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Stabilization of nonlinear lattices: A route to superfluidity and hysteresis
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The Bloch states of Bose-Einstein condensates (BECs) in pure nonlinear lattices (NLs) are dynamically unstable
so that they cannot show superfluidity. We overcome this problem by finding that the two-component BECs in
NLs can be stabilized by coherent linear coupling. Furthermore, in the limit of strong coherent coupling, the
lowest Bloch band in the whole Brillouin zone can be dynamically stable. We also find a hysteretic behavior with
looplike structure in the Bloch band resembling the so-called “swallowtail” loop. The dynamical stabilization
and the looplike band structure can be realized in experiments by current technology. Our results are obtained
from a discrete model, and major results are also confirmed by a continuum model.
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I. INTRODUCTION

Understanding and controlling nonlinear phenomena is a
profound issue in various areas of natural sciences. However,
such programs often end up with difficulty because of the
lack of controllability required to tune the system parameters.
Recent development of the experimental techniques of cold
atomic gases [1] and nanophotonics [2] is changing the situa-
tion, which allows us to realize highly controllable nonlinear
systems. In cold atomic gases, the strength of the nonlinearity
can be controlled by the Feshbach resonance [3]. Currently,
even fine control of the strength with high spatial resolution at
the submicron scale is possible [4] using the optical Feshbach
resonances [5]. Although the optical Feshbach resonances
suffered from strong inelastic losses in early experiments [6,7],
various new techniques allow optical control of the strength
with low loss rate [8–14], leading to longer sample lifetime
up to the order of 100 ms [15–17]. In photonics, nonlinearity
can be introduced by Kerr media, and recent nanofabrication
techniques enable us to make nonlinear media with various
fine structures [18].

Nonlinear lattices (NLs) are the novel setup recently real-
ized in the above highly controllable nonlinear systems [19].
There, the periodicity of the system is set by the nonlinear
term instead of the linear external potential, unlike ordinary
crystalline lattices. In Bose-Einstein condensates (BECs) of
ultracold atomic gases, this can be achieved by periodically
modulating in space the coefficient of the nonlinear term using,
e.g., an optical Feshbach resonance [4,5]. For electromagnetic
waves, NLs can be realized using photonic crystals with
alternating layers of different nonlinear media [20]. There
is ongoing active research on various nonlinear objects such
as solitons and vortices in NLs (e.g., [2,19] and references
therein).

Nevertheless, the study of NLs is facing a crucial challenge:
even at zero superflow, we cannot keep the lowest stationary
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periodic states in NLs because of the dynamical instability
unless we introduce a sufficiently large uniform repulsive
interaction coefficient [21]. Therefore, almost all experimental
studies of the NL so far are limited to the above-mentioned
localized nonlinear objects. Stabilizing the lowest extended
periodic states in pure NLs without a uniform interaction
coefficient to achieve superfluidity in this system stands out
as an open problem. It is worthwhile to note that stabilization
of extended periodic states in various nonlinear systems is of
interest in the literature, e.g., Ref. [22] for a higher branch of
the stationary states, Ref. [23] for dipolar BECs in an optical
lattice, and Ref. [24] for superfluid Fermi gases in an optical
lattice.

In this work, we overcome this challenge using two-
component BECs. We find that the pure NLs can be stabilized
by an interspecies, coherent linear coupling. In particular, the
lowest branch can be dynamically stable in the whole Brillouin
zone (BZ) in the limit of strong coherent coupling, which
cannot be achieved by simply introducing the uniform and
positive interaction coefficient. We also find that this system
can show a hysteretic behavior with a looplike structure in
the Bloch band which resembles the so-called “swallowtail”
loop [25–35]. (See, e.g., Refs. [27,33] for the connection
between the looplike structure in the energy dispersion and
the hysteresis.)

II. SETUP AND FORMALISM

We consider two-component BECs (labeled by component
a and b) in NLs generated by the spatially periodic intraspecies
interaction strength ga and gb. For simplicity, we assume that
the NLs are one directional, which we take to be in the x

direction. We further assume that the period d of the NL and
the mass m of the atoms, which is set to unity, are the same for
components a and b. We introduce the coherent linear coupling
between the two NLs whose energy functional ECLC is given
by

ECLC = �0

2

∫
dr (�∗

a �b + c.c.) , (1)
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where �0 is the Rabi frequency, which is set to be real, and �σ ’s
are the condensate wave functions of component σ = {a,b}.

This system can be described by the time-dependent Gross-
Pitaevskii (GP) equation,

i∂t

(
�a

�b

)
=

[(
Ha 0
0 Hb

)
+ �0

2
σx

](
�a

�b

)
≡ HGPψ, (2)

with ψ ≡ (�a,�b)ᵀ, σx being the Pauli matrix, and

Hσ ≡ − 1
2∂2

x + gσ (x)|�σ |2 + gab|�σ̄ |2 , (3)

where σ̄ = {b,a} for σ = {a,b}. Here, gσ (x) = g(0)
σ +

�gσ

2 cos(2k0x) with k0 = π/d, and gab is the interspecies
interaction strength. The two NLs are in phase (out of phase)
when �ga and �gb have the same (opposite) sign. Since one
of our main purposes is to show that the pure NLs without
the uniform component of the interaction strength can be
stabilized, we set g(0)

σ = 0 hereafter.
This setup could be mapped to a simplified discrete model

[36,37]: reducing the system with a spatially periodic inter-
action strength in the continuum representation to a discrete
representation by sampling just two points per period of the
interaction strength (the maxima and minima of the interaction
strength). Thus in this discrete model, the spacing between
two neighboring sites is d̃ = d/2. In this representation, the
on-site interaction parameter alternates between Uσ and −Uσ

(σ = {a,b}) at the adjacent sites. Assuming that the hopping
parameter K is equal between components a and b, the
Hamiltonian is written as

H =
∑

σ={a,b}

∑
j

[
−K(c∗

σ,j cσ,j+1+ c.c.) + (−1)j
Uσ

2
|cσ,j |4

]

+ Uab

2

∑
j

|ca,j |2 |cb,j |2 + �

2

∑
j

(c∗
a,j cb,j + c.c.), (4)

where cσ,j is the amplitude of component σ at site j , Uab is
the intercomponent interaction parameter, and � is the Rabi
coupling constant. The discrete model has been used in the
previous studies of superflow in NLs [36,37], which have
demonstrated that the model can capture well the qualitative
properties of the extended states of BECs in NLs, including
their stability. Furthermore, we have confirmed that the discrete
model can describe well the key features of the present system
obtained from the full continuum model as well.

Equations of motion (EOMs) in the discrete model are given
by the Euler-Lagrange equations for cσ,j with the Lagrangian
L = ∑

σ

∑
j [ i

2 (c∗
σ,j ∂t cσ,j − cσ,j ∂t c

∗
σ,j )] − H , with H given

by Eq. (4). They read

iċσ,j = − K(cσ,j+1 + cσ,j−1) + (−1)j Uσ |cσ,j |2 cσ,j

+ Uab

2
|cσ̄ ,j |2 cσ,j + �

2
cσ̄ ,j . (5)

We consider periodic states in which cσ,j ’s are in the
Bloch form: cσ,j = hσ,j exp (ikj d̃ ), where k is the quasi–wave
number of the bulk superflow [38], which is defined within the
first BZ |k| � k0, and hσ,j ’s are the complex amplitudes with
period 2d̃: hσ,j = hσ,j+2. Because of the constraint on the total
number of particlesν per unit cell consisting of two sites and the
arbitrariness of the overall phase, the number of independent
variables is six out of eight [real and imaginary parts for four

amplitudes hσ,1 and hσ,2 (σ = {a,b})]. Stationary solutions
of cσ,j = c

(0)
σ,j are obtained by extremizing the Hamiltonian

(4) under the normalization,
∑

σ (|hσ,1|2 + |hσ,2|2) = ν, with
respect to the six independent variables.

The stability of superfluidity can be judged by whether
perturbations added to the stationary state grow in time, using
the linear stability analysis (e.g., [1,39,40]). We first linearize
the EOMs (5) in terms of the perturbations δcσ,j (t) around
the stationary solution c

(0)
σ,j . We consider the following general

form of the perturbations for the periodic system, δcσ,j =
eikj d̃−iμt (uσ,j eiqj d̃−iωt + v∗

σ,j e−iqj d̃+iωt ), whereq is the quasi–
wave number of quasiparticles, μ is the chemical potential of
the stationary state, and the Bogoliubov quasiparticle ampli-
tudes uσ,j and vσ,j have the same periodicity (period 2d̃) as
the stationary solutions. Substituting cσ,j (t) = c

(0)
σ,j + δcσ,j (t)

into the linearized EOMs, we obtain an eigenvalue equation
Mu = ωu, with uᵀ = (ua,1,va,1,ua,2,va,2,ub,1,vb,1,ub,2,vb,2)
and M being an 8 × 8 matrix.

It is noted that M is not Hermitian and thus its eigenval-
ues ω are complex in general. The condition for dynamical
stability is that all the eigenvalues are real for any q. A mode
corresponding to ω with the maximum nonzero absolute value
of the imaginary part is the fastest-growing mode.

In the following, we focus on the case with |Ua| = |Ub|.

III. RESULTS

First, we discuss the lowest stationary periodic states with-
out superflow (i.e., k = 0). They are obtained by numerically
solving the time-independent GP equation for the Hamiltonian
(4). There are two possible types of solutions both in the
in-phase and out-of-phase cases: (1) polarized states with
νa �= νb and (2) unpolarized states with νa = νb, where νa

and νb are the number of particles of a and b component per
unit cell. The polarized and unpolarized states reduce to the
immiscible and miscible states, respectively, in a mixture of
two-component BECs corresponding to the limit of � = 0.
With increasing�, the two components are coherently “mixed”
and thus the unpolarized state starts to be favored over the
polarized state at sufficiently large �.

It is worthwhile to mention the behavior of the lowest sta-
tionary states in the large � limit, where the lowest stationary
states are unpolarized. In the out-of-phase case, the lowest
stationary states lose the spatial modulation in this limit. More
interestingly, in the in-phase case, if ga = gb, the condensate
wave function of the lowest stationary state is independent
of �, although its stability changes according to the value of
�. This can be understood from the fact that the Hamiltonian
HGP in Eq. (2) is invariant under the combined operation of
σx and exchanging a and b component because |�a| = |�b|.
Therefore, the �0 term in Eq. (2) can be gauged away, provided
the lowest state is unique up to the overall phase.

Now we discuss the dynamical stability of the lowest
stationary states without superflow (i.e., k = 0). Figure 1 shows
the results of the linear stability analysis for the lowest periodic
stationary state at k = 0 plotting the maximum absolute value
of the imaginary part of ω. In the violet regions, all the eigen-
values ω are real; if all of ω are real at any quasimomentum q

of excitations for a given �, the system is dynamically stable at
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FIG. 1. Dynamical stability diagrams of the lowest stationary
states at k = 0 in the coherently coupled NLs. The top panels are
for the in-phase (a) and out-of-phase (b) cases at Uabν/K = 0.5.
The bottom panels are for the out-of-phase case at Uabν/K = 1 (c)
and 2 (d). Here, we set |Uσ |ν/K = 1. The contours show the growth
rate of the fastest-growing mode: the maximum absolute value of the
imaginary part of the eigenvalues of the matrix M in units of K . The
vertical dashed line shows the boundary of � below (above) which
the lowest state is a polarized (unpolarized) one.

this �. In both cases of in-phase and out-of-phase NLs, when
� is sufficiently small, the lowest state at k = 0 is a polarized
state, while above some threshold value of � (shown by the
vertical white dashed lines), the polarized state no longer exists
at k = 0 and an unpolarized state becomes the lowest state.

Figures 1(b)–1(d) demonstrate that the NLs could be sta-
bilized by linear coherent coupling with large �. A striking
difference between the in-phase and the out-of-phase cases is
that the out-of-phase NLs can always be stabilized by setting
� large enough while the in-phase NLs cannot be for smaller
values of Uab [41]. This difference can be clearly seen from
the top two panels, (a) in-phase case and (b) out-of-phase
case. For larger values of Uab, an unpolarized state becomes
dynamically stable when it becomes the lowest state due to
the disappearance of a polarized state at k = 0 [Figs. 1(c) and
1(d)]. In this regime, the stability diagrams of the in-phase and
the out-of-phase cases are almost identical.

The transition from a dynamically unstable stationary state
to a dynamically stable one can be clearly seen in their time
evolution. To demonstrate this, here we use a large system
with 100 unit cells (site j = 1–200) with periodic boundary
conditions. Starting from the lowest stationary state at k = 0
with small random perturbations [relative magnitude is O(1)%]
of the amplitudes hσ,j added to the first site j = 1, we solve
a set of EOMs (5) for j = 1–200. The left and the right panel
of Fig. 2 show the time evolution of the populations |hσ,j |2

FIG. 2. Time evolution of the populations |hσ,j |2 (σ = a and b)
in the first three unit cells of the out-of-phase NLs at |Ua |ν/K =
|Ub|ν/K = 1 and Uabν/K = 1 whose boundary between the dy-
namically stable and unstable regions is located at �/K � 0.43 for
k = 0 [see Fig. 1(c)]. The left panel is for �/K = 0.42 (dynamically
unstable region) and the right one is for �/K = 0.44 (dynamically
stable region). The initial condition is the lowest stationary state at
k = 0 with random perturbations of order 1% of the amplitudes hσ,j

added to the first site j = 1. We use NLs with 100 unit cells with
periodic boundary conditions.

of the first three unit cells in the dynamically unstable region
at �/K = 0.42 and the dynamically stable region at �/K =
0.44, respectively, in the out-of-phase NLs with |Ua|ν/K =
|Ub|ν/K = 1 and Uabν/K = 1 [same case as Fig. 1(c)].

We next discuss the energy band structure of the coherently
coupled NLs. Figure 3 shows the energy per particle Ecell/ν

calculated from Eq. (4) as a function of k. For small �/K , in
both the cases of in-phase and out-of-phase NLs, the polarized
branch extends the whole first BZ [the dark green line in (a)

FIG. 3. Energy band for the in-phase (a) and out-of-phase (b)–(d)
NLs for various �/K . We set |Uσ |ν/K = Uabν/K = 1. In (a), the
green and the dark green lines are for �/K = 0.1, the cyan and the
blue lines are for �/K = 1, and the red line is for �/K = 2. The
dark green and the blue (densely dotted) lines are for the polarized
branch and the others are for the unpolarized branch. In (b)–(d),
�/K = 0.3 (b), 1 (c), and 6 (d). In these three panels, the black
(densely dotted) line is for the polarized branch, the red line is for
the lowest unpolarized branch, and the orange line is for the second
lowest unpolarized branch. The inset of (c) and (d) is a magnification
of the looplike structure around k/k0 = 1 whose domain is shown
by the blue rectangle. In all panels, the solid line corresponds to the
dynamically stable states and the dotted line (both the densely and
loosely dotted) to the dynamically unstable ones.
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and the black line in (b)] and is lower in energy compared
to the unpolarized branch [the light green line in (a) and the
red line in (b)]. For larger �/K , the polarized states start to
disappear from the BZ center (k = 0) and the region of k of
the polarized branch becomes narrower [the blue line in (a)
and the black line in (c)]. Consequently, the unpolarized state
becomes the lowest in energy in the region of k where the
polarized states have disappeared. Note that the unpolarized
states can be dynamically stable at sufficiently large �/K

while the polarized states are always dynamically unstable. In
the in-phase case, the polarized branch completely disappears
at sufficiently large �/K , while in the out-of-phase case, it
remains to exist around the BZ edge at k/k0 = 1 and finally
becomes higher in energy compared to the lowest unpolarized
branch [the inset of (d)]. Remarkably, in the limit of large �/K ,
the lowest branch in the out-of-phase NLs is dynamically stable
in the whole BZ, as can be seen from the red solid line in (d).

In out-of-phase NLs, the lowest unpolarized branch shows
the overshooting behavior with respect to changing k such
that the dispersion with the positive slope persists beyond
the first BZ edge at k = k0 [the red lines in (b)–(d)], unlike
the standard form of the Bloch band as in the in-phase case
[panel (a)], which has zero slope at k = k0. Together with the
polarized branch [the black lines in (b)–(d)], the overshooting
unpolarized branch forms a looplike band structure similar to
the so-called “swallowtail” loop [25–35]. What is different
from the swallowtail loop in the ordinary periodic potential is
that the hysteresis loop appears at infinitesimally small values
of the coefficients |Uσ |ν/K and Uabν/K of the nonlinear terms
for any given nonzero �.

Interestingly, the lowest and the second lowest unpolarized
branches connect with each other as if they as a whole look
like a single band with an enlarged BZ of |k| � 2k0 [the red
and the orange lines in Figs. 3(b) and 3(c)]. This is because
|�a(x)| = |�b(x ± d/2)| in the unpolarized states in the out-
of-phase NLs with |�ga| = |�gb| (i.e., |Ua| = |Ub|), and thus
HGP in Eq. (2) is invariant under the combined operation of the
translation by half of the lattice constant and σx operation. At
sufficiently large �/K , the lowest unpolarized branch extends
over the whole first and second BZs and, as a consequence, the
second lowest unpolarized branch disappears [panel (d)].

The physical mechanism of the emergence of the over-
shooting and the hysteresis in the out-of-phase NLs can be
understood as follows. Introducing the phase θσ of the conden-
sate wave function �σ as �σ = √

nσ eiθσ , ECLC can be written
as ECLC = �0

∫
dr

√
nanb cos (θa − θb). Since |θa − θb| = π

in the lowest unpolarized branch, ECLC = −�0
∫

dr
√

nanb .
Therefore, ECLC tends na and nb to be equal at every site
when �0 is large and positive, namely, ECLC with positive
�0 has an effect of locking densities of a and b components
with each other. In the out-of-phase NLs, this effect prevents
the condensate wave functions from having a node, which is
necessary to render the slope of the dispersion to vanish at the
first BZ edge and the overshooting appears as a result.

Finally, we discuss the experimental feasibility of our sys-
tem using the realistic full continuum model given by Eq. (2).
Here we take parameter values from the experiment of Ref. [4].
Following this experiment, we consider 174Yb atoms in NLs
created by the lattice laser with the wavelength λ = 555.8 nm
(i.e., d = λ/2 = 277.9 nm and k0 = 2π/λ = 0.01130 nm−1).

FIG. 4. Dynamical stability diagrams of the lowest stationary
states at k = 0 for the continuum model: (a, b) in-phase case and
(c, d) out-of-phase case. Similarly to Fig. 1, (a) and (c) show the
growth rate of the fastest-growing mode in units of E0, and (b) and
(d) show its maximum value with respect to q. The red vertical line in
(b) and (d) shows the boundary of �0 below (above) which the lowest
state is a polarized (unpolarized) one.

We set the variation of the intraspecies scattering length
�aσ of species σ as |�aσ | = |�aa| = |�ab| = 20 nm, the
interspecies scattering length aab = 5.55 nm, and the average
atom density n = 1.5 × 1014 cm−3. Therefore, the parameters
in Eq. (2) are |�gσ |n/E0 ≡ (4π |�aσ |/m)n/E0 = 0.3 and
gabn/E0 ≡ (4πaab/m)n/E0 = 0.082, with the energy unit
E0 ≡ k2

0/m = 2π × 7.4 kHz.
The dynamical stability diagrams for the continuum model

with these parameter values are shown in Fig. 4. This figure
confirms the stabilization of NLs by an interspecies and
coherent coupling obtained by the discrete model also holds
for the continuum model [43]. We see that the NLs become
dynamically stable for �0/E0 � 0.1 in both the in-phase and
out-of-phase cases. This magnitude of the Rabi frequency is
easy to realize in current experiments.

In addition, stable NLs can be adiabatically prepared within
a reasonable time scale of �1 ms. Figure 5 shows the time
evolution of the population obtained from the discrete model
when the NLs are linearly ramped with various ramping times
Tramp. Parameters of the discrete model (Uσν/K , Uabν/K ,
�/K , and K/E0) corresponding to the above realistic setup
can be uniquely determined by fitting the intraspecies and
interspecies interaction energies ECLC and the effective mass
of the continuum model. Results shown in Fig. 5 correspond to
�0/E0 = 0.2 [44]. We consider two protocols to ramping the
pure NLs with g(0)

σ = 0: (1) starting from a uniformly repulsive
intraspecies interaction with the same value as gab and (2)
starting from no intraspecies interaction. While Fig. 5 shows
the result of the first protocol to realize the out-of-phase NLs,
there is no significant difference between the results of the two
protocols. According to Fig. 5, the case of Tramp � 1 ms is
already close to the adiabatic limit. The results for ramping the
in-phase NLs are also similar.
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FIG. 5. Time evolution of the population of component a at the
first and the second sites when the out-of-phase NLs are linearly
ramped. We use NLs with 100 unit cells with periodic boundary
conditions. The ramping time Tramp is 0.2 ms (green dotted), 0.5 ms
(blue dashed-dotted), 1 ms (red short dashed), 3 ms (brown long
dashed), and 10 ms (black solid).

IV. CONCLUSION

We have found that the dynamical instability of the BEC
in NLs can be overcome using the coherent linear coupling
between two components. Especially, in out-of-phase NLs, the
lowest band in the whole BZ becomes dynamically stable in

the limit of the strong coherent coupling. Since the dynamical
instability of NLs has been a serious obstacle preventing us
from realizing the extended states in pure NLs, it is expected
that our results would provide a breakthrough to open up
various experimental studies of BECs in NLs. In addition, in
out-of-phase NLs, the coherent linear coupling can generate the
exotic energy band structure with a hysteresis loop. Our results
would also stimulate research on multicomponent systems of
relevant fields such as cold gases and nanophotonics. Since the
stabilization of NLs has been shown to be realized by current
technology, further research on the superfluidity, transport
properties, etc. and various applications of the NLs are awaited.
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