ̂ō+1, which,
however, depends only on its known partial traces, i.e., the
RDMs which are propagated via the truncated BBGKY EOMs.

In this way, the truncation approximation consists of re-
placing the exact ρ̂ irr

ō+1 by η̂irr
ō+1. In passing, we note that the

UID ensures only compatibility but not termwise compatibility
as fulfilled by the alternative cluster expansion outlined in
Appendix E. In contrast to this alternative cluster expansion
however, the closure approximation (21) is invariant under
unitary transformations of the SPFs as a consequence of the
UID. Thus, the gauge invariance of the truncated EOMs (5),
(6) with respect to the constraint operator gij is ensured by
(21).

In order to construct the closure approximation (21) also at
high truncation orders ō, we finally state an efficient recursive
algorithm for evaluating the clusters ĉo of the expansion (19).
The key idea here is to find computation rules for the different
classes of expansion terms which are indicated in (19) by
square brackets. If we define the one-body cluster by ĉ1 ≡ ρ̂1,
we can abbreviate the class of terms at order o which involves
K different clusters, where the cluster ĉσr

occurs nr times
(r = 1, . . . ,K), by the symbol

F̂ n1,...,nK

σ1,...,σK
≡ [ĉ(1,...,σ1)

σ1
ĉ(σ1+1,...,2σ1)
σ1

. . . ĉ([n1−1]σ1+1,...,n1σ1)
σ1

ĉ(n1σ1+1,...,n1σ1+σ2)
σ2

. . . ĉ(o−σK+1,...,o)
σK

+ all distinguishable permutations of the particle labels
]
Ŝo, (22)
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whereo =∑K
r=1 nrσr . Here, we assume the ordering 0 < σ1 <

σ2 < . . . . < σK as well as nr > 0 for all r = 1, . . . ,K . Now
we may express the cluster ĉo of the expansion (19) as

ĉo = ρ̂o −
o−1∑
K=1

∑K
r=1 nrσr=o∑

n1, . . . ,nK > 0
0 < σ1 < σ2 < . . . . < σK

F̂ n1,...,nK

σ1,...,σK
. (23)

As a matter of fact, this sum runs over as many symbols as
there are integer partitions of the number o minus one, i.e.,
P (o) − 1 with P (·) denoting the partition function, such that
we can use an algorithm which generates integer partitions
for labeling the symbols of a given order. In Appendix G, we
prove the following two computation rules, which are sufficient
for evaluating the symbol F̂ n1,...,nK

σ1,...,σK
in terms of the symbols of

lower orders:

F̂ n
σ = 1

n
Ĵ σ

(n−1)σ

(
F̂ n−1

σ ,ĉσ

)
, (24)

F̂ n1,...,nK

σ1,...,σK
= Ĵ

nKσK

o−nKσK

(
F̂ n1,...,nK−1

σ1,...,σK−1
,F̂ nK

σK

)
, (25)

where again o =∑K
r=1 nrσr and Ĵ o2

o1
(·,·) denotes the joining

superoperator introduced in Appendix A. In our software
implementation, we store for each symbol F̂ n1,...,nK

σ1,...,σK
at the order

o the (integer-partition based) labels of the symbols of lower
order that are needed for applying the respective computation
rule. The required joining operations (A3) are implemented
in a highly efficient manner by using the combinadic-number-
based labeling of bosonic number states [107] in combination
with mapping tables [81] for easily addressing the label of the
(o1 + o2)-particle number state |a1 + a2〉 given the o1-particle
number state |a1〉 and the o2-particle number state |a2〉.

Having recursively calculated all clusters ĉo up to the
truncation order ō, the (incompatible) auxiliary closure ap-
proximation η̂ō+1 can be constructed, from which we finally
obtain the compatible closure approximation (21) via the UID
[see Eq. (F2)]. This is how we truncate the BBGKY hierarchy
in the numerical simulations of Sec. VI.

C. On the role of two-particle correlations
for dynamical quantum depletion

After the above technical considerations on how to properly
define and evaluate few-particle correlations for constructing
a cluster expansion, we investigate here the impact of two-
particle correlations on the 1-RDM natural populations λ(1)

r ,
which is highly relevant for understanding the mechanisms
underlying dynamical quantum depletion and fragmentation
of Bose-Einstein condensates [18]. We address this problem
from two perspectives.

First, we analyze the role of the irreducible component ρ̂ irr
2

on the 1-RDM dynamics. By inserting the decomposition ρ̂2 =
ρ̂red

2 ⊕ ρ̂ irr
2 together with the explicit expression (F2) for ρ̂red

2
into (6), we find the following:

i∂t 〈ϕq |ρ̂1|ϕp〉 = 〈ϕq |
(
[ĥeff ,ρ̂1] + Î1

(
ρ̂ irr

2

))|ϕp〉, (26)

where the effective single-particle Hamiltonian reads ĥeff =
ĥ − ĝ + N−1

m+2 tr1[v̂12(1 + P̂12)] and P̂12 permutes the particle
labels 1 and 2. So the coupling of a single atom being in
the state ρ̂1 to the remaining (N − 1) atoms via the collision

integral Î1(ρ̂2) has a twofold impact. While the reducible
component ρ̂red

2 only leads to a renormalization of the single-
particle Hamiltonian to ĥeff , an effect sometimes called the
Lamb shift in the context of open quantum systems [108],
nonunitary dynamics of the 1-RDM can only be induced by
the irreducible component ρ̂ irr

2 . Thus, only these correlations
can drive the dynamics of the NPs λ(1)

r (t). We note that this
result does not depend on whether the RDMs are represented in
the dynamically adapted MCTDHB SPF basis or with respect
to some time-independent basis. It is only important that the
single-particle basis is finite, which is a technical requirement
for the UID [103–106].

Second, we explicate the EOM (12) for the NPs λ(1)
r (t),

∂tλ
(1)
r = 2(N − 1)

m∑
i,j,k=1

fikfjr Im
(
vrjik ρ2

ei+ek ,er+ej

)
, (27)

where we remind the reader about the definition fqp =√
(δqp + 1)/2. Employing the Hermiticity of v̂12 as well as

[P̂12,v̂12] = 0, one easily verifies that the diagonal elements
ρ2

a,a do not contribute to the right-hand side of Eq. (27). As a
result, the NP evolution can only be driven by the coherences
ρ2

a,b with a = b of the 2-RDM represented in permanents
with respect the instantaneous NOs |φ1

s 〉. More precisely, only
such coherences in the irreducible component ρ̂ irr

2 can induce
nontrivial dynamics of the 1-RDM NPs.

Besides being of conceptual interest, this insight has also
consequences for truncation approximations. Truncating the
BBGKY hierarchy at the first order using the recipe outlined in
Sec. IV B 3 means using the following closure approximation:

ρ̂
appr
2 =

m∑
q,p=1

(1 + δqp) λ(1)
q

(
λ(1)

p

2
+ 1 − λ(1)

q

m + 2

)

× |eq + ep〉〈eq + ep| − 1 − tr
(
ρ̂2

1

)
(m + 2)(m + 1)

1+
2 , (28)

where the number states are given with respect to the instan-
taneous NOs |φ1

s 〉. In this basis, ρ̂
appr
2 turns out to be diagonal

implying that the NPs λ(1)
r (t) are constant in time. Thus, when

using the truncation scheme of Sec. IV B 3, the truncation order
ō must be larger than one in order to account for dynamical
quantum depletion (see also [88,89,91] for a similar discussion
for the fermionic case).

Similarly, if the total system is in a multiorbital mean-field
state, i.e., a single permanent [cf. Eq. (E1) of Appendix E] or if
one truncates the BBGKY hierarchy at order ō = 1 by means
of the alternative cluster expansion outlined in Appendix E,
the 2-RDM entering the right-hand side of Eq. (27) is diagonal
in the NO number-state basis, leading again to stationary NPs
[99]. Consequently, for a system being initially prepared in
a single permanent (as in the case of two independent BECs
discussed in Sec. IV B 2), a Taylor expansion of λ(1)

r (t) about
t = 0 lacks the linear term. This is a consequence of |�t 〉 being
continuous in time, which requires a continuous admixture of
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further number states11 (with respect to the instantaneous NOs)
for having a well-defined finite time derivative of λ(1)

r .

V. RDM REPRESENTABILITY AND
PURIFICATION STRATEGIES

While the BBGKY EOMs truncated by virtue of the cluster
expansion discussed in Sec. IV B 3 conserve the trace and
compatibility of the RDMs, other properties of RDMs are not
ensured. As we will investigate in detail in Sec. VI, the initial
RDMs lose, e.g., their positive semidefiniteness in the course of
the time evolution due to the applied truncation approximation,
which has also been observed in [69,72] when truncating the
BBGKY hierarchy for fermionic problems at order ō = 2. In
this section, we first review important necessary representabil-
ity conditions which ρ̂o has to fulfill in order to represent an
o-RDM of a bosonic N -particle system. Thereafter, we discuss
purification strategies for preventing representability defects in
the solution of the truncated BBGKY EOMs.

A. Necessary representability conditions

Besides being compatible and of unit trace, which will be
assumed in the following, there are further important necessary
representability conditions on the o-RDM. For reviewing them,
we assume the total N -particle system to be in some pure
state |�〉 and follow the lines of [109–111]. Then one has
〈�|Â†

oÂo|�〉 � 0 for an arbitrary (not necessarily Hermitian)
polynomial Âo of order o in the annihilation and creation
operators â

(†)
r , e.g.,

Â2 =
m∑

i,j=1

(
c

(1)
ij âi âj + c

(2)
ij â

†
i â

†
j + c

(3)
ij âi â

†
j + c

(4)
ij â

†
i âj

)

+
m∑

i=1

(
c

(5)
i âi + c

(6)
i â

†
i

)+ c(7) (29)

with the c(κ)’s being arbitrary complex numbers. Setting certain
c(κ)′s to zero while allowing the remaining ones to take arbi-
trary values, the inequality 〈�|Â†

oÂo|�〉 � 0 implies the pos-
itive semidefiniteness of various matrices such as the o-RDM
Do

(i1,...,io),(j1,...,jo) = 〈�|â†
j1

. . . â
†
jo
âio . . . âi1 |�〉 or the so-called

o-hole RDM Qo
(i1,...,io),(j1,...,jo) = 〈�|âj1 . . . âjo

â
†
io

. . . â
†
i1
|�〉.

By normal ordering, all these matrices can be expressed
in terms of the o-RDM and RDMs of lower order such
that the required positive semidefiniteness of these matrices
effectively induces necessary representability conditions for
the RDMs. Fulfilling all these conditions implies that the
Heisenberg uncertainty relation 〈(Â − 〈Â〉)2〉〈(B̂ − 〈B̂〉)2〉 �
|〈[Â,B̂]〉|/2, with the expectation values being evaluated with
respect to ρ̂o, is fulfilled for any observables Â, B̂ involving at
most �o/2�-body operators [110]. In contrast to this, violations
of these conditions can imply an unphysical violation of the
uncertainty relation between two such observables.

11As a side remark, this can be seen as a deeper reason for the fact
that the so-called time-dependent multiorbital mean-field theory [98]
has to rely on stationary occupations of the dynamically optimized
orbitals.

Since most observables of interest in the field of ultra-
cold atoms involve at most two-body operators, we focus
on representability conditions for the 1- and 2-RDMs here.
Whereas being positive semidefinite is necessary and suf-
ficient for the representability of ρ̂1, the known necessary
and sufficient representability conditions for the 2-RDM are
not useful in practice [109] (see [111], which deals with a
model system, for an exception). Therefore, we consider here
only the important necessary D, Q, and G conditions for
representability [13,109], which can be derived as outlined
above. In the following, we assume ρ̂1 to be representable.
Then, the D condition, i.e., the positive semidefiniteness of
D2

(i1,j1),(i2,j2), directly implies the positive semidefiniteness of
the two-hole RDM Q2

(i1,j1),(i2,j2) (the Q condition) [111]. In
contrast to this, the positivity of the one-particle-one-hole
RDM G2

(i1,j1),(i2,j2) = 〈�|â†
i1
âj1 â

†
j2
âi2 |�〉 (the G condition) is

not inherited from the D condition. This is because G2
(i1,j1),(i2,j2)

is not related to the D2 matrix but its partial transposed via
G2

(i1,j1),(i2,j2) = D2
(i2,j1),(i1,j2) + δj1j2D

1
i2,i1

[111]. Thereby, the G

condition constitutes an independent representability require-
ment on the 2-RDM, which can be crucial as highlighted by
the numerical results of, e.g., [111]. Besides the D condition,
we, however, do not employ the above G condition but its more
restrictive original variant [109], which demands the positive
semidefiniteness of the following matrix:

K2
(i1,j1),(i2,j2) = 1

NK

(
G2

(i1,j1),(i2,j2) − D1
j1,i1

D1
i2,j2

)
. (30)

In contrast to [109], however, we have included the normaliza-
tion factor NK = N (N + m − 1) − tr(D̂2

1) in the definition in
order to enforce12 unit trace,

∑
i,j K2

(i,j ),(i,j ) = 1, such that the
eigenvalues of ρ̂2 and K2

(i1,j1),(i2,j2) attain comparable values.
This K condition13 can be obtained by the above recipe
by setting all c(κ) to zero except for c

(3)
ij and c(7). Finally,

we remark that violating the K condition can have severe
impact on the predictions for density-density correlations being
readily accessible in ultracold quantum gas experiments (see,
e.g., [112]). Namely in this case, the positive semidefinite-
ness of the density-fluctuation covariance matrix C(x,y) =
〈δρ̂(x)δρ̂(y)〉, with δρ̂(x) = ψ̂†(x)ψ̂(x) − 〈ψ̂†(x)ψ̂(x)〉 and
ψ̂(x) denoting the field operator, is not guaranteed (see
Eq. (7.14) of [109]).

B. Correction strategies

Since the truncated BBGKY EOMs do not respect the
above necessary representability constraints, we discuss here
correction strategies. These strategies can be viewed as an
attempt to approximately compensate that we neglect Îō(ĉirr

ō+1)
in the closure approximation [see Eq. (21)]. First, we discuss
how to correct the solution after propagating the truncated

12We note that this normalization factor is derived under the assump-
tion of representability of the 2-RDM. Representability defects might
lead to (slight) deviations from trace one.

13Originally, this matrix was denoted as G in [109], but in order to
distinguish it from the one-particle-one-hole matrix we decided to use
the letter K in this work.
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BBGKY EOMs for a small time step �t . Thereafter, we
summarize a strategy for correcting the truncated BBGKY
EOMs themselves.

1. Purification of the solution

Originally designed for correcting a 2-RDM with slight rep-
resentability defects in the context of contracted Schrödinger
equations, the iterative purification scheme by Mazziotti [113]
has been employed for correcting the truncated BBGKY EOMs
for electronic problems in [72], which is known as dynamical
purification. Since our approach relies partly on these concepts,
we briefly review the main ideas of that dynamical purification
scheme.

Assuming that ρ̂2(t) is representable, propagating the trun-
cated BBGKY EOMs for a fixed, small time step �t results
in ρ̂2(t + �t) which features a slight representability defect,
i.e., slightly violates a necessary representability condition.
In the following, we will assume that its partial trace, ρ̂1(t +
�t), is representable, i.e., positive semidefinite. Otherwise
an appropriate purification scheme for ρ̂1(t + �t) has to be
applied and the reducible part [ρ̂2(t + �t)]red has to be updated
accordingly [113].

Now the idea is to iteratively update the 2-RDM by adding a
contraction-free correction term Ĉ2, i.e., ρ̂2(t + �t) → ρ̂2(t +
�t) + Ĉ2, such that its partial trace remains invariant. The
Mazziotti purification scheme relies on an ansatz for Ĉ2.
Namely for correcting a lack of positive semidefiniteness of
ρ̂2(t + �t), one assumes Ĉ2 =∑i∈I ai[|φ2

i 〉〈φ2
i |]irr, where I

denotes the set of indices of all NOs whose NPs λ
(2)
i lie

below a small negative threshold of, e.g., ε = −10−10. The
coefficients ai are determined such that Ĉ2 raises all negative
NPs of ρ̂2(t + �t) to zero in first-order perturbation theory,
i.e., λ(2)

i + 〈φ2
i |Ĉ2|φ2

i 〉 = 0, which constitutes a system of linear
equations for the a′

is. The ansatz for Ĉ2 can similarly be
extended14 to also improve negative eigenvalues of G2

(i1,j1),(i2,j2)

[114]. The updated RDM ρ̂2(t + �t) + Ĉ2 may still violate a
representability condition such that this update scheme has to
be iterated.

While the dynamical purification based on the Mazziotti
scheme has proven to be successful for the dynamics of
electrons in atoms [72,73], it is not minimally invasive by
construction and may violate energy conservation. For this
reason, we liberate the above dynamical-purification scheme
from its underlying ansatz for the correction Ĉ2, which
is determined by solving an optimization problem in this
work. First, we note that updating the 2-RDM to ρ̂2(t +
�t) + Ĉ2 also implies an update of the K operator K̂2 =∑

i1,i2,j1,j2
K2

(i1,j1),(i2,j2)|ϕi1ϕj1〉〈ϕi2ϕj2 | to K̂2 + �̂2 due to the

relationship between K̂2 and D̂2. We explicate the operator �̂2

in Appendix H where also all the details for the following
purification scheme are provided. Now, we determine the

14In the case of fermions, where the Q-condition is independent of
the D-condition, this ansatz can be extended to also correct slightly
negative eigenvalues of the 2-hole RDM [113].

update Ĉ2 by minimizing the p-norm

|Ĉ2|p ≡
∑

n,m|2

∣∣C2
n,m

∣∣p (31)

under the linear constraints of being (i) Hermitian,
(ii) contraction-free, tr1(Ĉ2) = 0, (iii) energy-conserving,
tr(v̂12Ĉ2) = 0, (iv) symmetry-respecting if existing, [̂2,Ĉ2] =
0, (v) raising negative NPs below a threshold ε to zero in
first-order perturbation theory, λ

(2)
i + 〈φ2

i |Ĉ2|φ2
i 〉 = 0 for all

i with λ
(2)
i < ε, and (vi) raising negative eigenvalues ξi of K̂2

below a threshold ε to zero in first-order perturbation theory,
ξi + 〈�i |�̂2|�i〉 = 0 for all i with ξi < ε, where |�i〉 denotes
the eigenvector of K̂2 corresponding to ξi . Having solved
this optimization problem, we judge whether the updated
2-RDM fulfills the D and K conditions and iterate the updating
procedure if necessary.

Specifically, we have performed numerical experiments on
the 1-norm as well as the 2-norm (also called Frobenius norm).
Mathematically, the case p = 1 leads to the so-called basis
pursuit problem [115,116], which we solve by the linear-
program solver SOPLEX of the SCIP optimization suite [117].
The case p = 2 results in a quadratic program, which we solve
with Lagrange multipliers for the constraints. In our numerical
simulations, however, we found that the 1-norm scheme has
often a harder time converging to a 2-RDM which respects the
D and the K conditions and results in a much more noisy time
evolution of, e.g., the NPs λ

(2)
i , as compared to the Frobenius

norm. This finding indicates that the correction operator Ĉ2 is
not a sparse matrix (as favored by the 1-norm). For this reason,
we only apply the p = 2 approach in Sec. VI.

This minimally invasive dynamical purification scheme
can conceptually be extended for also purifying higher order
RDMs, which, however, becomes computationally harder
because of the resulting higher-dimensional minimization
problems. For simplicity, we use the optimization approach for
the 2-RDM only and make the Mazziotti ansatz for achieving
ρ̂o � 0 at orders o > 2. For putting purifications on different
orders together, we purify the lowest order where a purification
defect has been observed first, update accordingly the reducible
part of the next order RDM, and continue with their purification
(if necessary), etc.

Finally, let us remark that asking for a (small) correction Ĉ2

which makes a given indefinite ρ̂2(t + �t) positive semidef-
inite constitutes a nonlinear problem. Both the Mazziotti and
our minimally invasive scheme replace this problem by a linear
one (plus iteration) due to the requirement on the shift of
eigenvalues in first-order perturbation theory. Thereby, these
two approaches are perturbative in some sense, which can
hinder these iterative schemes to converge to a fixed point
fulfilling the posed representability conditions as observed in
Sec. VI. Therefore, we provide next a nonperturbative strategy
aiming at correcting and stabilizing the truncated BBGKY
EOMs themselves.

2. Correction of the EOMs

The central idea of this correction strategy is to allow
slight representability defects in the RDM but modify its
EOMs in a minimally invasive way such that these defects are
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exponentially damped and the EOMs thereby stabilized. As
above, we first describe the correction strategy for the EOMs
of the 2-RDM with all technical details covered by Appendix I
and then comment on an extension to the EOMs of higher order
RDMs.

Let us abbreviate the EOM (6) for the o-RDM as follows:
∂tρ

o
n,m = 〈n|R̂o|m〉 (note that the negative imaginary unit is

absorbed in R̂o). Our aim now is to correct R̂2 by R̂2 + Ĉ2 such
that negative eigenvalues of ρ̂2 or K̂2 are exponentially damped
to zero. First, we note that a correction of R̂2 also implies a
modification of the EOM for K̂2, which will be denoted as
∂tK

2
(i1,j1),(i2,j2) = 〈ϕi1ϕj1 |T̂2|ϕi2ϕj2〉, namely to T̂2 → T̂2 + �̂2.

This is due to the relationship between K̂2 and D̂1, D̂2. In
Appendix I, we explicate the respective expressions.

As for the RDM purification scheme discussed above, we
determine the Ĉ2 by minimizing the 2-norm (31) under certain
linear constraints. (i) We demand Ĉ2 to be Hermitian because
of R̂

†
2 = R̂2. (ii) The correction term should be contraction-

free, tr1(Ĉ2) = 0, because the conservation of compatibility as
ensured by our truncation approximation should not be affected
by the EOM correction. Another way to motivate demand (ii)
is to view Ĉ2 as an effective approximation of the neglected
term −i Î2(ĉirr

3 ) (when truncating at ō = 2). In Appendix J, we
prove that the collision integral Io(Âo) with a contraction-free
argument Âo is itself contraction-free. (iii) The energy con-
servation as ensured by the truncation approximation should
not be affected, which amounts to tr(v̂12Ĉ2) = 0 because of
Ĉ2 being contraction-free. (iv) Symmetries if existent should
be respected by the correction, i.e., [̂2,Ĉ2] = 0. (v) In order
to damp negative NPs λ(2)

r , we make use of the NP EOM
∂tλ

(2)
r = −i〈φ2

r |Î2(χ̂3)|φ2
r 〉 (see Sec. III C), where χ̂3 stands for

ρ̂
appr
3 if ō = 2 and for ρ̂3 if ō > 2. Upon EOM correction, this

equation is modified to ∂tλ
(2)
r = 〈φ2

r |[Ĉ2 − iÎ2(χ̂3)]|φ2
r 〉, which

we require to equal −ηλ(2)
r for all negative NPs below a small

threshold, λ(2)
r < ε. Thereby, all these negative NPs are damped

with a damping rate η as λ(2)
r (t + τ ) = λ(2)

r (t) exp(−ητ ) for all
t and τ � 0 where λ(2)

r (t + τ ) is smaller than ε. At the same
time, also the NPs above the threshold are forced to move such
that the trace of the 2-RDM stays unity. Here, the damping
constant η should be chosen to be much larger than any system
frequency of physical relevance. (vi) Analogously, one can
show that the modified EOM for the K̂2 eigenvalues reads
∂tξr = 〈�r |[T̂2 + �̂2]|�r〉 which is again set to −ηξr given
that ξr < ε.

As in the case of the RDM purification, one can in principle
extend this minimally invasive correction scheme of the EOMs
also to higher orders, incorporating various necessary respre-
sentability conditions (see, e.g., [110] for the cases o = 3,4).
In this work, however, we only make the Mazziotti ansatz Ĉo =∑

i|λ(o)
i <ε ai[|φo

i 〉〈φo
i |]irr for orders o > 2 and determine the ai

coefficients such that (v) is fulfilled. Again, the corrections of
the EOMs on different orders can be combined in a bottom-up
approach by successively updating the reducible part of the
right-hand side of the next-order EOMs.

VI. APPLICATIONS

In the following, we apply the above methodological
framework to two examples in order to analyze the accuracy

and stability of this BBGKY approach in dependence on the
truncation order. The scenarios involve tunneling dynamics in
a double well in Sec. VI A as well as interaction quenches in a
harmonic trap in Sec. VI B, while details about the numerical
integration of the truncated BBGKY EOMs are given in
Appendix K.

A. Tunneling dynamics in a Bose-Hubbard dimer

In this scenario, we assume that N bosonic atoms are loaded
into an effectively one-dimensional double-well potential.
Preparing the system in an initial state featuring a particle-
number imbalance between the left and right well allows
for studying the tunneling dynamics of such a many-body
system, which has been subject of numerous studies covering
both mean-field [118,119] and many-body calculations taking
correlations into account [76,120–123]. Effects unraveled in
such a realization of a bosonic Josephson junction cover
macroscopic tunneling and self-trapping [118,119,124] as well
a decay of tunneling oscillations due to the dephasing of pop-
ulated many-body eigenstates of the postquench Hamiltonian
[76,120–123].

For sufficiently deep wells, the microscopic many-body
Hamiltonian of this system can be well approximated by a
two-site Bose-Hubbard Hamiltonian within the lowest-band
tight-binding approximation

Ĥ = −J (â†
LâR + â

†
RâL) + U

2
[n̂L(n̂L − 1) + n̂R(n̂R − 1)],

(32)

where âL/R annihilates a boson in the lowest-band Wannier
state localized in the left/right well and n̂i ≡ â

†
i âi denotes

the corresponding occupation-number operator of the site
i ∈ {L,R}. The first term in (32) describes tunneling between
the two wells weighted with the hopping amplitude J > 0.
The second term refers to on-site interaction of strength U and
stems from the short-range van der Waals interaction between
the atoms. For convenience, we take the hopping amplitude as
our energy scale and state times in units of 1/J .

The Bose-Hubbard dimer features an almost trivial compu-
tational complexity since the full many-body wave function
depends only on CN

2 = N + 1 complex-valued coefficients
such that the corresponding time-dependent Schrödinger equa-
tion can be numerically exactly solved for very large atom
numbers. So there is no need for an alternative computational
approach here. On the other hand, this system can serve as a
good playground for analyzing the properties of the truncated
BBGKY approach because (i) the corresponding numerically
exact solution is available and (ii) we can easily represent
RDMs of large order without using a dynamically optimized
truncated single-particle basis. This allows for systematically
investigating the accuracy of our results solely in dependence
on the truncation order ō.

In the following, we consider the initial state |�0〉 = |N,0〉
with all atoms located in the left well and focus on the tunneling
regime by setting the dimensionless interaction parameter
� = U (N − 1)/(2J ) to 0.1, i.e., well below the critical value
�crit = 2 for self-trapping [118,119]. In the weak-interaction
regime � � 1, beyond-mean-field effects such as the afore-
mentioned collapse of tunneling oscillation [120] and the
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FIG. 2. Time evolution of the particle-number imbalance
(NL − NR)/N with Ni ≡ 〈n̂i〉, i ∈ {L,R}, for various truncation
orders ō. Inset: Numerically exact solution of the many-body
Schrödinger equation in comparison to the corresponding mean-field
calculation. Parameters: N = 10 atoms located initially in the left
well, dimensionless interaction parameter � = 0.1.

universal formation of a twofold fragmented condensate out
of a single condensate [122] are expected to play a significant
role after the timescale tmf ≈ √

2N + 1/(J�), the so-called
quantum break time [123].

Most of the following calculations deal with N = 10 atoms
such that tmf ≈ 46/J . For comparison, we also increase N

to 100 atoms while keeping � constant, which results in a
longer quantum break time of tmf ≈ 142/J . We analyze the
accuracy of the truncated BBGKY hierarchy approach in three
steps. First, we inspect the particle-number imbalance, a highly
integrated quantity characterizing the tunneling dynamics, sec-
ond turn to the eigenvalues of the lowest-order RDMs, which
constitute a highly sensitive measure for correlations, and third
compare the whole lowest-order RDMs to the corresponding
exact results. For a deeper interpretation of these findings,
we thereafter analyze the exact results for the whole N -
particle wave function as well as for the corresponding o-
particle correlations. Finally, we investigate the performance
of the correction strategies outlined in Sec. V B.

1. Particle-number imbalance

In order to study the tunneling dynamics, the imbalance
of the particle numbers between the left and right well,
[〈n̂L〉 − 〈n̂R〉]/N , is depicted in Fig. 2 for N = 10 atoms.
Focusing first on the inset, which shows the numerically exact
results, we see the expected collapse of tunneling oscillations
due to a dephasing of the populated postquench Hamiltonian
eigenstates. Indeed, this collapse happens on the timescale
tmf ≈ 46/J , while a corresponding Gross-Pitaevskii mean-
field simulation (see inset of Fig. 2) reveals undamped tun-
neling oscillations. After t ∼ 200/J , a revival of the tunneling
oscillations emerges in the numerically exact calculation (not
shown).

Turning now to the truncated BBGKY approach, we see
that all truncation orders ō � 2 give good results for the first

FIG. 3. Natural populations of the 1-RDM for various trunca-
tion orders ō. Inset: Numerically exact solution of the many-body
Schrödinger equation. Parameters: Same as in Fig. 2.

∼8 tunneling oscillations. Thereafter, the ō = 2 curve departs
from both the exact and the higher truncation-order results,
and features a premature maximal suppression of tunneling
oscillations at t ∼ 50/J . In the subsequent premature revival of
tunneling oscillations unphysical values |〈n̂L〉 − 〈n̂R〉|/N > 1
are reached at about t = 100/J , indicating a lack of 1-RDM
representability.

These findings suggest that higher-order correlations than
ĉ2 play a significant role. Increasing the truncation order ō

stepwise up to the maximally reasonable order ō = N − 1 =
9, we clearly see that the accuracy of our results improves
systematically. The larger ō is, the more accurate is the
collapse of the tunneling oscillations described. However, all
nontrivial truncations ō < N predict a premature revival of
the tunneling oscillations, which goes hand and in hand with
a maximal suppression of the tunneling-oscillation amplitude
to small but noticeable values (while the exact results do not
feature noticeable oscillations at the corresponding times). We
note that for 2 < ō < 10 the simulations suffer from drastic
instabilities of the EOMs, discussed in the subsequent section,
such that we had to stop them after a certain time. This is why
the corresponding curves in Fig. 2 are not provided for the
whole range of depicted times.

2. Natural populations

Next we analyze the NPs of the 1-RDM in Fig. 3, which can
diagnose beyond-mean-field behavior. The numerically exact
results (see corresponding inset) reveal dynamical quantum
depletion leading to a twofold fragmented condensate for
t � 80/J with almost equal population of the corresponding
NOs, λ

(1)
1 ≈ 0.5 ≈ λ

(1)
2 (see also, e.g., [122]). Strikingly fast

oscillations in these NPs emerge and decay around t ∼ 140/J ,
which we can connect to the periodical emergence and decay
of a NOON state of the total system (see below).

The corresponding results of the truncated BBGKY ap-
proach feature a similar dependence on the truncation order
ō as the particle-number imbalance does. While the ō = 2
prediction starts to deviate noticeably from the exact results
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FIG. 4. Natural populations of the 2-RDM for various trunca-
tion orders ō. Inset: Numerically exact solution of the many-body
Schrödinger equation. Parameters: Same as in Fig. 2.

already for t � 25/J , we obtain trustworthy results for a longer
time, the larger ō is chosen. In particular, the truncated BBGKY
approach can accurately determine the achieved mean degree
of fragmentation (see ō = 8,9 results at t ∼ 100/J ). Even
for the largest truncation order ō = 9, however, the truncated
BBGKY simulations predict a premature and very fast revival
of condensation (i.e., λ

(1)
1 ≈ 1), while this process starts only

after t ∼ 200/J in the exact calculation and happens more
slowly (not shown). Most importantly, this unphysical fast
recondensation overshoots the range of valid NPs such that
the 1-RDM ceases to be positive semidefinite, indicating an
exponential-like instability of the EOMs.

While we have so far only studied the prediction of the
truncated BBGKY approach for one-particle properties, we
now inspect the NPs of the 2-RDM in Fig. 4, also called
natural geminal populations [22]. The exact dynamics (see
the inset) features two important aspects, which we have also

observed for the NPs of higher-order RDMs (not shown).
(i) The dominant NP λ

(2)
1 first loses weight in favor of the other

NPs. (ii) At about t ∼ 140/J , all NPs are suppressed except
for λ

(2)
1 ≈ 0.5 ≈ λ

(2)
2 . Having observed the latter feature for

the NPs of all orders o ∈ {1, . . . ,9}, we may conclude that in
this stage of the dynamics a subsystem of o particles occupies
approximately only two o-particle states with almost equal
probabilities. As we will see below, this finding is caused by
the periodical emergence and decay of a NOON state of the
total system which is discussed below.

Turning now to the predictions of the truncated BBGKY
approach, we see again a systematic improvement of accuracy
with increasing truncation order ō. The maximal time for
which the highest truncation order ō = 9 gives reliable results,
however, has reduced from t ∼ 110/J for the 1-RDM NPs (see
Fig. 3) to t ∼ 70/J for the 2-RDM NPs (see Fig. 4). Thereafter,
the largest NP λ

(2)
1 is well described until t ∼ 130/J , while

the other two NPs already show strong deviations: it seems
that the emergence of the feature (ii) discussed above happens
prematurely, namely at about t ∼ 120/J . Furthermore, we also
witness the exponential-like instabilities leading to 2-RDM
NPs outside the interval [0,1].

In order to analyze how this unphysical behavior emerges,
we depict the first time tneg(o) when the lowest o-RDM NP
λ

(o)
o+1 is smaller than the threshold ε = −10−10 for various

o and different truncation orders ō in Fig. 5(a). For fixed
truncation order ō, tneg(o) decreases with increasing order
o. This means that the representability defect of ρ̂o lacking
positive semidefiniteness starts at the truncation order o = ō

and propagates then successively to lower orders due to
coupling via the collision integral. For most orders o, we
moreover find that tneg(o) increases with increasing truncation
order ō, which fits with the above findings regarding enhanced
accuracy for larger ō (exceptions occur at order o = 1,2, in
particular for ō = 2).

Increasing the number of atoms to N = 100 while keeping
the dimensionless interaction parameter � = 0.1 constant, we
again find a monotonic decrease of tneg(o) with increasing o

FIG. 5. First time tneg(o) when the lowest o-RDM NP is smaller than ε = −10−10 in dependence on o for various truncation orders ō.
(a) Same parameters as in Fig. 2. (b) Same as (a) but for the atom number N increased to 100 while keeping the interaction parameter � = 0.1
constant. The results for ō = 2 are not plotted in (b) and read tneg(1) ≈ 216/J as well as tneg(2) ≈ 168/J .
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FIG. 6. Time evolution of the trace distance D(ρ̂ tr
o ,ρ̂ex

o ) between the exact result and the truncated BBGKY prediction for the o-RDM
(o = 1, . . . ,4) and various truncation orders ō. The dotted horizontal lines at unity ordinate value indicate the upper bound for the trace distance
between two density operators (see main text). (a) Same parameters as in Fig. 2. (b) Same as (a) but for the atom number N increased to 100
while keeping the interaction parameter � = 0.1 constant.

for fixed truncation order ō [see Fig. 5(b)]. This confirms the
above finding that the lack of positivity successively propagates
from higher to lower orders. In contrast to the N = 10 case,
we only find an enhancement of tneg(o) with increasing ō for
orders o � 6. In particular, we see that the largest truncation
order considered, ō = 12, features the smallest tneg(o = 2). It
is quite possible that the “enhancement” of nonlinearity with
increasing truncation order ō (note that the applied closure
approximation, cf. Sec. IV B 3, is a polynomial of degree (ō +
1) in ρ̂1 and of degree �(ō + 1)/o� in the cluster ĉo) is the reason
why the BBGKY EOMs are more prone to these instabilities
for larger ō.

Having compared so far only certain aspects of o-particle
properties, we finally aim at comparing the prediction of the
truncated BBGKY approach for the whole o-RDM to the exact
results.

3. Reduced density operators

For this purpose, we take the trace distance D(ρ̂ tr
o ,ρ̂ex

o ) ≡
||ρ̂ tr

o − ρ̂ex
o ||1/2 [125] as a measure for deviations between

the truncated BBGKY prediction for the o-RDM denoted by
ρ̂ tr

o and the numerically exact result ρ̂ex
o . Here, || · ||1 refers

to the trace-class norm (also called Schatten-1 norm) being
defined as ||Â||1 ≡ tr(

√
Â†Â) for any trace-class operator Â.

For Hermitian operators Â, ||Â||1 equals the sum of absolute
values of Â′s eigenvalues. One can easily prove the in-
equality |tr(Âoρ̂

tr
o ) − tr(Âoρ̂

ex
o )| � 2||Âo||1 D(ρ̂ tr

o ,ρ̂ex
o ) where

Âo denotes an arbitrary o-body observable. This means that
D(ρ̂ tr

o ,ρ̂ex
o ) provides an upper bound for the deviations in the

expectation value predictions for Âo. Moreover, given that
its arguments are density operators (i.e., Hermitian, positive
semidefinite, and trace one), the trace distance is bounded by
D(ρ̂ tr

o ,ρ̂ex
o ) ∈ [0,1] and can be interpreted as the probability that

these two quantum states can be distinguished by the outcome
of a single measurement [125].

In Fig. 6, we depict D(ρ̂ tr
o ,ρ̂ex

o ) for the orders o = 1, . . . ,4
and various truncation orders ō, where panels (a) and (b) refer
to the N = 10 and N = 100 case with the same interaction
parameter � = 0.1, respectively. For fixed truncation order ō,
we clearly see that the accuracy of the truncated BBGKY pre-
diction for the o-RDM decreases with increasing order o. Up
to a certain time, which depends on the order o, we moreover
find D(ρ̂ tr

o ,ρ̂ex
o ) to decrease with increasing truncation order ō.

The instabilities of the truncated BBGKY EOMs manifest
themselves in the trace distant exceeding its upper bound
D(ρ̂ tr

o ,ρ̂ex
o ) � 1 for density operators, implying that ρ̂ tr

o lacks
having trace one or being positive semidefinite. Since the con-
servation of the initial RDM trace is ensured by the truncated
BBGKY approach, violations of tr(ρ̂ tr

o ) = 1 can at most occur
numerically if the system gets deep into the exponential-like
instability (where we observe the truncated BBGKY EOMs
become stiff such that the integrator has a hard time). Thus,
exceeding the upper bound on the trace distance is connected to
a lack of positive semidefiniteness and can be observed to hap-
pen earlier for increasing order o and fixed truncation order ō.

For the case of N = 100 atoms [see Fig. 6(b)], we observe
the additional particularity that in the vicinity of t ∼ 63/J the
accuracy of the truncated BBGKY prediction for the o-RDM
does not depend on the truncation order ō, which happens
slightly earlier for larger o. Before this point, a systematic
increase of accuracy is observed for increasing truncation
order ō. Thereafter, lower truncation orders give (slightly)
better results than higher ones. Furthermore, while in the
N = 10 case one-body properties (such as the particle-number
imbalance) can be described with reasonable accuracy up
to t ∼ 2 tmf (when the collapse of tunneling oscillations has
already taken place), the instabilities hinder us from obtaining
accurate results for t larger than about 0.56 tmf in the case of
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FIG. 7. (a) Time evolution of the cluster’s trace-class norm ||ĉo||1 for all orders o, obtained from the numerically exact solution of the
time-dependent Schrödinger equation. Inset: Zoom into early time dynamics. (b) and (c) Probability of finding n atoms in the right and (N − n)
atoms in the left well, |〈N − n,n|�t 〉|2, versus time for two characteristic stages of the dynamics. Parameters: Same as in Fig. 2.

N = 100 (at this time, the tunneling oscillation amplitude is
still significant).

4. Many-body state and o-particle correlations: Exact results

In order to obtain physical insights into the above findings,
we finally come back to the numerically exact results for
N = 10 and measure the strength of o-particle correlations
in terms of ||ĉo||1 in Fig. 7(a). From the inset, we infer that
the correlations initially build up in a hierarchical manner.
First, only two-particle correlations start to play a role, then
three-particle correlations, and so on. This hierarchy in ||ĉo||1
holds, however, only until t ∼ 8/J , when the ordering of the
||ĉo||′1s with respect to the order o starts to become reversed.
After a certain point, N -particle correlations become the most
dominant ones. This holds in particular in the vicinity of
t ∼ 140/J , where we have observed fast oscillations in the
NPs λ

(1)
1/2 and found for all orders o = 1, . . . ,9 that the RDMs

feature approximately only two finite NPs λ
(o)
1 ≈ 0.5 ≈ λ

(o)
2 .

At this stage of the dynamics, all clusters ĉo of odd order o are
strongly suppressed.

For connecting the above findings regarding o-particle
correlations to the full many-body state, we depict in Figs. 7(b)
and 7(c) the probability |〈N − n,n|�t 〉|2 of finding n atoms in
the right and (N − n) atoms in the left well. For the early
dynamics, we witness how the system becomes delocalized
in the Fock space such that the tunneling oscillations become
suppressed [Fig. 7(b)]. At later times, around t ∼ 140/J , we,
however, find the system to periodically oscillate between a
NOON state (|N,0〉 + eiθ |0,N〉)/√2 (with some phase θ ∈ R)
and some broad distribution being approximately symmetric
with respect to its maximum at about n = 5 [Fig. 7(c)].
Due to this approximate symmetry of the distribution around
n = 5, the particle-number imbalance approximately equals
[〈n̂L〉 − 〈n̂R〉]/N ≈ 0.5; i.e., tunneling oscillations are still
suppressed. This approximate symmetry moreover leads to a
doubling of the oscillation frequency compared to the initial
tunneling-oscillation frequency, which is most probably linked
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FIG. 8. Comparison of the correction strategies outlined in Sec. V B (for the BBGKY hierarchy truncated at ō = 2). Left column: Time
evolution of the NPs λ

(2)
i . Right column [except for (d)]: Time evolution of the K̂2 eigenvalues ξi . First row: Truncated BBGKY results without

correction versus exact ones. Second row: Truncated BBGKY results with iterative minimally invasive purification of the 2-RDM after each
�t = 0.1/J (maximal number of iterations: 500). Third row: Truncated BBGKY results with minimally invasive correction of the 2-RDM EOM
(damping rate of negative eigenvalues: η = 10J ). Insets of (c.1) and (c.2): Close-ups showing the imposed exponential damping of negative
eigenvalues. For both correction strategies, eigenvalues are regarded as negative if they are smaller than the threshold ε = −10−10. (d) Number
of integrator steps [126] per write-out time step �t . Parameters: Same as in Fig. 2.

to the fast oscillations in λ
(1)
1/2. Finally, one can analytically

show that the n-RDM of the above mentioned NOON state
reads ρ̂n = (|n,0〉〈n,0| + |0,n〉〈0,n|)/2, meaning that the state
of an n-particle subsystem is an incoherent statistical mixture
with all particles residing in the left (right) well with probability
0.5. Thereby, we can directly connect the fact that the RDMs
of all orders feature approximately only two finite NPs of
approximately equal value to the underlying many-body state.
Coming back to the findings for ||ĉo||1 of Fig. 7(a), we
may conclude that a NOON state leads to strong high-order
correlations ĉo such that truncating the BBGKY hierarchy by
means of the applied cluster expansion cannot be expected to
give accurate results.

In summary, we have seen following. (i) While the truncated
BBGKY approach gives highly accurate results for short
times with controllable accuracy via the truncation order
ō, the BBGKY approach shows deviations at longer times.
(ii) Exponential-like instabilities, induced by the nonlinear
truncation approximation, propagate from high to low orders
and lead to unphysical results at a certain point. (iii) o-
particle correlations arise very fast in this tunneling scenario
and soon cease to be in decreasing order with respect to o.
(iv) The system evolves into a NOON state being dominated
by N -particle correlations.

There appear to be at least two plausible causes why the
BBGKY approach fails at a certain point: First, the number
of terms in the cluster expansion (23) drastically increases

with the order o, which implies that clusters should decay
fast for a controllable approximation. For example, at the
largest truncation order considered above, ō = 12, the trun-
cation approximation ρ̂

appr
13 already involves 100 classes of

terms. Our findings (iii) and (iv), however, might indicate
that this system is not suitable for a truncation based on the
o-particle correlations defined in Sec. IV B 3. Other truncation
approximations might be more suitable.

Second, the exponential-like instabilities, being connected
to a lack of representability, might be the main cause for the
failure of the BBGKY EOMs at longer times. This hypothesis
is supported by the fast breakdown of the BBGKY approach
in the N = 100 case for the truncation order ō = 12. For this
reason, we analyze next the performance of the correction
strategies outlined in Sec. V B.

5. Performance of the correction algorithms

In the following, we first focus on the correction algorithms
applied to the BBGKY hierarchy truncated at ō = 2. There-
after, we comment on the performance of these algorithms if
extended to larger truncation orders by means of a correspond-
ing ansatz for the correction operator (see Sec. V B).

Figure 8 depicts the time evolution of the NPs λ
(2)
i and the

K̂2 eigenvalues ξi for the truncated BBGKY results without
correction, with the iterative minimally invasive purification of
the 2-RDM and with the minimally invasive correction of the
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2-RDM EOM in comparison to the exact results. Apparently,
all cases deviate significantly from the exact results after t �
17/J so that we will concentrate here solely on the stabilization
performance of the correction algorithms.

Inspecting first the uncorrected results [Figs. 8(a.1) and
8(a.2)], we observe that the K condition (i.e., K̂2 � 0) di-
agnoses earlier a lack of representability compared to the D

condition (i.e., ρ̂2 � 0). For both operators, the falling of an
eigenvalue below zero is accompanied by an avoided crossing
which involves the next-larger eigenvalue (this is hardly visible
in the case of the K̂2 eigenvalue where the avoided crossing
happens at about t ∼ 71.5/J ). In fact, we have observed that
level repulsion “pushes” eigenvalues below zero in various
other situations (see also Sec. VI B).

Now turning to the minimally invasive correction algo-
rithms based on the 2-norm minimization of the correction
operator Ĉ2, we set the threshold ε below which an eigenvalue
is regarded as negative to −10−10. Let us first inspect the
dimensionality of the optimization problem underlying both
our purification algorithm of the 2-RDM and the correction
algorithm of its EOM (see Appendix H for the details). The
bosonic Hermitian correction operator Ĉ2 can be parametrized
by m2(m + 1)2/4 = 9 real-valued parameters. Requiring Ĉ2

to be contraction-free and energy-conserving imposes m2 +
1 = 5 constraints such that the system of linear equations
corresponding to the constraints is underdetermined as long
as the numbers of negative ρ̂2 eigenvalues d and negative K̂2

eigenvalues d ′ obey d + d ′ < 4.
Figures 8(b.1) and 8(b.2) depict the results if the iterative

minimally invasive purification algorithm is applied after each
�t = 0.1/J . Clearly, we see that this correction algorithm
induces strong noise in the K̂2 eigenvalues when the smallest
eigenvalue ξi has reached significant negative values in the
uncorrected BBGKY calculation [see panel (a.2)]. Actually,
after t = 86.5/J , the iterative purification algorithm fails to
converge after the maximal number of 500 steps. Thus, this
iterative scheme fails to prevent the smallest eigenvalue from
being pushed to negative values due to level repulsion.

In a certain sense, we may view the iterative purification
algorithm of the 2-RDM as being based on a fixed step size as
well as perturbative. In each iteration step, namely, we update
ρ̂2(t) → ρ̂2(t) + Ĉ2 with Ĉ2 shifting negative eigenvalues to
zero in first-order perturbation theory. In the correction algo-
rithm for the 2-RDM EOM, we effectively allow for variable
updating of step sizes by coupling the correction scheme to
the integration of the EOM, i.e., to the employed integrator
ZVODE [126] featuring adaptive step sizes. Moreover, by
imposing constraints on the time-derivative of negative eigen-
values, we realize a nonperturbative correction scheme.

This can nicely be inferred from the insets of Figs. 8(c.1)
and 8(c.2) showing a close-up of slightly negative eigenvalues.
These are exponentially damped to zero, namely as, e.g.,
ξi(t + τ ) = ξi(t) exp[−ητ ] for t and τ such that ξi(t + τ ) < ε,
with the chosen damping constant η = 10J . As a consequence,
the truncated BBGKY EOM becomes stabilized and we have
observed that the D- and K-representability conditions are
fulfilled to a good approximation for at least t � 1000/J (times
later than t = 150/J not shown in Fig. 8). When enforcing
negative eigenvalues to be damped to zero, one might fear that
eigenvalues accumulate in the range [ε,0]. This, however, is

not the case as shown in the insets of Figs. 8(c.1) and 8(c.2)
because no constraint on the time derivative of an eigenvalue
is enforced if its value exceeds the threshold ε such that the
(corrected) EOM may lift this eigenvalue above zero. We
finally remark that the number of integrator steps per �t

significantly increases in the vicinity of avoided crossings
of ρ̂2 or K̂2 eigenvalues close to zero [see Fig. 8(d)]. This
finding confirms the nonperturbative, adaptive nature of the
EOM correction algorithm and at the same time highlights
the significance of controlling such avoided crossings for a
successful stabilization of the truncated BBGKY EOMs.

Without showing additional graphical illustrations, let us
now briefly comment on the behavior of the correction algo-
rithms for truncation orders ō > 2, using the Mazziotti ansatz
[113] for the correction operators Ĉo on orders o > 2 (see
Sec. V B). Focusing first on the RDM purification, we have
observed that ρ̂ō can be kept positive semidefinite up to a few
tens 1/J longer (compared to the uncorrected case) before this
iterative correction algorithm fails to converge after 500 steps.
Due to the losing of positive semidefiniteness in decreasing
sequence with respect to the RDM order (see Fig. 5), we
found for ō � 4 that also ρ̂ō−1 � 0 is valid for somewhat
longer times compared to the uncorrected case. Unfortunately,
however, this correction scheme fails to converge so early
that it does not improve the timescale, on which the most
important RDMs for making predictions for ultracold quantum
gas experiments, namely ρ̂1 and ρ̂2, obey the considered
representability conditions.

Extending the EOM correction scheme to higher truncation
orders ō > 2 by means of the Mazziotti ansatz for the higher-
order correction operators unfortunately proved to be quite
unsuccessful. This failure manifests itself in an enormous
increase of integrator steps per �t , i.e., the EOMs becoming
stiff, in combination with the quadratic optimization problem
for determining Ĉ2 having no solution, i.e., constraints contra-
dicting one another. Unfortunately, we cannot tell whether the
latter is a fundamental problem or whether it is only induced
by the EOMs becoming stiff due to an inappropriate ansatz of
Ĉo for o > 2, potentially leading to integration errors.

To sum up, while we can successively stabilize the BBGKY
EOMs truncated at order ō = 2 by enforcing the D- and K-
representability condition via a minimally invasive correction
of the 2-RDM EOM, the issue of higher-order correlations
becoming dominant after a certain time remains unsolved in
this example. Since this tunneling scenario might well be
unsuitable for a closure approximation based on neglecting
certain few-particle correlations, we now turn to an example
in which a BEC becomes only slightly depleted in the course
of the quantum dynamics.

B. Interaction-quench-induced breathing dynamics
of harmonically trapped bosons

In this application, we are concerned with collective ex-
citations of N ultracold bosons confined to a quasi-one-
dimensional harmonic trap. In harmonic oscillator units (HO
units), the corresponding Hamiltonian reads

Ĥ =
N∑

i=1

p̂2
i + x̂2

i

2
+ g
∑

1�i<j�N

δ(x̂i − x̂j ), (33)
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FIG. 9. Time evolution of the reduced one-body density
ρ1(x; t) = 〈x|ρ̂1(t)|x〉 for N = 10 (a) and N = 30 (b) bosons
quenched from the noninteracting ground state to a contact-interaction
strength of g = 0.2. These results are obtained by MCTDHB simu-
lations with m = 4 dynamically optimized SPFs.

where we model the short-range van der Waals interaction by
the contact potential [27] of strength g. Initially, we assume
all atoms to reside in the ground state of the single-particle
Hamiltonian, i.e., a Gaussian orbital, which is the exact many-
body ground state in the absence of interactions. Then, the in-
teraction strength is instantaneously quenched to g = 0.2 such
that the ideal BEC becomes slightly depleted and its density
performs breathing oscillations, i.e., expands and contracts pe-
riodically. This so-called breathing mode has been investigated
theoretically as well as experimentally in different settings
(see, e.g., [127–133] for single-component systems and, e.g.,
[134] for mixtures), and measuring its frequency proves to be
useful for characterizing the interaction regime [135].

Before we discuss the results of the truncated BBGKY ap-
proach, let us first inspect the results of MCTDHB simulations
with m = 4 dynamically optimized SPFs, which we obtain
by our implementation [81,136,137]. In fact, we find that the
smallest natural population of the 1-RDM attains a maximal
value of about 1.6 × 10−3, which provides a good indicator in
praxis that the contribution of this orbital is almost negligible
in the calculation. One could improve the accuracy further by
increasing the number of SPFs, of course. Yet since we aim
at benchmarking the truncated BBGKY approach, which can
be viewed as an additional approximation to the MCTDHB
approach, it is sufficient to take the MCTDHB simulations
with m = 4 SPFs as reference results. For representing the
SPFs, a harmonic discrete variable representation [75,138]
with n = 256 (n = 320) grid points is employed for the case
of N = 10 (N = 30) particles.

In Fig. 9, we depict the time evolution of the reduced
one-body density, i.e., the diagonal of the 1-RDM in position

FIG. 10. Natural populations of the 2-RDM for the truncation
orders ō = 2 (a), ō = 3 (b), and ō = 4 (c) in comparison to the
MCTDHB results. Parameters: N = 10 atoms, postquench interac-
tion strength g = 0.2, m = 4 dynamically optimized SPFs.

representation ρ1(x; t) = 〈x|ρ̂1(t)|x〉, for N = 10 and N = 30
bosons. In both cases, we clearly see that the atomic density pe-
riodically expands and contracts. Since the interaction quench
leads to a more than three times larger interaction energy per
particle of the ensemble of N = 30 atoms compared to N = 10
(at t = 0), the density of the former expands much farther into
the outer parts of the trap. In contrast to this, the density of
the N = 10 atom ensemble seems to stay Gaussian (with a
time-dependent width) to a good approximation, indicating
that we operate in the linear-response regime here. In both
cases, the quench leads only to a slight quantum depletion of
at most 3% (see below).

In the following, we first show that the truncated BBGKY
approach leads to stable results in the N = 10 case, whose ac-
curacy can be systematically improved by increasing ō. There-
after, we turn to the N = 30 case where we again encounter
instabilities of the EOMs and thus apply correction algorithms.
We stress that for both cases we operate with m = 4 dynam-
ically optimized SPFs, solving the truncated BBGKY EOMs
coupled to the MCTDHB EOMs for the SPFs, which is in
contrast to the Bose-Hubbard tunneling scenario of Sec. VI A.

1. Breathing dynamics of N = 10 bosons

In Fig. 10, we show the time evolution of the 2-RDM NPs
for various truncation orders. Focusing first on the MCTDHB
results, we see that correlations (in the sense of deviations
from a Gross-Pitaevskii mean-field state where on all orders
o there is only one finite NP λ

(o)
1 = 1 and all other NPs

vanish) repeatedly emerge and decay. The deviations from
the NP distribution of a Gross-Pitaevskii mean-field state are
approximately most pronounced when the density is most
spread-out and become almost negligible when the density has
approximately recovered its initial width [see Fig. 9(a)].

While the truncated BBGKY results for ō = 2 feature
significant deviations from the MCTDHB results, the results
drastically improve when going to ō = 3 and become prac-
tically indistinguishable from the MCTDHB results already
at the truncation order ō = 4. Actually, convergence of the
1-RDM NPs λ

(1)
i is reached even at ō = 3 (not shown).

Coming back to ō = 2, we point out that the 2-RDM quickly
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FIG. 11. First and second rows: Time evolution of the trace distanceD(ρ̂ tr
o ,ρ̂ex

o ) between the MCTDHB and the truncated BBGKY prediction
for the o-RDM (o = 1,2) and various truncation orders ō. The dotted horizontal line at unity ordinate value indicates the upper bound for the
trace distance between two density operators. Third row: Time evolution of the cluster’s trace-class norm ||ĉo||1 for o = 1, . . . ,7 obtained from
the data of the ō = 7 simulations. Left column: N = 10 atoms. Right column: N = 30. Otherwise, same parameters as in Fig. 10.

becomes indefinite where small negative eigenvalues are in
particular pushed farther to larger negative values when the
density contracts to its initial width and small but positive NPs
approach zero. As in the case of the above tunneling scenario,
we interpret this finding as “induced” by level repulsion. Upon
increasing the truncation order, we see that the 2-RDM stays
positive semidefinite on the considered time interval, which is
a nice example of how increasing the accuracy of the closure
approximation also stabilizes the truncated BBGKY EOMs.

For a systematic comparison, we next compare the trace-
class distanceD(ρ̂ tr

o ,ρ̂ex
o ) between the truncated BBGKY result

for the o-RDM, ρ̂ tr
o , and the corresponding MCTDHB result,

ρ̂ex
o , in Fig. 11(a). We remark that although the SPFs of the

truncated BBGKY approach obey the same EOM (5) as the dy-
namically optimized SPFs of the MCTDHB method, we cannot
expect these two sets of SPFs to coincide because the 1- and
2-RDMs entering the SPF EOMs differ in general, which has
to be taken into account when calculating D(ρ̂ tr

o ,ρ̂ex
o ). In stark

contrast to the tunneling scenario, we see that the accuracy
of the truncated BBGKY results for the 1- and 2-RDMs
systematically improves upon increasing ō for all considered
times.

Finally, we quantify the strength of few-particle correlations
in terms of ||ĉo||1, as extracted from the ō = 7 calculation [see
Fig. 11(a)]. Here, we see that the correlations stay bounded
on the considered time interval and are ordered in a clear
hierarchy, i.e., ||ĉo+1||1(t) < ||ĉo||1(t). Apparently, these are
ideal working conditions for the truncated BBGKY approach.

2. Breathing dynamics of N = 30 bosons

Next, let us increase the quench-induced excitation energy
per particle by more than a factor of three when going to N =
30 bosons and keeping the postquench interaction strength
g = 0.2 the same. Similarly to the tunneling scenario, we first

inspect the natural populations, then compare lowest order
RDMs and finally evaluate the performance of the correction
algorithms under discussion.

a. Natural populations. In Fig. 12, we show the NPs of the
1- and 2-RDMs for various truncation orders ō in comparison
to the MCTDHB results. Similarly to the N = 10 case, we
see how the NP distributions as obtained from MCTDHB
oscillate between the characteristics of the Gross-Pitaevskii
mean-field state and a (slightly) correlated one, which is
approximately synchronized to the strongest contraction and
expansion of the density, respectively [see Fig. 9(b)]. In
contrast to the former case, however, we can converge the
NPs to the MCTDHB results upon increasing the truncation
order ō only for times t � 5 HO units. For all considered
truncation orders, we witness an exponential-like instability in
the 2-RDM NPs resulting in large negative eigenvalues while
the 1-RDM stays positive semidefinite for the considered time
span. Fixing ō, we have observed also for this scenario that the
lack of positive semidefiniteness of the o-RDMs happens in
decreasing sequence with respect to the order o (not shown).
Moreover, these instabilities in the 2-RDM NPs seem to be
triggered by small positive NPs approaching zero from above,
namely when the density approximately shrinks to its initial
width; see, e.g., Fig. 12(c.2). Finally, we have observed for the
case ō = 2 that increasing the number of SPFs from m = 4 to
m = 8 slightly enhances the timescale on which the instability
of the 2-RDM NPs takes place (not shown). This finding is
reasonable since the projector (1 − P̂), occurring in the SPF
EOM (5), projects onto a smaller subspace when increasing m

such that the impact of the nonlinearity in the SPF EOMs is
effectively reduced.

b. Reduced density operators. Comparing the BBGKY
prediction for the complete 1- and 2-RDMs with the
corresponding MCTDHB results in terms of the trace-class
distance in Fig. 11(b), we see that deviations emerge much
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FIG. 12. Top (bottom) row: Time evolution of the 1-RDM (2-RDM) NPs for various truncation orders ō in comparison to the MCTDHB
results. We note that the ordinates are broken into two parts for covering the whole range of relevant values. In some cases, this leads to
discontinuous curves; see, e.g., the ō = 2 curve in (a.2). Number of bosons: N = 30. Otherwise, same parameters as in Fig. 10.

faster as compared to the N = 10 case. At longer times, we
also observe that the accuracy of the BBGKY results does not
monotonically increase anymore with increasing ō. Moreover,
the above mentioned instabilities also partly manifest
themselves in D(ρ̂ tr

2 ,ρ̂ex
2 ) attaining unphysical values above

unity. Finally, we also depict ||ĉo||1 as a measure of correlations
in Fig. 11(b). While the correlations are hierarchically ordered
in decreasing sequence with respect to the order o up to t ∼ 2.7
HO units, this ordering becomes reversed later on. This finding,
however, is not conclusive, i.e., might be unphysical and related
to the observed instability, since the values of ||ĉo||1 have been
extracted from the BBGKY data with ō = 7 (in contrast to the
tunneling scenario where the numerically exact ĉo have been
used).

At this point, we should remark that we expect a much better
agreement for the N = 30 case when quenching to much lower
interaction strengths g � 0.2 and thereby reducing the overall
excitation energy.

c. Performance of the correction algorithms. Here, we
again focus mainly on the performance of the correction algo-
rithms applied to the ō = 2 BBGKY approach and comment
later on larger truncation orders. In Fig. 13, we depict the spec-
trum15 of K̂2 as well as a close-up to the 2-RDM spectrum in

15. We note that the K̂2 spectra at t = 0 in the tunneling and the
interaction-quench scenario differ although the system is initially a
fully condensed BEC in both cases (see Figs. 8 and 13). This is due to
the fact that the K̂2 spectrum is sensitive to the total number of SPFs
m even if not all of them are occupied.

the vicinity of zero for the uncorrected BBGKY approach, the
minimally invasive RDM purification algorithm, and the mini-
mally invasive EOM correction algorithm. In the minimization
problem underlying both correction algorithms, we have to
find the optimal Ĉ2 which depends on m2(m + 1)2/4 = 100
real-valued parameters. Being contraction-free and energy-
conserving leads to m2 + 1 = 17 constraints. Moreover, Ĉ2 has
to obey the parity symmetry of our problem imposing m4/8 +
m3/4 = 48 further constraints (see Appendix H). Thereby, our
system of linear constraints remains underdetermined as long
as the number d of negative ρ̂2 eigenvalues and number d ′ of
negative K̂2 eigenvalues obey d + d ′ < 35.

In Fig. 13, we see that the minimally invasive RDM
purification algorithm clearly suppresses significant negative
eigenvalues until t ∼ 2.5 HO units. Thereafter, noticeably
negative eigenvalue emerge but stay bounded from below until
t ∼ 6 HO units when a drastic instability kicks in. Thus, this
iterative algorithm soon fails to converge after the maximal
number of 500 iteration steps. In order to understand the deeper
reason of this failure, we have analyzed the spectrum of the
updated operators ρ̂2(t) + α Ĉ2 and K̂2(t) + α �̂2 for α ∈ [0,1]
and the first few iteration steps at such an instant in time (not
shown). Thereby, we have found that while the tangent on a
negative eigenvalue (with respect to α) indeed crosses zero
as imposed by our constraints, level repulsion with other (in
most cases negative) eigenvalues often hinders this negative
eigenvalue from significantly moving towards zero. We cannot
rigorously prove that this is indeed the only mechanism
for the breakdown of this iterative purification algorithm, of
course.
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FIG. 13. Comparison of the correction strategies outlined in Sec. V B (for the BBGKY hierarchy truncated at ō = 2); i.e., same as Fig. 8
but for the interaction-quench scenario with N = 30 bosons. Parameters: Threshold ε = −10−10, damping constant η = 10 HO units, write-out
time step �t = 0.05 HO units, maximal number of iterations: 500. Otherwise, same parameters as in Fig. 10.

Yet at least, this finding gives a useful hint as to why our
nonperturbative, adaptive approach, the minimally invasive
correction scheme of the 2-RDM EOM, gives very stable
results [see Figs. 13(c.1) and 13(c.2)]. Actually, we observe
that the D and K conditions are fulfilled to a good approx-
imation much longer, namely for at least t � 36 HO units
(not shown). From Fig. 13(d), we furthermore infer that the
integrator variably adapts its step size, but in contrast to the
Bose-Hubbard tunneling scenario no systematic enhancement
of integrator steps is observed when ρ̂2 or K̂2 eigenvalues
avoid each other in the vicinity of zero. Apparently, the
though stabilized result features noticeable deviations from the
MCTDHB results for the respective eigenvalues. Yet, we find
that the overall accuracy of the ō = 2 results for the 1- and 2-
RDMs as measured by the trace-class distance is systematically
improved for most times by correcting the 2-RDM EOM, as
one can infer from Fig. 11(b).

In order to judge the accuracy of the EOM-corrected
ō = 2 simulation more descriptively, we depict the devi-
ations of its prediction for the reduced one-body density
from the MCTDHB results in Fig. 14. Note that this plot
covers a longer time span compared to the previous ones.
As expected, we find that the deviations increase in time.
Compared to the absolute values of the density, these de-
viations are, however, small and, most importantly, some-
what smaller than the deviations of corresponding Gross-
Pitaevskii mean-field simulation from the m = 4 MCTDHB
results (not shown). Finally, let us connect the errors in the
one-body density to the errors measured by the trace-class
distance D(ρ̂ tr

1 ,ρ̂ex
1 ) as depicted in Fig. 11(b). For this purpose,

we note that the density at position x can be expressed

as the expectation value of the one-body observable Â1 =
|x〉〈x|. Thereby, we can estimate |ρ tr

1 (x; t) − ρex
1 (x; t)| �

FIG. 14. (a) Time evolution of the reduced one-body density
ρex

1 (x; t) as obtained from MCTDHB on a longer timescale. (b)
Absolute deviation ρ tr

1 (x; t) − ρex
1 (x; t) of the reduced one-body

density ρ tr
1 (x; t) as obtained from the BBGKY approach truncated

at ō = 2 and stabilized by the minimally invasive EOM correction
algorithm with ε = −10−10 and η = 10 HO units. Number of bosons:
N = 30. Otherwise, same parameters as in Fig. 10.
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2||Â1||1D(ρ̂ tr
1 (t),ρ̂ex

1 (t)) = 2D(ρ̂ tr
1 (t),ρ̂ex

1 (t)), which is consis-
tent with the results depicted in Fig. 14.

Going to higher truncation orders by making the Mazziotti
ansatz for the corresponding higher-order correction operators
Ĉo unfortunately does not improve the BBGKY results, as
already observed in the tunneling scenario. While the iterative
RDM purification scheme fails to prevent the instabilities, we
observe the same obstacle for the EOM correction algorithm
as previously encountered, namely the optimization problem
at order o = 2 lacking a solution (results not shown). Yet
due to the very promising results of the EOM correction
algorithm when truncating the BBGKY hierarchy at order
ō = 2, we believe that extending the EOM correction algorithm
to higher orders without employing the Mazziotti ansatz for the
correction operator is a highly promising direction to go.

VII. CONCLUSIONS

In this exploratory work, we have developed a method-
ological framework for simulating the quantum dynamics of
finite ultracold bosonic systems. Instead of solving the time-
dependent Schrödinger equation for the complete many-body
system, our goal is to truncate the BBGKY hierarchy of
equations of motion in order to obtain a closed theory for the
dynamics of the low-order reduced density operators (RDMs).
Here, we focus in particular on an efficient formulation of the
underlying theory, which allows us to systematically study the
impact of the truncation order on the accuracy and stability of
the numerical results.

For this reason, we do not derive the BBGKY equations
of motion from the exact von Neumann equation by partial
tracing but take the well-established variational multiconfigu-
ration time-dependent Hartree method for bosons (MCTDHB)
[74] for ab initio wave function propagation as our starting
point. Thereby, we use time-dependent variationally optimized
single-particle functions (SPFs) as a our truncated single-
particle basis, while being still able to recover the exact results
if we formally let the number of SPFs tend to infinity. By
expanding the RDMs with respect to bosonic number states
using the dynamically optimized SPFs as the underlying basis
states, we obtain a highly efficient representation of these
high-dimensional objects, which also leads to an efficient and
compact formulation of the corresponding BBGKY equations
of motion (EOMs) in the second-quantization picture. These
EOMs are coupled to the SPF EOMs of the MCTDHB theory.

By a careful analysis, we show that this coupled system
of EOMs features all the properties known for the BBGKY
hierarchy as derived from the von Neumann equation of
the total system. Although being deduced from the zero-
temperature MCTDHB theory, we find that the derived EOMs
for the RDM are also variationally optimal in a certain sense
if the total many-body system is in a mixed initial state, which
opens a promising route for including low-temperature effects
in the simulation of ultracold atoms. Thus, truncating this
BBGKY hierarchy of EOMs can be viewed as on the one
hand introducing an additional approximation to the MCTDHB
approach for simulating larger particle numbers with more
SPFs and on the other hand as an extension of the zero-
temperature MCTDHB theory to finite temperatures.

We truncate the hierarchy of BBGKY EOMs by using a
reconstruction functional for the unknown RDM ρ̂ō+1 where ō

denotes the truncation order. While the commonly employed
cluster (cumulant) expansion for truncating the BBGKY hi-
erarchy for fermionic systems is very well suited for taking
correlations on top of a Hartree-Fock state into account [10],
its corresponding bosonic variant has proven to be unfavorable
for bosonic systems with a fixed number of particles since
the correspondingly defined clusters diagnose that even an
ideal Bose-Einstein condensate features few-particle correla-
tions on all orders [50]. In this work, we cure this flaw by
simply replacing the RDMs and symmetrization operators in
this standard approach by the corresponding RDMs of unit
trace and idempotent symmetrization operators, respectively.
Since neglecting the complete cluster ĉō+1 in the truncation
approximation violates the compatibility to the lower order
RDMs, we use the so-called unitarily invariant decomposition
of bosonic operators [103–106] for restoring compatibility, as
pursued in [72,73] for electronic systems. Thereby, we obtain
a closure approximation which conserves the compatibility
of the RDMs as well as energy, respects symmetries such as
parity or translational invariance if existent, and is unitarily
invariant, i.e., gauge-invariant with respect to the choice of
the constraint operator of the MCTDHB theory. In contrast
to the cluster expansion for fermionic systems, however, the
employed cluster expansion lacks size extensivity, i.e., testifies
that two independent ideal Bose-Einstein condensates feature
few-particle correlations stemming solely from the bosonic
particle-exchange symmetry. Such correlations are physical, of
course, but should not manifest themselves in the correlation
definition on which a cluster expansion is built. Otherwise,
truncating the expansion by neglecting clusters may imply
neglecting correlations stemming from the bosonic symmetry.
We show that this flaw can in principle be cured by minimal
modifications of the cluster expansion, at the price, however,
of losing the unitary invariance of the thereby defined correla-
tions. For this reason, we do not apply these modifications to
the truncation approximation in our numerical investigations.

Using appropriate superoperators and our bosonic number-
state-based framework, we derive two computational rules
by means of which the clusters and thereby the closure
approximation can be calculated highly efficiently for high
orders in a recursive manner. This computational strategy
allows us to go to truncation orders as high as ō = 12, meaning
that up to 12-particle correlations are taken into account.

We have applied the above methodological framework to
two scenarios, namely the tunneling dynamics in a double well
and the interaction-quench-induced breathing dynamics in a
harmonic trap, in order to investigate the accuracy and stability
of the numerical results in dependence on the truncation
order. In both applications, we have found that the short-
time dynamics can be highly accurately described by the
truncated BBGKY approach, where the accuracy of the results
systematically improves with increasing truncation order ō.
At longer times, the BBGKY gives also excellent results with
controllable accuracy in the interaction-quench scenario for not
too high excitation energies. However, severe deviations from
the corresponding MCTDHB simulations occur at longer times
in the tunneling scenario as well as for stronger interaction
quenches. In these cases, the accuracy does not monotonically
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improve with increasing truncation order anymore and the
truncated BBGKY EOMs start to suffer from exponential
instabilities, which lead to unphysical states. By inspecting the
exact numerical results for the tunneling scenario, we find that
few-particle correlations on all orders quickly play a significant
role and eventually N -particle correlations dominate because
the total system evolves into a NOON state. This finding
indicates that the long-time physics of this scenario prevents
using a truncation approximation which is based on neglecting
(ō + 1)-particle correlations.

Nevertheless, it is important to clearly separate the stability
properties of the truncated BBGKY EOMs from accuracy
issues because (i) it is not desirable to have a highly accurate
theory which is exponentially unstable under slight, e.g.,
numerical perturbations and (ii) also a not highly accurate trun-
cation approximation may give useful, sufficiently accurate
results for low-dimensional observables such as the density
if the EOMs are sufficiently stable. Thus we have analyzed
these instabilities for the two scenarios in depth. Thereby, we
have found that the instability sets in at the truncation order
ō and then propagates down to lower orders meaning that
o-particle RDMs lack being positive semidefinite in decreasing
sequence with respect to the order o. The time until which
the highest-order RDM, ρ̂ō, stays positive semidefinite only
gradually increases with the truncation order ō, while the
time when the lowest-order RDMs start lacking positivity
decreases with increasing truncation order in some cases. This
may be explained by the enhanced nonlinearity of the closure
approximation for higher truncation orders. Moreover, we have
observed that the instabilities go often hand in hand with
avoided crossings of RDM eigenvalues close to zero.

In order to stabilize the EOMs, we have developed two
minimally invasive and energy-conserving correction algo-
rithms: In our first attempt, we extend the dynamical purifi-
cation algorithm [72,73,113]. Yet being based on a first-order
perturbation theory argument, this algorithm cannot properly
cope with the avoided crossings of the RDM eigenvalues in
the vicinity of zero and thus fails to prevent the instabilities
in our simulations. For this reason, we have developed a
second, nonperturbative correction algorithm, which slightly
alters the truncated BBGKY EOMs such that negative RDM
eigenvalues are exponentially damped to zero. We find that this
approach indeed stabilizes the BBGKY EOMs truncated at the
second order and leads to reasonable long-time results for the
interaction-quench scenario.

Besides these major methodological developments and their
numerical evaluation, we have also proposed an imaginary-
time relaxation approach for calculating the lowest-order
ground-state RDMs of some reference Hamiltonian such that
they can be used as the initial state for the BBGKY hierarchy.
Moreover, we have analytically shown that certain coherences
in the contraction-free component of the 2-RDM are respon-
sible for dynamical quantum depletion and fragmentation of
Bose gases.

Thereby, this exploratory work constitutes a major step
forward to the treatment of correlated ultracold bosonic sys-
tems in terms of the truncated BBGKY hierarchy of EOMs.
In addition to the developed truncation approximation, we
have presented numerous technical as well conceptual results,
which are independent of the applied truncation approxima-

tion and as such also valuable for future works on closure
approximations. In this regard, still open questions remain
such as how to enforce size extensivity in the cluster definition
while keeping its unitary invariance. Although our numerical
simulations reveal challenges for long-time propagations in
far-off-equilibrium situations, our thorough analysis gives
valuable hints for future research, namely (i) extending the
highly successful EOM correction algorithm of Sec. V B 2
to higher orders without using the Mazziotti ansatz and (ii)
research on closure approximations for bosonic system with a
fixed number of particles, going beyond the paradigm of the
cluster expansion. Finding novel closure approximations by
machine-learning techniques might be a promising first step.
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APPENDIX A: SUPEROPERATORS ACTING
ON BOSONIC OPERATORS

In this Appendix, we define important superoperators acting
on bosonic few-particle operators such as the o-RDM. These
superoperators are represented in the second-quantization
picture such that they can be applied efficiently to, e.g., the
RDMs being represented as outlined in Sec. II C. While only
the basic concepts are discussed here, important technical
details are covered by Appendix B. In the following, let Bo

denote the set of all Hermitian bosonic o-body operators,
meaning each B̂o ∈ Bo obeys P̂π B̂o = B̂oP̂π = B̂o with the
particle-permutation operator P̂π corresponding to an arbitrary
permutation π ∈ S(o) of the first o integers.

1. Partial traces

Having B̂o expanded with respect to o-particle number
states and using a mixed first and second quantization rep-
resentation as outlined in Appendix B, the partial trace of B̂o

over one particle can be expressed as16

tr1
(
B̂o

) ≡ 1

o

m∑
r=1

âr B̂o â†
r . (A1)

An explicit formula for the right-hand side of (A1) as well as
for the corresponding generalization to the partial trace over k

particles, trk(B̂o) ≡ tr1 ◦ . . . ◦ tr1(B̂o), for k � o are provided
in Appendix B.

16Although the number of particles, o, occurs on the right-hand
side of Eq. (A1), we do not incorporate it in the symbol tr1 for the
partial trace since one may replace the factor 1/o in Eq. (A1) by the
inverse of the operator (N̂ + 1) with the total particle-number operator
N̂ =∑m

r=1 â†
r âr .
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2. Raising and joining operations

In our formal framework, we also need—loosely
speaking—the inverse of the partial trace, meaning an oper-
ation which raises an operator B̂o ∈ Bo to an (o + 1)-body
operator by adding a particle in an undefined state, i.e., the
unit operator. This raising operation is accomplished by17

R̂1
(
B̂o

) ≡ 1

o + 1

m∑
r=1

â†
r B̂o âr . (A2)

In Appendix F, we comment on the precise relationship
between the raising and the partial-trace operation in terms
of Eq. (F1).

For defining few-particle correlations in Sec. IV, we fur-
thermore need a superoperator which joins two operators
Âo1 ∈ Bo1 , B̂o2 ∈ Bo2 to a bosonic (o1 + o2)-body operator

Ĵ o2
o1

(
Âo1 ,B̂o2

) ≡ ∑
a,b|o1

∑
c,d|o2

A
o1
a,bB

o2
c,d

×
[

m∏
r=1

(
ar + cr

cr

)(
br + dr

dr

)] 1
2

× |a + c〉〈b + d|, (A3)

where A
o1
a,b ≡ 〈a|Âo1 |b〉 and B

o2
c,d ≡ 〈c|B̂o2 |d〉. Expanding the

argument B̂o in Eq. (A2) in number states and comparing the
result with Eq. (A3), one can easily verify that raising B̂o

effectively means joining with the one-body unit operator of
the subspace spanned by the instantaneous SPFs, i.e., R̂1(B̂o) =
Ĵ 1

o (B̂o,P̂)/(o + 1) with P̂ ≡∑m
r=1 |ϕr〉〈ϕr |. Similarly, one can

show that k-fold raising R̂k(B̂o) ≡ R̂1 ◦ . . . ◦ R̂1(B̂o) effec-
tively means joining with the corresponding bosonic k-body
unit operator, i.e., R̂k(B̂o) = Ĵ k

o (B̂o,P̂
+
k )/
(
o+k

k

)
with P̂

+
k ≡∑

n|k |n〉〈n|. Finally, we note that this bosonic joining operator
plays the same role as the wedge product for the cluster
expansion for fermions (see, e.g., [13]).

APPENDIX B: MIXED FIRST AND SECOND
QUANTIZATION REPRESENTATION

While an efficient representation of RDMs requires working
with bosonic number states, which is a second-quantization
concept, operations such as partial traces are most conveniently
performed if individual particles can be addressed by particle
labels, i.e., in a first-quantization framework. Here, we provide
formulas for bridging between these two perspectives, which
finally allows for evaluating all expressions in the second-
quantization picture. Our starting point is the well-known
relationship between an o-particle Hartree product |ϕj1 . . . ϕjo

〉,
in which nr particles reside in the SPF |ϕr〉, and the cor-
responding bosonic number state |n〉 (normalized to unity)

17Similarly to Eq. (A1), the right-hand side of (A2) does not
explicitly depend on the number of particles since we may replace
the right-hand side by N̂−1

∑m

r=1 â†
r B̂o âr (see also footnote 16).

This expression is well defined because the inverse of the total
particle-number operator acts only on states with at least one particle.

with n = (n1, . . . ,nm) encoding the respective occupation
numbers:

|n〉 =
√

o!∏
i ni!

Ŝo

∣∣ϕj1 . . . ϕjo

〉
. (B1)

Here, Ŝo refers to the idempotent o-particle symmetrization
operator Ŝo =∑π∈S(o) P̂π/o! with the sum running over all
particle permutations π and P̂π denoting the corresponding
particle-exchange operator. After explicating the summation
over all permutations of particle labels and renaming the
summation index of the orbital in which the oth particle resides,
we arrive at [81]

|n〉 =
m∑

r=1

√
nr

o
|n − er〉(1,...,o−1) ⊗ |ϕr〉(o)

=
m∑

r=1

(
âr√
o

|n〉
)(1,...,o−1)

⊗ |ϕr〉(o), (B2)

where the superindices of the ket-vectors indicate the particle
labels for the corresponding state and er is an occupation
number vector having vanishing elements except for the rth
one being set to unity. In passing, we note that the state
âr |n〉/√o coincides with the so-called single-hole function of
|n〉 with respect to the rth SPF as used in, e.g., [75,81]. The
second identity in (B2) can be used to prove and explicate
the expression (A1) for the partial trace of B̂o ∈ Bo over one
particle, given its representation

∑
n,m|o Bo

n,m|n〉〈m|:

tr1(B̂o) =
∑

n,m|o

m∑
r=1

Bo
n,m

(o)〈ϕr |n〉〈m|ϕr〉(o)

= 1

o

∑
n,m|o

m∑
r=1

Bo
n,m âr |n〉〈m|â†

r = 1

o

m∑
r=1

âr B̂o â†
r

= 1

o

∑
a,b|o−1

m∑
r=1

√
(ar + 1)(br + 1) Bo

a+er ,b+er
|a〉〈b|.

(B3)

By successively applying the steps leading to (B2) to the
respectively occurring number states and using the identity
(B1) for the resulting Hartree products, we may decompose an
o-particle number state into a sum over products of (o − k)-
particle and k-particle number states (k < o) associated with
the “first” o − k and the “last” k particles:

|n〉 =
(

o

k

)− 1
2∑

l|k
�(n − l)

[
m∏

r=1

(
nr

lr

)] 1
2

× |n − l〉(1,...,o−k) ⊗ |l〉(o−k+1,...,o), (B4)

where �(n) ≡∏m
i=1 �(ni) with the Heaviside function �

defined by�(x) = 1 forx � 0 and zero otherwise. The relation
(B4) is a central technical result, on which the recursive
formulation of the cluster expansion is founded (see Sec. IV B 3
and Appendix G).

Furthermore, this identity allows for efficiently evaluating
the partial trace trk(B̂o) of a bosonic o-body operator B̂o over k

particles (k < o). Expanding B̂o with respect to number states
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|n〉, |m〉 and inserting the decomposition (B4), one directly
obtains the following expression:

trk(B̂o) ≡
∑

i1,...,ik

(o−k+1,...,o)
〈
ϕi1 . . . ϕik

∣∣
× B̂o

∣∣ϕi1 . . . ϕik

〉(o−k+1,...,o)

=
∑
l|k

(o−k+1,...,o)〈l|B̂o|l〉(o−k+1,...,o)

=
(

o

k

)−1 ∑
a,b|o−k

∑
l|k

[
m∏

r=1

(
ar + lr

lr

)(
br + lr

lr

)] 1
2

× Bo
a+l,b+l |a〉〈b|. (B5)

We note that this expression is meaningful also for k =
o, resulting in tro(B̂o) = tr(B̂o) |0〉〈0| with |0〉 denoting the
vacuum state. Besides, the above formula provides one way
to derive the expression (3) for the o-RDM by setting o to the
total number of atoms N , k to N − o, and B̂N to |�t 〉〈�t | and
using the expansion (1).

APPENDIX C: FINITE TEMPERATURES

Let us now show that and in which sense the EOM (5)
together with the possibly truncated RDM EOM (6) result in
an optimal SPF dynamics also for mixed initial N -particle
states, given that the N -particle dynamics is unitary. This
line of argumentation strongly resembles the considerations
on an alternative to the so-called ρ MCTDH type-2 method
for simulating Lindblad master equations for distinguishable
degrees of freedom in the limit of purely unitary dynamics,
as discussed in [82]. Given the spectral representation of the
initial state

ρ̂N (0) =
CN

m∑
r=1

λ(N)
r (0)
∣∣φN

r (0)
〉〈
φN

r (0)
∣∣, (C1)

a unitary dynamics governed by the Hamiltonian Ĥ leaves
the probabilities λ(N)

r (t) invariant. Instead of solving the von
Neumann equation for ρ̂N , one may purify the density operator
to

|�t 〉 =
CN

m∑
r=1

√
λ

(N)
r

∣∣φN
r (t)
〉⊗ |ur〉, (C2)

where {|ur〉} denotes some fixed time-independent orthonor-
mal basis of a CN

m -dimensional auxiliary Hilbert space. This
pure state is propagated according to i∂t |�t 〉 = Ĥ ⊗ 1|�t 〉
and one exactly recovers the solution of the von Neumann
equation by taking the partial trace over the auxiliary space,
i.e., ρ̂N (t) = traux(|�t 〉〈�t |). Now one can expand each |φN

r (t)〉
in the MCTDHB manner

∑
n|N Ar

n |n〉, where all states share
the same set of SPFs, and minimize the action functional with
the Lagrangian 〈�t |(i∂t − Ĥ ⊗ 1)|�t 〉 under orthonormality
constraints on both the SPFs and the N -particle states |φN

r (t)〉.
Thereby, one finds that the coefficients Ar

n for fixed r obey
Eq. (4). Differentiating ρN

n,m =∑r λ(N)
r (Ar

n)∗Ar
m with respect

to time, we directly obtain the RDM EOM (6) at order o = N .
Varying the action with respect to the SPFs exactly results
in the SPF EOM (5) where the elements of the 1- and 2-
RDMs entering the equations are the convex sum over the
corresponding matrices (3) for the state |φN

r 〉 weighted with the
probability λ(N)

r . The latter means that the 1- and 2-RDMs in the
EOMs for the SPFs are exactly the (N − 1)- and (N − 2)-fold
partial trace of ρ̂N , respectively.

Thereby, it is shown that the EOMs (5), (6) applied to a
mixed, e.g., thermal initial N -particle state also result in a well-
defined variationally optimal dynamics, where the dynamical
adaption of the SPFs is a compromise between an optimal
representation of the various eigenvectors |φN

r (t)〉 of ρ̂N (t).
Here, eigenstates of higher probability λ(N)

r have a stronger
impact on the SPF dynamics than weakly occupied eigenstates.

APPENDIX D: PROPAGATION IN NEGATIVE
IMAGINARY TIME

The purpose of this appendix is to show how one can derive
EOMs for the RDMs in imaginary time which contract an
initial guess to the ground-state RDMs. While the case of
the N -RDM, i.e., the state of the full system, has already
been addressed in Sec. III B 2, we illustrate the derivation by
exemplarily inspecting the case of the 1-RDM.

Fixing the constraint operator to gij = 0 here, we may
write the MCTDHB EOMs in imaginary time in the following
compact form:

∂τ |�τ 〉 = (Eτ − ˆ̃H0)|�τ 〉

+
∞∑

i=m+1

m∑
j=1

〈ϕi |(∂τ |ϕj 〉) â
†
i âj |�τ 〉. (D1)

Here, ˆ̃H0 is defined via Eq. (7) with the constraint operator gij

set to zero and with the Hamiltonian Ĥ being replaced by the
reference Hamiltonian Ĥ0, whose ground-state RDMs should
be calculated. The term proportional to the energy expectation
value Eτ ≡ 〈�τ |Ĥ0|�τ 〉 = 〈�τ | ˆ̃H0|�τ 〉 ensures that the norm
of |�τ 〉 does not contract to zero but stays unity. In Eq. (D1), we
have furthermore expanded the SPF notation: |φr〉 still refers
to the dynamically adapted MCTDHB SPFs for r = 1, . . . ,m.
For larger r , |φr〉 refers to an unoccupied, i.e., virtual, orbital
outside of the space spanned by the instantaneous SPFs.
For the sake of concreteness, we assume the single-particle
Hilbert space to be infinite-dimensional, while in a numerical
implementation r would be bounded from above by the number
of time-independent single-particle states used to represent
the MCTDHB SPFs. Accordingly, we extend the notation of
creation and annihilation operators also to the space of virtual
orbitals. Finally, ∂τ |ϕj 〉 coincides with the negative of the
right-hand side of Eq. (5) with ĝ set to zero.

Now we can derive the corresponding EOM for the
1-RDM where we use the representation (2) for simplic-
ity. When differentiating D1

i,j = 〈�τ |â†
j âi |�τ 〉 for i,j =

1, . . . ,m with respect to τ , we can make use of the fact
∂τ â

(†)
i =∑∞

r=m+1〈∂τϕi |ϕr〉(∗) â
(†)
r for i = 1, . . . ,m, which is a

consequence of ĝ = 0. Thereby, one obtains

∂τ 〈�τ |â†
j âi |�τ 〉 = 〈�τ | {Eτ − ˆ̃H0,â

†
j âi} |�τ 〉. (D2)
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Inserting ˆ̃H0 into the right-hand side and normal ordering
under consideration of the permutation symmetry of both the
occurring RDMs and vijqp result in

∂τD
1
i,j = 2EτD

1
i,j − 2

[
m∑

r=1

(
hrjD

1
i,r + hirD

1
r,j

)

+
m∑

q,p=1

hqpD2
(ip),(jq)

+
m∑

q,p,r=1

(
virqpD2

(qp),(jr) + vqpjrD
2
(ir),(qp)

)

+
m∑

q,p,r,s=1

vqprsD
3
(irs),(jqp)

⎤
⎦ (D3)

with

Eτ =
m∑

q,p=1

hqpD1
p,q + 1

2

m∑
q,p,r,s=1

vqprsD
2
(rs),(qp). (D4)

Therefore, as in the case of a contracted Schrödinger equation
[12,13,56,58], the dynamics of the 1-RDM couples to both the
2- and the 3-RDMs. The EOM (D3) can be easily translated to
the more compact representation of RDMs (3), of course. This
derivation can be applied also for the EOMs of higher-order
RDMs, with the result that ∂τD

o couples to both the (o + 1)-
and the (o + 2)-RDMs as well as to the 1- and 2-RDMs
by virtue of Eq. (D4). The latter coupling, however, can be
transformed away by expressing Eτ solely as a functional
of Do, which is always possible for o � 2 when using a
truncation approximation which conserves the compatibility
of the RDMs. As a starting point for the truncation of the
resulting hierarchy of EOMs, one can try the various closure
approximations derived for contracted Schrödinger equations
[12,13,56,58].

APPENDIX E: AN ALTERNATIVE CLUSTER EXPANSION
FOR BOSONS

In this Appendix, we outline how to construct an alternative
cluster expansion which is termwise compatible and has
multiorbital mean-field states as (approximately) correlation-
free reference states. The latter is a desirable property that
implies (approximate) size extensivity in the sense specified in
Sec. IV B 2. First, we discuss how to appropriately modify the
terms ⊗o

κ=1ρ̂
(κ)
1 Ŝo of the expansion (19). Then we exemplarily

describe the modification of terms such as [ĉ(1,2)
2 ρ̂

(3)
1 + . . .]Ŝ3,

and finally a crucial mathematical subtlety is discussed.
For constructing this alternative cluster expansion, we first

inspect the structure of the o-RDM given that the total system
is in a multiorbital mean-field state |�MMF〉 = |k〉. Tracing out
(N − o) atoms by means of (B5), we obtain

ρ̂MMF
o =

(
N

o

)−1∑
n|o

�(k − n)

[
m∏

r=1

(
kr

nr

)]
|n〉〈n|, (E1)

which at first order boils down to ρ̂MMF
1 =∑r

kr

N
|r̂〉〈r̂|. The

latter means that the NOs |φ1
r 〉 coincide with the single-particle

states underlying the permanent |k〉 and that the NPs read
λ(1)

r ≡ kr/N . Now let us inspect why the cluster expansion
(19) diagnoses few-particle correlations for |�MMF〉. This
means inspecting why the first term in the expansion (19)
at order o deviates from the analytical result (E1). Using the
spectral decomposition of ρ̂MMF

1 and the relationship between
symmetrized Hartree products and permanents (B1), such a
symmetrized product of 1-RDMs can be calculated as

o⊗
κ=1

ρ̂
(κ)
1 Ŝo = Ŝo

o⊗
κ=1

ρ̂
(κ)
1 Ŝo

=
m∑

i1,...,io=1

[
o∏

κ=1

λ
(1)
iκ

]
Ŝo

∣∣φ1
i1

. . . φ1
io

〉〈
φ1

i1
. . . φ1

io

∣∣Ŝo

=
∑
n|o

[
m∏

r=1

(
λ(1)

r

)nr

]
|n〉〈n|, (E2)

where we have abbreviated ρ̂1 ≡ ρ̂MMF
1 . Straightforward cal-

culations show that (E2) is neither termwise compatible in
the sense tr1(⊗o+1

κ=1ρ̂
(κ)
1 Ŝo+1) = ⊗o

κ=1ρ̂
(κ)
1 Ŝo nor does it serve

as a good approximation for (E1). These flaws can actually
be linked to the fact that the norm of a symmetrized Hartree
product Ŝo|φ1

i1
. . . φ1

io
〉, as it occurs in the second identity

of (E2), depends on the corresponding occupation numbers
[see Eq. (B1)]. The latter, however, can be compensated by
introducing a modified symmetrization operator

Ŝo ≡
(

o!⊗m
r=1 n̂r !

) 1
2

Ŝo, (E3)

where
⊗m

r=1 n̂r ! is defined as
∑

n(
∏

r nr !)|n〉〈n| with the NOs
|φ1

r 〉 as the underlying single-particle basis. Thereby, we ensure
Ŝo|φ1

i1
. . . φ1

io
〉 = |n〉. Now we are equipped to replace the 1-

RDM product terms (E2) of the cluster expansion (19) by the
following expression:

Ŝo

o⊗
κ=1

ρ̂
(κ)
1 Ŝo = o!

∑
n|o

[
m∏

r=1

(
λ(1)

r

)nr

nr !

]
|n〉〈n|. (E4)

It is easy to see that the partial trace of (E4) equals (E4)
with o replaced by (o − 1) implying that this class of terms
in the alternative cluster expansion is termwise compatible
indeed. Inserting λ(1)

r ≡ kr/N into (E4), we see that (E4)
coincides with (E1) up to 1/N corrections if o � kr for
all finite kr , i.e., in the case of a multiorbital mean-field
state with only macroscopically occupied orbitals. Thus, size
extensivity is approximately ensured. In passing, we note that
the relationship between antisymmetrized Hartree products
and fermionic number states does not involve a state-dependent
normalization factor, which might be the reasons why the
antisymmetrization of the cluster expansion (18) leads to size
extensivity.

We further illustrate how to construct a termwise compatible
cluster expansion by inspecting how the terms [ĉ(1,...,σ )

σ ρ̂
(σ+1)
1 +

. . .]Ŝσ+1 have to be modified. Let us abbreviate the modified
version of this term by Ĝ

1,1
1,σ [in analogy to the notation (22)]

and assume that termwise compatibility has already been
ensured up to order σ implying tr1(ĉσ ) = 0. For the term Ĝ

1,1
1,σ ,
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we then make the ansatz

Ĝ
1,1
1,σ =

∑
n,m|σ+1

|n〉〈m|
m∑

r=1
nrmr>0

cσ
n−er ,m−er

λ(1)
r fn,m,r , (E5)

where again the NOs |φ1
r 〉 serve as the underlying single-

particle basis. Motivated by the factorial factors of Eq. (E4)
compared to (E2), we have introduced a real-valued
occupation-number factor fn,m,r to be determined by the
termwise compatibility requirement tr1(Ĝ1,1

1,σ ) = ĉσ . When
evaluating the left-hand side of this requirement, one realizes
that one can only benefit from tr1(ĉσ ) = 0 if f depends only
on nr and mr , i.e., fn,m,r = g(nr,mr ). Then the requirement
tr1(Ĝ1,1

1,σ ) = ĉσ becomes equivalent to g solving√
(l + 1)(k + 1) g(l + 1,k + 1) −

√
lk g(l,k) = σ + 1,

(E6)

for all l,k = 0, . . . ,σ . This set of linear equations
possesses the unique solution g(l,k) = (σ + 1)[δlk + (1 −
δlk)

√
min{l/k,k/ l}]. By making a similar ansatz involving

occupation-number factors, other classes of terms in the
cluster expansion (19) can be modified to obey termwise
compatibility.

Although termwise compatibility and (approximate) size
extensivity are desirable properties which the cluster expansion
(19) lacks, we do not employ this alternative approach for
truncating the BBGKY hierarchy because the thereby defined
clusters fail to be unitarily invariant in the case of NP degen-
eracies. Suppose that there are only two SPFs (m = 2) and
that the NPs are degenerate, i.e., λ

(1)
1 = λ

(1)
2 = 0.5. Then one

can analytically show that the alternative definition for the
two-particle cluster ĉ2 = ρ̂2 − Ŝ2 ρ̂

(1)
1 ρ̂

(2)
1 Ŝ2 does depend on

the concrete choice for the degenerate NOs. This ambiguity
stems from the fact that the operator

⊗m
r=1 n̂r ! is not form-

invariant under unitary transformations of the NOs. Due to this
finding, we do not develop this alternative cluster expansion
further but use the unitarily invariant decomposition, described
in the following Appendix, for making the symmetrized cluster
expansion (19) compatible.

APPENDIX F: UNITARILY INVARIANT DECOMPOSITION
OF BOSONIC OPERATORS

According to the UID [103–106], any given Hermitian
bosonic o-body operator B̂o ∈ Bo can be uniquely decomposed
into B̂o = ⊕o

k=0B̂o;k with respect to all irreducible representa-
tions of the unitary group U (m) (the unitary transformations
within the SPF space) on Bo. This decomposition has the
property that the l-fold partial trace of B̂o is fully determined by
the first (o − l + 1) addends: trl(B̂o) = trl(⊕o−l

k=0B̂o;k). Explicit
formulas for the components can be obtained by making use
of the fact that for each18 l = 0, . . . ,o − 1 there is a unique
T̂l ∈ Bl such that ⊕l

k=0B̂o;k = R̂o−l(T̂l) and determining the

18We note that the space of Hermitian bosonic 0-body operators is
given by B0 = {α |0〉〈0|, α ∈ R}.

T̂ ′
l s recursively by employing the relation between the raising

operation (A2) and the partial trace (A1) [106,139]:

tr1(R̂1(B̂o)) = 2o + m

(o + 1)2
B̂o +
(

o

o + 1

)2

R̂1(tr1(B̂o)). (F1)

We, however, are not interested in the individual terms of the
complete UID but only in separating the contraction-free com-
ponent B̂ irr

o ≡ B̂o;o from the rest, i.e., in the decomposition19

B̂o = B̂red
o ⊕ B̂ irr

o . Using the results of [106] for B̂o;k and a
computer algebra program [140] for summing over k, we find

B̂red
o = −

o−1∑
k=0

(−1)o+k

(
o

k

)2(2o+m−2
o−k

) R̂o−k(tro−k(B̂o)) (F2)

and B̂ irr
o = B̂o − B̂red

o . Equation (F2) implies that the reducible
component B̂red

o depends linearly on all partial traces of B̂o. We
stress here that all considerations regarding the UID rely on
having a finite-dimensional single-particle Hilbert space, i.e.,
on m being finite [103–106]. For the actual evaluation of (F2),
we use the relationship between the k-fold raising operation
and the joining operation as stated in Appendix A 2 together
with Eq. (A3).

APPENDIX G: PROOF OF THE RECURSIVE
FORMULATION OF THE BOSONIC

CLUSTER EXPANSION

The proofs of the recursion relations (24), (25) rely on (i)
the property Ŝo|n〉 = |n〉 for any o-particle number state |n〉
and (ii) the number-state decomposition (B4). To prove (24),
we first inspect the matrix element of F̂ n

σ with respect to any
two (nσ )-particle number states

〈a|F̂ n
σ |b〉 (i)= 〈a|[ĉ(1,...,σ )

σ . . . ĉ([n−1]σ+1,...,nσ )
σ + dist. perm.

]|b〉

= (nσ )!

n!(σ !)n
〈a|ĉ(1,...,σ )

σ . . . ĉ([n−1]σ+1,...,nσ )
σ |b〉, (G1)

where we have also used the invariance of number states
under particle permutations in the last identity. The resulting
prefactor denotes the number of distinct sequences of n

pairwise distinct σ -tuple if the order of the sequence does not
matter. Next we apply (B4) to both |a〉 and |b〉:

〈a|F̂ n
σ |b〉 = (nσ )!

n!(σ !)n

(
nσ

σ

)−1∑
r,s|σ

�(a − r)�(b − s)

×
[

m∏
i=1

(
ai

ri

)(
bi

si

)] 1
2

〈a − r|ĉ(1,...,σ )
σ . . .

ĉ([n−2]σ+1,...,[n−1]σ )
σ |b − s〉〈r|ĉσ |s〉. (G2)

19We note that the superscripts “red” and “irr” do not refer to
(irr)reducible representations of the unitary group U (m) but encode
whether or not the component contains genuine o-particle correlations
(see Sec. IV B 3).
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By reusing the result (G1), we may express the second to last factor of (G2) as

〈a − r|ĉ(1,...,σ )
σ . . . ĉ([n−2]σ+1,...,[n−1]σ )

σ |b − s〉 = (n − 1)!(σ !)n−1

[(n − 1)σ ]!
〈a − r|F̂ n−1

σ |b − s〉. (G3)

Inserting (G2), (G3) into the expansion F̂ n
σ =∑a,b|nσ 〈a|F̂ n

σ |b〉 |a〉〈b| and substituting the sum over a (b) by a sum over a′ ≡ a − r
(b′ ≡ b − s) we finally find F̂ n

σ = Ĵ σ
(n−1)σ (F̂ n−1

σ ,ĉσ )/n.

In order to prove the second relation (25), we abbreviate o′ =∑K−1
r=1 nrσr as well as o = o′ + nKσK and decompose the

distinguishable permutations over particle labels in (22) as follows:

〈a|F̂ n1,...,nK

σ1,...,σK
|b〉 = 〈a|[[ĉ(1,...,σ1)

σ1
. . . ĉ(o′−σK−1+1,...,o′)

σK−1
+ dist. perm.

][
ĉ(o′+1,...,o′+σK )
σK

. . . ĉ(o−σK+1,...,o)
σK

+ dist. perm.
]

+ dist. perm.
]|b〉

(i)= 〈a|[[ĉ(1,...,σ1)
σ1

. . . ĉ(o′−σK−1+1,...,o′)
σK−1

+ dist. perm.
]
Ŝ

(1,...,o′)
o′

× [ĉ(o′+1,...,o′+σK )
σK

. . . ĉ(o−σK+1,...,o)
σK

+ dist. perm.
]
Ŝ(o′+1,...,o)

nKσK
+ dist. perm.

]|b〉
= 〈a|[[F̂ n1,...,nK−1

σ1,...,σK−1

](1,...,o′)[
F̂ nK

σK

](o′+1,...,o) + dist. perm.
]|b〉

= 〈a|[F̂ n1,...,nK−1
σ1,...,σK−1

](1,...,o′)[
F̂ nK

σK

](o′+1,...,o)|b〉
(

o

o′

)
, (G4)

where we have again employed the bosonic symmetry of
the number states for the last identity. Using (B4), the
binomial factor in (G4) is canceled and eventually the
same number-state substitutions as before lead to F̂ n1,...,nK

σ1,...,σK
=

Ĵ
nKσK

o−nKσK
(F̂ n1,...,nK−1

σ1,...,σK−1 ,F̂ nK
σK

).

APPENDIX H: MINIMALLY INVASIVE PURIFICATION
OF THE RDM

In this Appendix, we show how one can translate
the minimally invasive purification scheme as outlined in
Sec. V B 1 into a linear (quadratic) program when using the
1-norm (2-norm). The Hermiticity of the correction operator
Ĉ2 is incorporated in the following formalism by decom-
posing C2

n,m = C2,Re
n,m + i C2,Im

n,m with C2,Re
n,m (C2,Im

n,m ) denoting a
real-valued symmetric (antisymmetric) matrix and mapping
the upper triangles of these matrices to real-valued vectors
cRe and cIm, respectively, which are stacked to the vector c =
(cRe,cIm)T containing [C2

m]2 elements where C2
m = m(m +

1)/2 denotes the number of distinct bosonic two-body config-
urations. Having determined c as a solution of an optimization
problem, we use it in order to reconstruct the Hermitian matrix
C2

n,m.
The aim of this Appendix is to formulate our correction

scheme as the problem of minimizing20 |c|p ≡∑r |cr |p under
the linear constraints A c = b. In the following, we construct
the matrix A and the vector b of this underdetermined system
of linear equations. Here, the overall strategy is to formulate
the ith constraint as follows:

∑
n,m|2 Oi

m,n C2
n,m = bi . Mapping

the number states n, m to integer-valued indices I , J , we may

20We note that this cost functional differs slightly from (31) because
pairs of off-diagonal elements C2

n,m, C2
m,n enter |c|p only by a single

representative off-diagonal element. We, however, do not expect
that differences between (31) and |c|p have a severe impact on the
purification scheme.

decompose the latter equation as

bi =
∑
I�J

Ã
i,Re
I,J C2,Re

I,J + i
∑
I<J

Ã
i,Im
I,J C2,Im

I,J

≡ [ai,Re]T · cRe + [ai,Im]T · cIm = [ai]T · c, (H1)

where Ã
i,Re
I,J = [Oi

I,J + Oi
J,I ]/(1 + δI,J ) and Ã

i,Im
I,J = Oi

J,I −
Oi

I,J . In the second identity of (H1), we have mapped the upper

triangles of the matrices Ã
i,Re
I,J and i Ã

i,Im
I,J to the vectors ai,Re

and ai,Im, respectively, which turn out to be real-valued for
Hermitian Oi

I,J . In this case, these vectors are stacked to ai =
(ai,Re,ai,Im)T , which constitutes the ith row of the matrix A.

(i) Let us translate the constraints of Ĉ2 being contraction-
free. Due to Hermiticity of 〈φi |tr1(Ĉ2)|φj 〉, we obtain m2

independent constraints. Using the expression (A1) for the
partial trace, we have

m∑
l=1

√
(1 + δil)(1 + δjl) C2

ei+el ,ej +el
= 0, (H2)

which can be expressed as (H1) with br = 0 (r will label the
constraint corresponding to i � j ) and

Or
m,n =

m∑
l=1

√
(1 + δil)(1 + δjl)δn,ei+el

δm,ej +el
, (H3)

where we introduced the Kronecker delta for number states
as δa,b =∏m

k=1 δak,bk
. Now, we have to distinguish two cases.

If i = j , Or
m,n is a real-valued symmetric matrix such that

Ã
r,Im
I,J = 0. Thereby, we obtain m constraints affecting only

the symmetric component C2,Re
n,m . For i < j , however, Or

m,n
turns out to be a real-valued asymmetric matrix, resulting in
nonvanishing real-valued matrices Ã

r,Re
I,J and Ã

r,Im
I,J . Thus, we

obtain for each i < j two independent constraints affecting
either the symmetric component C2,Re

n,m or the antisymmetric
component C2,Im

n,m only. The corresponding rows of A are given
by ai = (ai,Re,ai,Im)T with ai,Re covering the upper triangle of
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Ã
r,Re
I,J as well as ai,Im set to zero and ai,Re set to zero as well as

ai,Im covering the upper triangle of Ãr,Im
I,J , respectively. Thereby,

we obtain further m(m − 1) constraints, which amounts to m2

constraints related to the partial trace of Ĉ2 in total.
(ii) Energy conservation can be easily formulated

as a linear constraint. By means of the relation
〈Ĥ 〉t = N tr(k̂2 ρ̂2) with the auxiliary 2-particle Hamiltonian
k̂2 = [ĥ1 + ĥ2 + (N − 1)v̂12]/2 [15], we have to require
tr(k̂2 Ĉ2) = 0. The latter boils down to tr(v̂12 Ĉ2) = 0 as Ĉ2

should be contraction-free. Apparently, we have br = 0 for
this constraint. Using the cyclic invariance of the trace and Ĉ2

being bosonic, we obtain tr(Ŝ2v̂12Ŝ2 Ĉ2) = 0, which allows for
identifying Or

m,n with the matrix elements of Ŝ2v̂12Ŝ2 in the
number-state basis, namely as

Or
ei+ej ,eq+ep

= vijqp + vjiqp√
(1 + δij )(1 + δqp)

. (H4)

(iii) In the case of a symmetry such as invariance under
parity or translation operations, we proceed as follows. We
remind the reader that the SPFs stay invariant under the cor-
responding symmetry operation, π̂1|φj 〉 = exp(iθj )|φj 〉 with
some real phase θj (see Sec. IV A). Correspondingly, an
o-particle number state transforms as ̂o|n〉 = exp[iθ (n)]|n〉
with θ (n) =∑m

j=1 njθj . Now we introduce the following
equivalence relation between number states n ∼ m if θ (n)
mod 2π = θ (m) mod 2π . Then the correction respects the
symmetry if C2

n,m = 0 for all n � m. In order to construct the
corresponding rows in A, we loop over all pairs of inequivalent
number states f � g whose corresponding integer labels I

(for f) and J (for g) obey I < J in order to avoid redundant
constraints. For each such f , g, we set br = 0 and Or

m,n =
δm,gδn,f . The latter constitutes a real-valued asymmetric matrix
such that for each f � g two independent constraints arise,
affecting either C2,Re

n,m or C2,Im
n,m only [see constraints (i)].

(iv) The constraint that each negative NP below a certain
threshold λ(2)

r < ε is raised to zero in first-order perturbation
theory with respect to Ĉ2 can be expressed as tr(|φ2

r 〉〈φ2
r | Ĉ2) =

−λ(2)
r . From this, we may directly read-off br = −λ(2)

r as well
as Or

m,n = [φ2
r;n]∗φ2

r;m where φ2
r;m = 〈m|φ2

r 〉.
(v) In order to formulate the constraints related to negative

K̂2 eigenvalues, we first need to clarify the relation between
K̂2 and ρ̂1, ρ̂2. Explicating (30), we find

K2
(i1,j1),(i2,j2) NK = N (N − 1) fi2j1fi1j2 ρ2

ei2 +ej1 ,ei1 +ej2

+ δj1,j2Nρ1
i2i1

− N2ρ1
j1,i1

ρ1
i2,j2

, (H5)

where we have again used the abbreviation fij =√
(1 + δi,j )/2. Updating ρ̂2 by the contraction-free

operator Ĉ2 apparently leaves ρ̂1 and thus also NK =
N (N + m − 1) − N2 tr([ρ̂1]2) invariant. Thereby, the update
of ρ̂2 implies the update K̂2 + �̂2 with

�2
(i1,j1),(i2,j2) = N (N − 1)

NK

fi2j1fi1j2 C2
ei2 +ej1 ,ei1 +ej2

. (H6)

Now the constraint that a negative K̂2 eigenvalue ξr below the
threshold ε should be raised to zero in first-order perturbation
theory with respect to �̂2, i.e., tr(|�r〉〈�r | �̂2) = −ξr , can be
rephrased in terms of the correction Ĉ2. The result is setting
br = −ξr and

Or
eq+ep,ei+ej

≡ N (N − 1)

4NKfijfqp

(
Mr

(i,p),(q,j ) + Mr
(j,p),(q,i)

+ Mr
(i,q),(p,j ) + Mr

(j,q),(p,i)

)
, (H7)

where Mr
(i,p),(q,j ) ≡ 〈ϕiϕp|�r〉 〈�r |ϕqϕj 〉.

We remark that the inhomogeneity b of the system of
linear equations features only extremely small or vanishing
numerical values. For increasing the numerical stability when
solving the optimization problem, we replace b by b/Nb

with Nb = (
∑

i|λ(2)
i <ε |λ(2)

i | +∑i|ξi<ε |ξi |)/(d + d ′) where d

(d ′) denotes the number of ρ̂2 (K̂2) eigenvalues below the
threshold. Thereafter, the solution c is rescaled as cNb.

Finally, let us investigate how underdetermined the correc-
tion operator Ĉ2 is, which can be parametrized by [C2

m]2 =
m2(m + 1)2/4 independent real numbers. If no symmetry has
to be incorporated, there are m2 + d + d ′ + 1 independent
constraints (note that the energy-conservation constraint has
to be imposed also in cases where the total Hamiltonian is
explicitly time-dependent; otherwise d

dt
〈Ĥ 〉 = 〈∂t Ĥ 〉 would

be violated). If there is parity symmetry and half of the initial
SPFs are of even and half of them are of odd parity (m should
be even), then m4/8 + m3/4 additional constraints have to be
taken into account.

APPENDIX I: MINIMALLY INVASIVE CORRECTION
OF THE EOM

The technical implementation of the minimally invasive
correction scheme for the 2-RDM EOM is very much like the
steps discussed in Appendix H. Therefore, we only work out
differences here.

The constraints on the correction Ĉ2 to be (i) contraction-
free, (ii) energy-conserving, and (iii) respecting symmetries
if existent can be exactly implemented as discussed in
Appendix H. For enforcing negative NPs λ(2)

r below the thresh-
old ε to be exponentially damped to zero, we may use the same
Or

m,n as described in Appendix H (iv), where one has to replace,
however, br = −λ(2)

r by br = −ηλ(2)
r + i〈φ2

r |Î2(χ̂3)|φ2
r 〉 with

χ̂3 = ρ̂
appr
3 for ō = 2 and χ̂3 = ρ̂3 for ō > 2.

For the requirement that also negative K̂2 eigenvalues are
damped to zero, we first have to express the EOM for K̂2 in
terms of ρ̂1, ρ̂2, R̂1, and R̂2 by differentiating (H5) with respect
to time:

∂tK
2
(i1,j1),(i2,j2) ≡ 〈ϕi1ϕj1 |T̂2|ϕi2ϕj2

〉 = 1

NK

(
2N2 tr(R̂1ρ̂1) K2

(i1,j1),(i2,j2) + N (N − 1) fi2j1fi1j2 R2
ei2 +ej1 ,ei1 +ej2

+ δj1,j2 N R1
i2,i1

− N2 R1
j1,i1

ρ1
i2,j2

− N2 R1
i2,j2

ρ1
j1,i1

)
. (I1)
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Since Ĉ2 is enforced to be contraction-free, R̂1 is left invariant
under the correction of R̂2. Thus, we induce the correction
T̂2 → T̂2 + �̂2 with �̂2 given by (H6). Thereby, we may use
the same Or

m,n as in Appendix H (v) but need to substitute
br = −ξr by br = −ηξr − 〈�r |T̂2|�r〉.

APPENDIX J: UNITARILY INVARIANT DECOMPOSITION
OF THE COLLISION INTEGRAL

While we have so far applied the UID only to the RDM,
the purpose of this Appendix is to gain insights into the
unitarily invariant components of the collision integral. Let
Âo+1 ∈ Bo+1. By means of (A1), we may evaluate the partial
trace of the collision integral

tr1(Îo(Âo+1)) = N−o

o(o+1)

∑
r,i,j,q,p=1

vqjpi âr [â†
q âp,âi Âo+1 â

†
j ]â†

r

= N − o

o(o+1)

∑
r,i,j,q,p=1

vqjpi[â
†
q âp,âi âr Âo+1 â†

r â
†
j ]

= Îo(tr1(Âo+1)). (J1)

From this identity, we may conclude that the reducible compo-
nent of the collision integral depends solely on the reducible

component of its argument, [Îo(Âo+1)]red = [Îo(Âred
o+1)]red. The

irreducible component of the collision integral [Îo(Âo+1)]irr,
however, depends on both the reducible and the irreducible
components of Âo+1 in general, which we have confirmed
by an explicit calculation for the cases o = 1,2. Thus, the
collision integral with a contraction-free argument is itself
contraction-free.

APPENDIX K: NUMERICAL INTEGRATION OF
THE TRUNCATED BBGKY EOMs

In both scenarios of Sec. VI, we employ the variable-
coefficient ordinary differential equation solver ZVODE [126]
for integrating the EOMs (5), (6). The conservation of Her-
miticity of the RDMs is numerically ensured by only prop-
agating the lower triangle of the matrix-valued EOM (6),
which at the same time reduces the number of variables
to be integrated. Since the applied truncation approximation
conserves the compatibility of the RDMs, we propagate only
the BBGKY EOM (6) at the truncation order ō and obtain
the RDMs of lower order by partial tracing. Moreover, we
operate in the single-particle Hamiltonian gauge, gij = hij (see
Sec. III C).
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