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Spin-1 topological monopoles in the parameter space of ultracold atoms
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A magnetic monopole is a hypothetical elementary particle with an isolated magnetic pole. Its existence would
directly lead to the quantization of electric charges. In recent years, analogs of magnetic monopoles, represented
by topological defects in parameter spaces, have been studied in a wide range of physical systems. These works
mainly focused on Abelian Dirac monopoles in spin-1/2 or non-Abelian Yang monopoles in spin-3/2 systems.
Here we propose to realize three types of spin-1 topological monopoles and study their geometric properties
using the parameter space formed by three hyperfine states of ultracold atoms coupled by radio-frequency
fields. These spin-1 monopoles, characterized by different monopole charges, possess distinct Berry curvature
fields and spin textures, which are directly measurable in experiments. The topological phase transitions between
different monopoles are accompanied by the emergence of a spin “vortex” and can be intuitively visualized using
Majorana’s stellar representation. We show how to determine the Berry curvature, hence the geometric phase and
monopole charge from dynamical effects. Our scheme provides a simple and highly tunable platform for observing
and manipulating spin-1 topological monopoles, paving the way for exploring new topological quantum matter.
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I. INTRODUCTION

In 1931, Dirac proposed the quantum theory of magnetic
charge, which is consistent with the gauge invariance of elec-
tromagnetic field. The deep relation between charge quantiza-
tion and magnetic charge is revealed by the Dirac quantization
condition [1], i.e., if any magnetic monopoles exist in the
universe, then all electric charges must be quantized. The
magnetic monopole carrying a net magnetic charge h̄/2e,
is considered as the source for induced magnetic field B
satisfying Gauss’s law

∮
S B · dS = nh/e, where n counts the

number of magnetic charges enclosed by a two-dimensional
(2D) integral manifold S. Although no direct experimental
evidence for magnetic (Dirac) monopoles has been reported
so far, analogs of magnetic monopoles have been found in
various physical systems [2–9]. In such Dirac-like monopoles,
the monopole charge is defined as the topological invariant

C = 1

2π

∮
S

� · dS, � = ∇R × 〈ψ |i∇R|ψ〉,

i.e., the first Chern number, where R represents an extended
parameter space (e.g., position, momentum, or certain other
parameters) and the Berry curvature � corresponds to the
effective magnetic field. In many condensed matter materials,
such as the recently discovered Dirac [10–13] and Weyl
semimetals [14–28], topological monopoles usually represent
Berry curvature singularities in the momentum space with
energy level degeneracy. The monopole charges are topolog-
ically protected against small perturbations and their changes
indicate topological phase transitions.

While Dirac-like monopoles have been broadly investigated
in both theory and experiment for spin-1/2 systems because
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of their significance for characterizing topological quantum
matter and realizing geometric quantum computation [29–31],
the study of topological monopoles in higher-spin systems
has started to attract attention in recent years, with important
experimental progress such as the observation of non-Abelian
Yang monopoles [32] in a degenerate state space for a spin-
3/2 atomic gas [33]. The high-spin systems have provided
unprecedented opportunities for realizing exotic phases of rich
internal spin structures without analogs in solid-state systems.
In this context, spin-1 topological monopoles may be of special
interest because, unlike spin-1/2 (or spin-3/2), the underlying
3 × 3 Hamiltonian cannot be written by (or as a direct product
of) Pauli matrices, and naturally contains both spin vectors
and quadrupole tensors. These spin vectors and tensors are
equivalent to the so-called Gell-Mann matrices, which form
a basis of the SU(3) algebra. Intuitively, the three-component
quantum state cannot be simply mapped onto a Bloch sphere,
therefore the geometric phase and monopole charge cannot be
directly determined by the solid angle and covering number on
the Bloch sphere [8,9] as in spin-1/2 case. In the momentum
space, spin-1 topological monopoles correspond to triply
degenerate band-touching points, which have been studied in
solid states [34] and cold atoms [35–37] recently, but their
experimental realization is still largely elusive [38].

In this paper, we propose that ultracold atoms in the param-
eter space formed by radio-frequency (rf) couplings between
three hyperfine atomic ground states provide a simple and
highly tunable platform for studying exotic topological phases
in spin-1 systems, in particular, spin-1 topological monopoles.
The Hamiltonian for the ultracold atoms are parametrized by
external parameters of the underlying tunable rf fields. Using
the mapping from these external parameters to crystal mo-
menta in band theory, we can mimic topological Hamiltonians
for Bloch bands. Similar ideas have been implemented for vari-
ous types of quantum simulations [8,9,33,38,39]. For example,
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FIG. 1. (a) Hyperfine structure of 87Rb. The three hyperfine
ground states of |F = 1〉 are coupled by two independent rf fields. ω12

and ω23 denote coupling frequencies of the driving field. δ1 and δ2 are
the detunings. (b) Schematics of the parameter space. The integral
surface S enclosing the monopoles are parametrized by spherical
coordinates (r, θ, φ), with each point labeled by vector coupling m
and tensor couplings tij . The red curve � represents an arbitrary closed
evolution path in the parameter space, along which a nontrivial Berry
phase accumulates.

Ref. [9] utilized controllable superconducting quantum circuits
to investigate topological properties of both noninteracting and
interacting quantum systems.

For our three-level system, we find that three types of
spin-1 monopoles and their topological phase transitions are
characterized by the emergence of spin vortices, which change
the spin textures in the parameter space and can be directly
probed in experiments. These monopoles can also be visualized
using Majorana’s stellar representation (MSR) [40] on the
state space. Within this geometric representation, different
monopoles yield topologically distinct trajectories of Majorana
stars on the Bloch sphere. Finally, a dynamical protocol [41]
is proposed to measure the Berry curvature in the parameter
space, which determines the geometric phase [42] associated
with an adiabatic evolution path as well as the monopole
charge. Our scheme can be easily generalized to larger-spin
systems, providing a general platform for studying exotic
topological quantum matter using the parameter space of
ultracold atoms.

II. SPIN-1 TOPOLOGICAL MONOPOLES

We consider a 87Rb Bose-Einstein condensate confined in
an optical dipole trap. As illustrated in Fig. 1(a), the three hy-
perfine ground levels |F = 1,mF 〉 (mF = ±1, 0) are coupled
using two rf fields, �12 cos(ω12t + φ12) and �23 cos(ω23t +
φ23), where �ij , ωij , and φij are the amplitude, frequency, and
phase of the driving field that couples ith and j th states (|1〉 =
|1, 1〉, |2〉 = |1, 0〉, |3〉 = |1,−1〉). The driving frequencies
are chosen as h̄ω12 = E2 − E1 + δ1, h̄ω23 = E3 − E2 − δ2.
Here Ei is the energy of the ith state, with δ1 and δ2 the
detunings. The effective spin Hamiltonian of the three-level
system in the rotating frame is

H =
⎛
⎝ δ1 �12e

iφ12 0
�12e

−iφ12 0 �23e
iφ23

0 �23e
−iφ23 δ2

⎞
⎠, (1)

which can be further represented as

H = m · F + tzzF
2
z + txzNxz + tyzNyz, (2)

in terms of the spin-1 operators. Here F =
(Fx, Fy, Fz) is the spin vector of F = 1, and Nij =
(FiFj + FjFi )/2 − δij F2/3 (i, j = x, y, z) denote the
rank-2 spin quadrupole tensors. The six coupling
parameters mx = (�12 cos φ12 + �23 cos φ23)/

√
2, my =

(−�12 sin φ12 − �23 sin φ23)/
√

2, mz = (δ1 − δ2)/2, tzz =
(δ1 + δ2)/2, txz = √

2(�12 cos φ12 − �23 cos φ23), and tyz =√
2(−�12 sin φ12 + �23 sin φ23) can be tuned independently

by varying six parameters �12, �23, φ12, φ23, δ1, and δ2 of
the two rf fields in experiments. The effective fields mi and tij
couple respectively with spin vectors and spin tensors.

These six parameters form a six-dimensional parameter
space. Using the mapping from these external parameters
of a cold-atom system to the crystal momenta of a Bloch
band system, we can simulate Bloch Hamiltonians with exotic
properties that may be challenging to realize in solid-state
materials. The topological phases with all levels below the
Fermi energy being occupied can be effectively realized by
sweeping the parameter space, where topological transitions
correspond to gap closings at some points in the parameter
space. By choosing suitable parameters, we can restrict the
parameter space to lower dimensions for studying various
topological states in 2D or 3D. For instance, by choosing �12 =
�23 = �0 and φ12 = φ23 = φ, the couplings with Nxz and Nyz

vanish, yielding a Hamiltonian ∼mxFx − myFy , similar to the
2D Rashba spin-orbit coupling for spin-1 systems.

In this paper, we focus on engineering spin-1 topological
monopoles in a 3D parameter space, with the coupling fields
mi, tij parametrized by the spherical coordinates (r, θ, φ)
(with 0 � r, 0 � θ � π, 0 � φ < 2π ) of the 3D parameter
space. The monopoles reside at the original point r = 0,
where all mi and tij vanish and the energy level becomes
triply degenerate. The created topological monopoles manifest
themselves by the Berry curvature (or Berry flux) in this
parameter space, with their charges determined by the integral
of Berry curvature over a closed surface S, as shown in
Fig. 1(b). For convenience, we choose the integral surface as
a sphere. By tuning the coupling coefficients m and tij , the
Berry curvature over the sphere changes and three types of
topological monopoles with C = ±2,±1, 0 emerge for spin-1
systems, which are different from the one-type Dirac monopole
of spin-1/2 systems with C = ±1.

(1) C = 2 monopole from a Hamiltonian H = m · F with
m = r (sin θ cos φ, sin θ sin φ, cos θ ), which describes a spin-
1 atom in an effective magnetic field m emanating from
the monopole. There is no coupling with any spin tensors.
The Hamiltonian can be simply realized using �12 = �23 =
r sin θ/

√
2, δ1 = −δ2 = r cos θ , and φ12 = φ23 = −φ.

(2) C = 1 monopole induced by an additional term ∼F 2
z ,

i.e., H = m · F + αmzF
2
z . The Hamiltonian can be realized

using the same �ij , φij as those in (I), but with different
δ1 = r (α + 1) cos θ, δ2 = r (α − 1) cos θ . When |α| < 1, the
system is adiabatically connected to the monopole with C = 2
in type I. While when α > 1, C = 1. α = 1 is a topological
phase transition point with level crossing along the north pole
of S, i.e., θ = 0.

(3) C = 0 monopole induced by spin tensor Nxz

or Nyz (which is similar), i.e., H = m · F+βmxNxz.
The Hamiltonian can be realized by taking δ1 = −δ2 =
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FIG. 2. Sketch of different types of spin-1 monopoles. The
monopoles are located at the origin (red dots), with spin polarization
〈F〉 [(a)–(c)] and Berry curvature� [(d)–(f)] distributed on the surface
S. (a)(d) are for C = 2 monopole; (b)(d) are for C = 1 monopole; and
(c)(f) are for C = 0 monopole. The green dots on the sphere represent
the emergent spin vortices. (g) The z polarization 〈Fz〉 at south pole
(SP) and north pole (NP) with respect to α. (h) The z polarization at
θ = π/4, φ = 0.

r cos θ, φ12 = − arctan tan φ

1+β/2 , φ23 = − arctan tan φ

1−β/2 , �12 =
r sin θ

√
[(1 + β/2)2 cos2 φ + sin2 ϕ]/2, and �23 =

r sin θ
√

[(1 − β/2)2 cos2 φ + sin2 φ]/2. For |β| < 2, C = 2,
while for |β| > 2, C = 0. β = 2 is the transition point, with
level crossings at θ = π/4, φ = 0 or π .

III. SPIN TEXTURE AND SPIN VORTEX

The three types of spin-1 monopoles with different Chern
numbers possess distinct configurations of spin textures. In
Figs. 2(a)–2(c), we illustrate the spin polarization 〈F〉 ≡
〈ψ |F|ψ〉 of the ground state |ψ〉 on the surface S. Similarly,
the induced effective magnetic field (i.e., Berry curvature �)
from the magnetic monopole exhibits different structures as
shown in Figs. 2(d)–2(f). For type-I monopoles described by

H = m · F and C = 2 [Figs. 2(a) and 2(d)], � = −〈F〉/r2 =
m/r3. Because only spin vectors appear in the Hamiltonian,
|〈F〉| = 1. The Berry curvature field is antiparallel to the
spin polarization and distributes uniformly on the sphere S,
emanating from the monopole charge located at the center.

The inclusion of spin tensors leads to nonuniform distribu-
tions for both 〈F〉 and �. Note that unlike the spin-1/2 case,
|〈F〉| is not quantized (to 1) for general spin-1 systems. The
topological transitions between different types of monopoles
occur due to level crossings, which are accompanied by the
creation or annihilation of the spin “vortex” structure at the
level-crossing points. At the core of the vortex, 〈F〉 = 0, and
along a small encircling loop, the direction of spin polarization
winds up 2π angle. For the C = 1 monopole, the created vortex
resides at the north pole θ = 0, as shown in Fig. 2(b). From a
perturbation analysis (up to linear term of δθ ), the wave func-

tion near the north pole is given by |ψ〉 = (0, δθe−iφ√
2(α−1)

, 1)
T

for

α < 1 and |ψ〉 = (− δθe−iφ√
2(1+α)

, 1, δθeiφ√
2(1−α)

)
T

for α > 1, yielding

the spin polarization 〈F〉 = ( δθ cos φ

α−1 ,
δθ sin φ

α−1 ,−1) ≈ (0, 0,−1)
for α < 1 and 〈F〉 = 2αδθ

1−α2 (cos φ, sin φ, 0) for α > 1. It is clear
that for α > 1, a spin vortex is created at the north pole.

For theC = 0 monopole, two spin vortices are created which
are located at θ = π/4, φ = 0, or π respectively, as shown
in Fig. 2(c). We choose the vortex at θ = π/4, φ = 0 as an
example. Using perturbation theory, the spin polarization near
the vortex core for β > 2 is 〈F〉 = 4β

4−β2 (δθ, δφ/2,−δθ ). As
〈F〉 · mθ=π/4,φ=0 = 0, the spin polarization lies on the sphere
S and winds 2π along a closed path around the vortex core.

These severe changes of spin textures 〈F〉, in particular
the emergence of spin vortices, can be directly measured in
experiments and thus be used to determine different types of
monopoles and their phase transitions. Physically, we can inter-
pret these topological transitions as the transfer of singularity
from the monopole charges at the center to the emergent spin
vortices on S. Experimentally, the transition between C = 2
and C = 1 monopoles can be determined by directly measuring
the spin polarization along the z direction: 〈Fz〉 = N1−N−1

N1+N0+N−1

on the two poles of S, as shown in Fig. 2(g). Here N1, N0, and
N−1 denote the populations of corresponding hyperfine states.
For a C = 2 monopole, 〈Fz〉SP = −〈Fz〉NP = 1. While for the
C = 1 case, 〈Fz〉SP = 1, 〈Fz〉NP = 0. For a C = 0 monopole
as shown in Figs. 2(c) and 2(f), the spin polarization and
Berry curvature field are mainly distributed near the two poles,
with an in-out structure for the Berry flux dictated by its
zero monopole charge. Similarly, the transition between C = 2
and C = 0 monopoles can be experimentally determined by
measuring the spin polarization at θ = π/4 and φ = 0 as
illustrated in Fig. 2(h). For the C = 2 case, 〈Fx〉 = 〈Fz〉 =
−4/

√
32 + β2, 〈Fy〉 = 0, while for C = 0, 〈F〉 = 0.

IV. MSR OF TOPOLOGICAL MONOPOLES

The emergence of different types of spin-1 monopoles and
their topological phase transitions (corresponding to change
of monopole charge) can be intuitively understood and best
visualized by utilizing a geometric method—MSR [40]—
which projects states in high-dimensional Hilbert space to a
few points, called Majorana stars, on the Bloch sphere. Each
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Majorana star corresponds to an individual spin-1/2 state.
The physical properties are then encoded in the geometrical
information of these Majorana stars.

In a spin-1/2 system, any state can be written as the
superposition |ψ〉 = cos ξ

2 | ↑〉 + eiη sin ξ

2 | ↓〉, with 0 � ξ �
π and 0 � η < 2π . The state |ψ〉 is in exact correspondence
with a point u = (sin ξ cos η, sin ξ sin η, cos ξ ) on the Bloch
sphere, i.e., each spin-1/2 state is represented by one Majorana
star. Here ξ and η denote the colatitude and longitude in
the spherical coordinate. For an arbitrary three-component
state |ψ〉 = f−1|1,−1〉 + f0|1, 0〉 + f1|1, 1〉, we can use the
Schwinger boson theory [43] to rewrite the spin-1 basis by
the creation and annihilation operators of two-mode bosons
a†, a, and b†, b: |1,m〉 = (a† )1+m(b† )1−m

(1+m)!(1−m)! |∅〉. The state |ψ〉 is
then factorized as

|ψ〉 = 1

N

2∏
j=1

(
cos

ξj

2
a† + sin

ξj

2
eiηj b†

)
|∅〉, (3)

following the fundamental theorem of algebra, where N is the
normalization coefficient. Denote yj = tan ξj

2 eiηj and a†|∅〉 =
| ↑〉, b†|∅〉 = | ↓〉, then yj satisfies

∑2
j=0

(−1)j f1−j√
(2−j )!j !

y2−j =
0. From Eq. (3), it is obvious that any spin-1 state can
be characterized by two individual Majorana stars uj =
(sin ξj cos ηj , sin ξj sin ηj , cos ξj ) (j = 1, 2) on the Bloch
sphere.

The trajectories of two Majorana stars on the Bloch sphere
can be used to visualize different types of spin-1 monopoles
and their topological phase transitions. Here we take type-II
monopoles as an example and consider a closed evolution path
�(t ):

θ (t ) = π

4
cos

2πt

T
+ π

4
, φ(t ) = π

3
sin

2πt

T
, (4)

in the parameter space with �(t ) = �(t + T ). In Figs. 3(a)–
3(d), the trajectories of two Majorana stars for the ground states
at four typical α are drawn. At α = 0, two Majorana stars u1

and u2 coincide with each other, starting and ending at the
south pole of the Bloch sphere [Fig. 3(a)]. This corresponds to a
spin-1 in a magnetic field m of parameter space with eigenstate
eiFyθ eiFzφ|1,−1〉. By increasing α, two Majorana stars start to
separate, as shown in Fig. 3(b), while still sharing the same
starting and ending points at the south pole. Further increasing
α until α = 1, the trajectories “explode” on the Bloch sphere,
accompanied by a sudden change of their topology at α = 1
[Fig. 3(c)]. After the transition point, while one of the Majorana
stars is still bonded to the south pole, the trajectory of the
other one now starts and ends at the north pole as shown in
Fig. 3(d). Two Majorana stars only share one touching point
on the equator.

Similar analysis can be performed for the type-III
monopoles and their phase transitions (see the Appendix for
the discussion of MSR of type-III monopoles). We note that
while the configurations of two Majorana stars rely on the
selection of evolution path, the change of the topology of
their trajectories is always accompanied by the phase transition
between different types of monopoles, revealing their distinct
geometric and topological properties.

FIG. 3. Trajectories of two Majorana stars u1 (blue) and u2

(red) on the Bloch sphere for different types of spin-1 monopoles
with respect to the evolution path �(t ). From (a) to (d), α =
0, 0.5, 1.001, 2. (e) Berry phase of the ground state associated with
the path �(t ). Black, blue dotted, and green dashed lines show the
total Berry phase γ , the solid angle part γs , and the correlation part
γc. The red line is the total Berry phase extracted from the dynamical
protocol. The inset illustrates the evolution path �(t ) in the parameter
space.

V. BERRY PHASE AND BERRY CURVATURE

In an adiabatic evolution over a course of cycle, the Berry
phase, which results from the geometric properties of the
underlying Hamiltonian, can be represented as the integral
of the gauge potential: γ = ∮

�
A · d R ≡ i

∮
�
〈ψ |∇R|ψ〉 · d R.

For a spin-1/2 system, γ is simply the solid angle subtended by
the trajectories of the single Majorana star. While for a spin-1
system, any quantum state is represented by two Majorana
stars. Fortunately, the Berry phase accumulated along a closed
path can be elegantly formulated as [44–47]

γ = γS + γC = −
2∑

j=1

1

2

∮
(1 − cos ξj )dηj

− 1

2

∮
(du1 − du2) · (u1 × u2)

3 + u1 · u2
, (5)

where the first term γS denotes the solid angles traced out by
the two Majorana stars and the second term γC describes their
correlations due to the relative motion.

In Fig. 3(e), we show the Berry phase along the path �(t )
with respect to α. At α = 0, the two Majorana stars coincide
with each other, hence the correlation part vanishes (γC = 0)
and γ is twice the solid angle subtended by each Majorana star.
By increasing α, the trajectories of the two Majorana stars are
separated and their correlation γC becomes nonzero. At α = 1,
the three geometric phases exhibit discontinuities due to the
change of topology of the two trajectories. After the transition
point, γ tends to zero, consistent with the two Majorana stars
being bonded to different poles on the Bloch sphere [Fig. 3(d)].

The Berry phase γ can also be obtained from the Berry
curvature field � through γ = ∫∫

S�
� · dS, with boundary

condition ∂S� = �. If the integral is performed on a closed
2D manifold, it gives the monopole charge. Using MSR, the

013627-4



SPIN-1 TOPOLOGICAL MONOPOLES IN THE PARAMETER … PHYSICAL REVIEW A 98, 013627 (2018)

FIG. 4. Berry curvature and monopole charge from dynamical
effects. (a) r〈Fy〉 plotted with respect to v. The slope in the linear
regime with small v gives �θφ . (b) Monopole charge with respect to
α. (c)–(e) show �θφ and 〈Fy〉 (blue solid lines) for α = 0, 0.5, and
1.8, respectively. The red lines are �θφ calculated from the dynamical
effects, and the cyan dashed lines indicate their theoretical values.
r = 16π× kHz, Tramp = 4 ms, which are in the linear regime.

Berry curvature takes the following form [48]:

�αβ = − 2

(3 + u1 · u2)2

[
2

∑2

i=1
ui · (∂αui × ∂β ui )

+ (u1 + u2) · (∂αu1 × ∂β u2 + u1 ↔ u2)

]
. (6)

For type-I monopoles without spin tensors, u1 = u2 ≡ u, and
Eq. (6) reduces to �αβ = −u · (∂αu × ∂β u), indicating that
the monopole charge is nothing but the covering number of
two Majorana stars on the Bloch sphere [35]. The spin-tensor
term could in general deform the configurations of Majorana
stars, hence change the topological charge of the associated
monopole.

For the integral sphereS in the parameter space in Fig. 1(b),
the topological charge can be further rewritten as

C = 1

2π

∫ π

0
dθ

∫ 2π

0
dφ �θφ, (7)

where �θφ = Im[〈 ∂ψ

∂θ
| ∂ψ

∂φ
〉 − 〈 ∂ψ

∂φ
| ∂ψ

∂θ
〉] is the Berry curvature

in spherical coordinates.

VI. EXPERIMENTAL DETECTION OF
MONOPOLE CHARGE

The spin textures as well as emergence of spin vortices
in the previous discussions provide a simple experimental
signature for distinguishing different types of monopoles and
their phase transitions. However, to measure the Berry phase
and determine the monopole charge, we need to measure
the Berry curvature on each point in the parameter space.
This can be done using the nonadiabatic effect [41] during
the ramping of certain related parameter λ as illustrated in
Fig. 4. The nonadiabaticity leads to the deflections of quantum
trajectories that are proportional to the Berry curvature in
parameter space, analogous to a charged particle moving in
a magnetic field deflected by Lorentz force. Formally, the
deflection is described by a generalized force Mμ = −〈∂μH 〉,

FIG. 5. Monopole charge extracted from dynamical effects for
the transition between type-I and type-III monopoles. The main figure
shows C with respect to β. The insets show the Berry curvatures for
β = 0.5 and β = 4. r = 16π× kHz, Tramp = 4 ms.

and related to Berry curvature through

Mμ = −〈ψ0(R)|∂μH |ψ0(R)〉 + vλ × �λμ + O
(
v2

λ

)
(8)

from linear response theory [41]. Here ψ0(R) is the instanta-
neous eigenstate at R(t ). The last term denotes higher-order
corrections. vλ = dλ

dt
is the ramping velocity of λ. It is easy to

verify that the contribution from the first term is zero for the
integral on a closed surface. Considering that adiabaticity is
usually hard to achieve in realistic laboratory conditions, this
relation has the advantage of needing only a moderately slow
change of parameters with dominating linear terms.

For type-I and type-II monopoles, the Hamiltonian is
cylindrically invariant. Accordingly, the Berry curvature must
be cylindrically symmetric �θφ = �θ,φ=0. The generalized
force along the longitude direction is given by Mφ =
−〈∂φH 〉 = r sin θ sin φ〈Fx〉 − r sin θ cos φ〈Fy〉. Hence C =∫ π

0 �θ,φ=0dθ = ∫
dt sin θr〈Fy〉. We choose a smooth evolu-

tion path: θ = v2t2/2π with vθ = v2t/π , which is adiabatic at
t = 0 and at t = π/v, vθ = v. The total ramping time of θ (t )
from 0 to π is determined by Tramp = √

2π/v.
In Fig. 4(a) we show the dependence of �θφ (with α = 0)

at t = π/v on evolution speed v. It is clear for small v, the
dynamical evolution lies in a linear regime, where the higher-
order corrections are negligible. The Berry curvature �θφ can
then be extracted from the slope of the curve, consistent with
the theoretical value �θφ = sin θ |t=π/v = 1 at α = 0. Now we
constrain the discussions in this linear regime. In Fig. 2(e),
we plot the Berry phase calculated from the dynamical effect,
which agrees quite well with the theoretical values obtained
from Eq. (5). The integrated monopole charge C is shown in
Fig. 4(b). For α < 1, C is quantized to 2 while for α > 1, C
is quantized to 1. The system undergoes a topological phase
transition at α = 1, characterized by the change of monopole
charge. Note that near the phase transition point, C is not
precisely quantized due to the small energy gap in the evolution
process.

The time-dependent magnetization 〈Fy〉 and the extracted
Berry curvature for different α are shown in Figs. 4(c)–4(e).
At α = 0, 〈Fy〉 is linearly dependent on t with small oscilla-
tions from dynamical effects [Fig. 4(c)]. The extracted Berry
curvature is consistent with the theoretical value �θφ = sin θ .
With increasing α, both �θφ and 〈Fy〉 exhibit two peaks,
accompanied by larger dynamical oscillations (energy gap
decreases by increasing α) as shown in Fig. 4(d). C is still
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FIG. 6. Berry phase and MSR associated with evolution path �2(t ) for type-III monopoles. Red solid, blue dotted, and green dashed lines
represent the total Berry phase γ , the solid angle part γS and the correlation part γC . The insets plot the trajectories of two Majorana stars u1

(blue) and u2 (red) at β = 0, 1, 2.01, 4.

quantized to 2. Further increasing α to the transition point, the
left peak of �θφ moves toward the boundary θ = 0 . After that,
a negative peak emerges near the same boundary as shown in
Fig. 4(e), accompanied by a sudden change of C.

For type-III monopoles of our system, we have Mφ =
−〈∂φH 〉 = r sin θ sin φ[〈Fx〉 + β〈Nxz〉] − r sin θ cos φ〈Fy〉.
The monopole charge can then be extracted by measuring spin
vectors 〈Fx〉, 〈Fy〉 and spin tensor 〈Nxz〉 for different (θ, φ)
in the parameter space. The main results are summarized in
Fig. 5. We can clearly see β = 2 is a phase transition point,
with C changing from 2 to 0. The Berry curvature shows
different behaviors for two phases. At β < 2, four positive
peaks appear at φ = nπ/2. While across the transition point,
the peaks at φ = 0, π turn into negative peaks, cancelling the
Berry curvature field in other regions. The integrated Berry
curvature then gives C = 0 for β > 2.

VII. DISCUSSION

In summary, we have demonstrated a versatile ultracold
atomic platform for the generation, manipulation, and obser-
vation of various spin-1 topological monopoles in parameter
space. Our proposed simple experimental system involves
only two rf fields to couple three different hyperfine states
of ultracold atoms, which define relevant parameter spaces,
paving the way for exploring and engineering exotic quantum
matter.

Our proposed different types of spin-1 monopoles and
their distinct internal spin structures may also be observed
using parameter spaces formed in other atomic, optical, or
solid-state systems, for instance, superconducting quantum
circuits. For example, the C = 2 spin-1 monopole (type I) and
its transition to a trivial insulator has been successfully realized
in a recent experiment [38] using a transmon superconducting
qutrit subject to microwave fields. With suitable modification
of the experimental setup, types II and III spin-1 monopoles
could also be realized using superconducting qutrits.

Our proposed scheme also serves as an ideal platform
toward other interesting physics of spin-1 systems, such as the
non-Abelian geometric phase [49] and topological insulator
with SU(3) spin-orbit coupling [50]. For the latter, the three
hyperfine states should be coupled in a cyclical way by suitably
choosing three coupling fields and atomic levels. Furthermore,
the present scheme using the parameter space of rf fields can
be directly generalized to higher-spin systems. By coupling
more hyperfine states of the underlying atomic gases, various
topological defects with exotic internal structures, such as
the spin-3/2 Rarita-Schwinger-Weyl semimetals [51], the six-
and eight-fold band crossings [34], and large-spin topological
monopoles even without counterparts in solid-state materials,
can be simulated.
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APPENDIX: MSR OF TYPE-III MONOPOLES

In this Appendix, we show the trajectories of Majorana
stars using MSR and visualize the topological phase transitions
on the Bloch sphere for type-III monopoles in the main text.
The evolution path is chosen as �2(t ) : θ (t ) = π

8 cos 2πt
T

+
π
4 , φ(t ) = π

4 sin 2πt
T

+ 3π
4 .

The trajectories of two Majorana stars of the ground state
are shown in Fig. 6 for four typical β. At β = 0, two Majorana
stars u1 and u2 coincide with each other, sharing the same
curves on the Bloch sphere. Hence γC = 0, and γ = γS . By
increasing β, two Majorana stars start to separate, as shown
in Fig. 6(b). The two trajectories share three touching points,
one of which is fixed for all β. The topological phase transition
occurs at β = 2. After the transition, the two trajectories only
share one common point. Correspondingly, the Berry phases
γ, γS, γC exhibit abrupt change at the transition point.
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