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Stabilizing Fulde-Ferrell-Larkin-Ovchinnikov superfluidity with long-range interactions
in a mixed-dimensional Bose-Fermi system
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We analyze the stability of inhomogeneous superfluid phases in a system consisting of identical fermions
confined in two layers that are immersed in a Bose-Einstein condensate (BEC). The fermions in the two layers
interact via an induced interaction mediated by the BEC, which gives rise to pairing. We present zero-temperature
phase diagrams varying the chemical potential difference between the two layers and the range of the induced
interaction, and show that there is a large region where an inhomogeneous superfluid phase is the ground state. This
region grows with increasing range of the induced interaction and it can be much larger than for a corresponding
system with a short-range interaction. The range of the interaction is controlled by the healing length of the BEC,
which makes the present system a powerful tunable platform to stabilize inhomogeneous superfluid phases. We
furthermore analyze the melting of the superfluid phases in the layers via phase fluctuations as described by
the Berezinskii-Kosterlitz-Thouless mechanism and show that the normal, homogeneous, and inhomogeneous
superfluid phases meet in a tricritical point. The superfluid density of the inhomogeneous superfluid phase is
reduced by inherent gapless excitations, and we demonstrate that this leads to a significant suppression of the
critical temperature as compared to the homogeneous superfluid phase.
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I. INTRODUCTION

The interplay between population imbalance and superfluid
pairing has been subjected to intense study ever since Fulde and
Ferrell (FF) as well as Larkin and Ovchinnikov (LO) predicted
that they can coexist [1,2]. In condensed matter systems,
an external magnetic field leads to a population imbalance
between the two electron spin projections, which in general
is at odds with superconductivity. FFLO however realized
that the superconductor can accommodate some population
imbalance at the price of giving the Cooper pairs a nonzero
center-of-mass (COM) momentum, thereby forming a spatially
inhomogeneous but periodic order parameter with no vortices.
The fate of superfluid pairing in the presence of population
imbalance is a fundamental question relevant for many systems
in nature including cold atoms [3–5], superconductors [6], and
quark matter [7–9]. Nevertheless, an unambiguous observation
of a FFLO phase is still lacking. A major problem for electronic
superconductors is that orbital effects due to the magnetic field
lead to the formation of vortices and eventually destroy pairing
before any FFLO physics can be observed. One strategy to
avoid this problem is to explore low-dimensional systems,
where orbital effects are suppressed due to the confinement.
Indeed, results consistent with a FFLO phase have been
reported for quasi-two-dimensional (quasi-2D) organic and
heavy fermion superconductors [10–12]. Theoretical studies
have furthermore concluded that the FFLO phase is favored in
2D as compared to 3D [13–15].

Quantum degenerate atomic gases are well suited to in-
vestigate FFLO physics, because they do not suffer from
orbital effects as the atoms are neutral. In addition, it is
relatively straightforward to make low-dimensional systems,
and signatures of FFLO physics have indeed been observed
in a one-dimensional (1D) atomic Fermi gas [16]. There have

been a number of investigations of the FFLO phase for 2D
atomic gases with a short-range interaction [17–23]. Recently,
it was argued that long-range interactions further increase the
region of stability of the FFLO phase for a 2D gas of dipolar
atoms as compared to a short-range interaction [24,25].

Here, we investigate how to stabilize FFLO superfluidity
using a mixed-dimensional system with a tuneable-range
interaction. The system consists of fermions confined in two
layers immersed in a BEC. The induced interaction between
the layers mediated by the BEC gives rise to pairing, and we
analyze the stability of the corresponding superfluid phases.
We show that the zero-temperature phase diagram as a function
of the chemical potential difference in the two layers and the
range of the interaction has a large region where an inho-
mogeneous superfluid phase is the ground state. This region
grows with increasing range of the interaction and becomes
much wider than for a zero-range interaction. The interaction
range can be tuned by varying the healing length of the BEC.
We furthermore investigate the melting of the 2D superfluid
phases via the Berezinskii-Kosterlitz-Thouless mechanism.
The normal phase and the homogeneous and inhomogeneous
superfluid phases are shown to meet in a tricritical point in
the phase diagram, which determines the maximum critical
temperature of the inhomogeneous superfluid. This maximum
temperature is, however, significantly suppressed compared to
the homogeneous superfluid phase, due to inherent gapless
excitations, which decrease the superfluid density.

II. THE BILAYER SYSTEM

We consider the system illustrated in Fig. 1. Two layers
contain fermions of a single species with mass m, and they are
immersed in a 3D weakly interacting BEC consisting of bosons
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FIG. 1. A sketch of the considered system. The fermions (blue)
are confined in two layers immersed in a three-dimensional BEC (red),
with a layer distance d . The BEC mediates an interaction between
fermions in the two different layers of the Yukawa form, with a range
determined by the BEC healing length ξB .

with mass mB and density nB . The distance between the layers
is d and the surface density of fermions in each layer is nσ with
σ = ↑,↓ denoting the two layers. When used in equations, they
are taken to mean ↑= +1, ↓= −1, respectively. Occasionally
we will also use the notation σ̄ to mean the opposite layer
from σ . The boson-fermion interaction is short range and
characterized by the strength g = 2πaeff/

√
mrmB , with mr =

mmB/(m + mB ) the reduced mass and aeff the effective 2D-3D
scattering length [26]. Throughout, this interaction strength
is taken to be weak in the sense kFσ aeff � 1, where kFσ =√

4πnσ is the Fermi momentum of layer σ .
We treat the BEC using zero-temperature Bogoliubov the-

ory. This is a good approximation since the critical temperature
of the superfluid phases of the fermions is much smaller than
the critical temperature of the BEC. The bosonic degrees of
freedom can then be integrated out, which yields an effective
interaction between the fermions. In the static limit, this
interaction is on the Yukawa form, and we end up with an
effective Hamiltonian for the fermions in the two layers of the
form [27–29]

H = Hkin + Hint =
∑
k,σ

ξkσ c
†
kσ ckσ

+ 1

2V
∑
σ,σ ′

∑
k,k′,q

Vσσ ′ (q)c†k+qσ c
†
k′−qσ ′ck′σ ′ckσ . (1)

Here, c
†
kσ creates a fermion in layer σ with 2D momentum

k = (kx, ky ), the dispersion in each layer is ξkσ = k2/2m − μσ

with μσ the chemical potentials, and V is the system volume.
We define the average chemical potential μ = (μ↑ + μ↓)/2
and the “magnetic field” h = (μ↓ − μ↑)/2, so that we can
write ξkσ = k2/2m − μ + σh. The Yukawa interaction is

Vσσ ′ (q) = − 2g2nBmB√
q2 + 2/ξ 2

B

e−
√

q2+2/ξ 2
B |σ−σ ′|d/2, (2)

where ξB = 1/
√

8πnBaB is the healing length of the BEC
with aB the boson-boson scattering length. The healing length
determines the range of the induced interaction, as can be
seen by Fourier transforming Eq. (2) to real space, giving
V (r ) = −g2nBmBπ−1 exp(−√

2r/ξB )/r with r the 3D dis-
tance between the fermions. It follows that the range of the
interaction can be tuned by varying the density nB or the

scattering length aB of the surrounding BEC, which turns out
to be a key property for the following. We note that retardation
effects can be neglected when the speed of sound in the BEC
is much larger than the Fermi velocity in the two planes [28].

III. PAIRING AND GREEN’S FUNCTIONS

The attractive interaction given by Eq. (2) can lead to Cooper
pairing within each layer (intralayer pairing), and between
the two layers (interlayer pairing). We recently analyzed the
competition between intra- and interlayer pairing for the case
of equal density in each layer, i.e., for n↑ = n↓ [29]. For a layer
distance d large compared to the range ξB of the interaction,
we found that the ground state is characterized by intralayer
p-wave pairing, whereas s-wave interlayer pairing is stable for
smaller d/ξB . In addition, we identified a crossover phase for
intermediate d/ξB where both types of pairing coexist.

In this paper, we focus on interlayer s-wave pairing cor-
responding to d/ξB � 1. We shall investigate the case of a
nonzero field h giving rise to a population difference between
the two layers, and the possibility of FFLO interlayer pair-
ing with nonzero COM momentum. Such interlayer pairing
with COM momentum Q is characterized by the anomalous
averages 〈cQ/2+kσ cQ/2−k,σ̄ 〉, which leads us to define the
corresponding pairing field

�σ σ̄ (k, Q) = 1

V
∑

k′
V (k − k′)〈cQ/2+k′σ cQ/2−k′,σ̄ 〉. (3)

We have dropped the subscripts on the induced interaction
V (q), as here and in the following it refers to the interlayer
interaction only, i.e., V (q) ≡ Vσσ̄ (q). The pairing field obeys
the Fermi antisymmetry �σ σ̄ (k, Q) = −�σ̄ σ (−k, Q). In real
space, it is of the form

�σ σ̄ (r1, r2) = V (r1 − r2)〈ψσ (r1)ψσ̄ (r2)〉

= 1

V
∑
Q,k

�σ σ̄ (k, Q)eiQ·Reik·r, (4)

where R = (r1 + r2)/2 and r = r1 − r2 are the COM and rela-
tive coordinates respectively, andψσ (r) = ∑

k ckσ exp(k · r) is
the field operator for particles in layer σ . We note that the pair-
ing field is not translationally symmetric in the FFLO phase,
i.e., �σ σ̄ (r1, r2) 
= �σ σ̄ (r1 − r2). The interaction becomes in
the mean-field BCS approximation

H MF
int =

∑
Q,k

�↑↓(k, Q)c†Q/2−k↓c
†
Q/2+k↑ + H.c., (5)

where we include only the pairing channel as we focus on the
superfluid instability. The Hartree-Fock terms will in general
lead to small effects in the weak coupling regime, which mostly
can be accounted for by a renormalization of the chemical
potentials μσ .

All results presented here can be obtained by a direct
diagonalization of the mean-field BCS Hamiltonian H MF =
H0 + H MF

int using a standard Bogoliubov transformation. We,
however, use Green’s functions to analyze the FFLO states,
since this formalism naturally allows us to go beyond mean-
field theory to include effects such as retardation, if needed in
the future. The normal and anomalous Green’s functions for
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the superfluid phases are defined in the standard way as

Gσ (k, k′, τ ) = −〈Tτ ckσ (τ )c†k′σ (0)〉,
Fσ (k, k′, τ ) = −〈Tτ ckσ (τ )c−k′,σ̄ (0)〉, (6)

F †
σ (k, k′, τ ) = −〈Tτ c

†
−k,σ (τ )c†k′σ̄ (0)〉,

where Tτ denotes imaginary-time ordering. Using H MF =
Hkin + H MF

int , the Gor’kov equations for these Green’s func-
tions are straightforwardly derived. They read

(iωn − ξkσ )Gσ (k, k′, ωn)

= δk,k′ −
∑

Q

�σ σ̄ (k − Q/2, Q)F †
σ̄ (k − Q, k′, iωn), (7)

(iωn − ξkσ )Fσ (k, k′, ωn)

=
∑

Q

�σ σ̄ (k − Q/2, Q)Gσ (−k′,−k + Q,−iωn), (8)

(iωn + ξ−k,σ )F †
σ (k, k′, ωn)

=
∑

Q

�∗
σ σ̄ (−k − Q/2, Q)Gσ̄ (k + Q, k′, iωn), (9)

where we have Fourier transformed to Matsubara frequency
space with ωn = (2n + 1)πT . The self-consistent gap equa-
tion is then from (3) and (6)

�σ σ̄ (k, Q) = −T

V
∑
k′,n

V (k − k′)

×Fσ (Q/2 + k′/2, k′ − Q/2, iωn)e−iωn0+ . (10)

IV. FULDE-FERREL SUPERCONDUCTIVITY

The Q values for which �σ σ̄ (k, Q) is nonzero determine
the structure of the order parameter in the superfluid phase. It
has been shown that �σ σ̄ (r1, r2) can form very complicated
2D structures corresponding to �σ σ̄ (k, Q) 
= 0 for many Q’s
in Eq. (4) [30,31]. However, the FFLO phase exhibits a second-
order transition to the normal phase in 2D at an upper critical
field hc2 [13,14], and at this transition it is sufficient to consider
the case of �σ σ̄ (k, Q) 
= 0 only for a single Q vector. The
reason is that any linear combination of the �σ σ̄ (k, Q)’s, which
are unstable towards pairing, is degenerate at hc2, since it is
only the nonlinear part of the gap equation that determines the
optimal combination that minimizes the energy.

In the following, we therefore consider the case
�σ σ̄ (k, Q) 
= 0 only for a single Q. This will give the correct
upper critical field hc2 for the second-order transition between
the FFLO and the normal phase. We also expect that it will give
a fairly precise value for the lower critical field hc1 determining
the first-order transition between the FFLO and the superfluid
phase, since the energy difference between the FFLO phases
with various spatial structures is small [30,31]. Our scheme
recovers the usual homogenous BCS pairing for Q = 0, and it
corresponds to a plane wave Fulde-Ferrel (FF) type of pairing
when Q 
= 0, as can be seen from Eq. (4). Since we only
have one Q vector, we can simplify the notation for the gap
as �σ σ̄ (k, Q) → �σ σ̄ (k). The Gor’kov equations (7)–(9) are

then easily solved, giving

Gσ (k, k′iωn) = δk,k′

(
iωn − ξk,σ − |�σ σ̄ (k − Q/2)|2

iωn + ξ−k+Q,σ̄

)−1

,

Fσ (k, k′, iωn) = �σ σ̄ (k − Q/2)

iωn − ξkσ

Gσ (k, k′iωn). (11)

Using Eq. (11) in Eq. (10), we obtain the gap equation

�(k) = −
∫

d2ǩ′V (k − k′)
�(k′)
2Ek′

[1 − f +
k′ − f −

k′ ], (12)

where E±
k′ = Ek′ ± (h + k′ ·Q

2m
), with Ek′ = [(k

′2/2m +
Q2/8m − μ)2 + |�(k′)|2]1/2, and the Fermi distribution
function is f ±

k = [exp(βE±
k ) + 1]−1. In Eq. (12) and the

rest of this paper, we have further simplified the notation by
defining �↑↓(k) → �(k) and d2ǩ′ = d2k′/(2π )2. We solve
Eq. (12) along with the number equation

N =
∑

k

[
1 − ξk + q2/8m

Ek

(
1 − f +

k − f −
k

)]
. (13)

Note that in order to compare with previous results in the lit-
erature, we keep the total number of particles, N = N↑ + N↓,
fixed, and not the number of particles in each plane. To solve the
gap equation (12), we perform a partial wave expansion of the
induced interaction V (k) = ∑

n Vn(k) exp(inφk ), where φk is
the azimuthal angle of k. In the numerics, we keep the two
leading terms, n = 0, 1 corresponding to s-wave singlet and
p-wave triplet pairing respectively. When solving the above
equations, we find three different phases: The homogeneous
BCS phase with Q = 0, the FF state with Q 
= 0, and the
normal phase with no superfluid pairing. To determine which
of these phases is the ground state, we compare their energy
E. We have from mean-field theory

E − μ↑N↑ − μ↓N↓ =
∑

k

ξk −
∑
E−

k >0

E−
k +

∑
E+

k <0

E+
k

+
∑

k

|�(k)|2
2Ek

(1 − f +
k − f −

k ). (14)

V. RESULTS FOR ZERO TEMPERATURE

We now solve the Gor’kov equations for T = 0, varying the
interaction range and density imbalance through the healing
length ξB and the field h = (μ↑ − μ↓)/2, respectively. The
resulting phase diagrams are shown in Figs. 2 and 3 for two
different values of the layer distance, kF d = 1 and kF d = 0.
The Fermi momentum is defined as kF = √

2π (n↑ + n↓). We
set the effective scattering length to kF aeff = 0.05. This small
value ensures that we stay in the valid range of mean-field
theory for all parameter sets shown in the figures. As is
standard in the literature, we measure the field h in units of
�0 = �(kF , 0), which is the pairing field at the Fermi surface
for h = 0, that is, with no density imbalance.

Consider first the case of the layer distance kF d = 1.
Figure 2 clearly shows that there is a large region in the phase
diagram, where the FF phase is stable. We find that the phase
transition between the BCS and the FF phase is first order at
the lower critical field hc1 , whereas it is second order for the
transition between the FF phase and the normal phase at the
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FIG. 2. The T = 0 phase diagram of the bilayer fermions for
kF d = 1 and kF aeff = 0.05, as a function of the interaction range
ξB and the field h. The (red) diamonds, (blue) circles, and (green)
squares indicate the BCS, FF, and normal phase, respectively. The
horizontal dashed lines give the upper and lower critical fields for the
FF phase for a short-range interaction [13,14].

upper critical field hc2 . This is in agreement with the results
for a short-range interaction [13,14]. Moreover, the range of
values of h for which the FF phase is the ground state increases
with the interaction range ξB . This shows that a long-range
interaction stabilizes the FF phase. The reason is that the
relative strength of the p-wave component compared to the
s-wave component of the interaction increases with increasing
range, which favors FF pairing. To illustrate this important
point further, we plot as horizontal lines in Fig. 2 the critical
fields for a short-range interaction [1,24], hc1 ≈ �0/

√
2 ≈

0.7�0 and hc2 = �0. While the FF region approaches that of

FIG. 3. The T = 0 phase diagram of the bilayer fermions as a
function of the interaction range ξB and the field h for zero layer
distance and boson-fermion interaction strength kF aeff = 0.05. The
symbols and lines mean the same as in Fig. 2.

a short-range interaction for decreasing kF d, it becomes much
larger with increasing range kF ξB .

Consider next the case of zero layer distance d = 0 shown
in Fig. 3. While a large kF ξB still stabilizes the FF phase, the
effect here is much less pronounced as compared to the case
kF d = 1. Increasing ξB leads to a smaller increase in the range
of values of h for which the FF phase is the ground state than for
kF d = 1. The reason is that the short-range 1/r divergence of
the Yukawa interaction between the fermions in the two layers
given by Eq. (2) is cut off at 1/d for a finite layer distance d. A
non-zero value of d makes the p-wave part of the interaction
stronger compared to the s-wave part. As a result, the FF phase
where there is pairing in both the s- and p-wave channels is
favored compared to the pure s-wave BCS state for a nonzero
layer distance. Note that the reason the superfluid region (BCS
and FF) seems larger for kF d = 1 compared to d = 0 even
though the strength of the interaction obviously is smaller for
a nonzero layer distance, is that we measure h in units of �0,
which is also smaller. Had we used the unit εF instead for
instance, the superfluid region of the d = 0 phase would be
larger.

VI. BEREZINSKII-KOSTERLITZ-THOULESS MELTING

Since the fermions are confined in 2D layers, phase fluc-
tuations of the order parameter are significant and will even-
tually melt the superfluid through the Berezinskii-Kosterlitz-
Thouless (BKT) mechanism at a critical temperature TBKT.
To describe this, we first calculate the superfluid stiffness, or
equivalently the superfluid density, by imposing a linear phase
twist on the order parameter and calculating the corresponding
energy cost to second order in the twist. For a given vector Q,
the real space pairing becomes, using Eq. (4),

�(R, R) = � · ei(Q+δq)·R, (15)

where � = ∑
k �(k)/V and δq · R = δθ (R) is the imposed

spatially linear phase twist. From Eq. (15), it is clear that
the direction of the phase twist relative to the COM of the
Cooper pairs is important: When δq is parallel to Q, the phase
twist corresponds to adding/removing COM momentum to the
Cooper pairs which compresses/expands the wavelength of the
plane wave pairing field �(R, R); when δq is perpendicular to
Q, the phase twist corresponds to a small rotation of the COM
momentum to the Cooper pairs which rotates the plane wave
pairing field. These two effects are illustrated in Fig. 4(a).

The phase twist δθ (R) gives a free energy cost δF of the
form

δF = 1

2

∫
d2r[J‖(∂‖δθ )2 + J⊥(∂⊥δθ )2]

= J

2

∫
d2r(∇δθ )2, (16)

where ∂‖ and ∂⊥ are spatial derivatives parallel or perpendicular
to the COM momentum of the Cooper pairs, corresponding
to δq ‖ Q and δq ⊥ Q respectively. The associated superfluid
stiffness constants are J‖ and J⊥. In the second line of Eq. (16),
we have rescaled the spatial coordinate perpendicular to Q
by the factor

√
J‖/J⊥ to obtain an isotropic XY model with

the effective stiffness constant J = √
J‖J⊥ [32]. Alternatively,

defining the superfluid densities parallel and perpendicular to
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FIG. 4. (a) The two kinds of phase fluctuations with δq perpen-
dicular and parallel to the COM momentum Q of the Cooper pairs
give rise to a rotation and a compression/expansion of the plane wave
pairing field respectively. (b) The corresponding superfluid densities
ns‖ (top dashed magenta line) and ns⊥ (bottom dashed purple line).
The solid blue line is to the effective superfluid density ns = √

ns‖ns⊥.
The critical temperature TBKT is reached when ns crosses the thin solid
black line as indicated by the vertical dashed line. The inset shows
one branch of the quasiparticle spectrum along ky = 0 with the COM
momentum Q along the x axis for T = 0. The gapless excitations
leading to the reduction in the superfluid density are clearly visible.

Q as ns⊥ = 4mJ⊥ and ns‖ = 4mJ‖, we can write the free
energy cost as

δF = m

∫
d2r

[
ns‖v2

s‖ + ns⊥v2
s⊥

]/
2. (17)

Here vs‖ = ∂‖δθ/2m is the superfluid velocity parallel to Q
and likewise for vs⊥. One way to calculate the energy shift
due to the phase twist is by considering a corresponding gauge
transformed lattice Hamiltonian [33]:

H MF
latt. (θ ) = exp

(
−i

δθ

2

∑
l

x||,l/a

)

× H MF
latt. exp

(
−i

δθ

2

∑
l

x||,l/a

)
,

where a is the lattice constant and x||,l is the position along the
axis parallel to Q of the lth particle. This can then be expanded
to second order and the continuum limit a → 0 taken while
keeping the total density constant. This yields

ns‖ = n − β

m

∫
d2ǩ[f +

k (1 − f +
k ) + f −

k (1 − f −
k )]k2

‖ (18)

for the superfluid density along Q, where k‖ = k · Q/Q. Here,
n is the total surface density of fermions coming from the
two layers. An equivalent formula holds for ns⊥. Note that the
continuum result above can also be obtained directly without

FIG. 5. The phase diagram as a function of temperature T and
field h for layer distance kF d = 1, boson-fermion interaction strength
kF aeff = 0.05, and range kF ξB = 3. The symbols mean the same as
in Figs. 2 and 3.

considering a lattice system first. Equation (18) is the 2D
version of the usual expression for the superfluid density
allowing for the effects of the spatial anisotropy of the FF
state [34,35]. We can now determine the critical temperature
of the superfluid using the BKT condition

TBKT = π

2
J = π

8m
ns, (19)

where we have defined the effective superfluid density as ns =√
ns‖ns⊥.
In Fig. 4(b), we plot the superfluid densities as a function

of T for layer distance kF d = 1 and boson-fermion interaction
strength kF aeff = 0.05. We see that ns‖ > ns⊥, reflecting that
the energy cost related to compressing/expanding the COM
momentum is higher than that related to rotating it as expected.
Note that both superfluid densities are smaller than the total
density n even for T → 0. This is due to the inherent presence
of gapless quasiparticle states in the FF phase. These gapless
excitations, which are shown in the inset of Fig. 4(b), reduce
the superfluid density. We also plot the effective superfluid
density ns = √

ns‖ns⊥ as well as the line 8mT/π . It follows
from Eq. (19) that the superfluid phase melts when ns crosses
this line.

Having set up the theory for BKT melting, we can now
analyze the BCS and FF phases at nonzero temperatures. In
Fig. 5, we present an example of a phase diagram for kF d = 1
and kF aeff = 0.05. We see that the critical temperature of the
FF phase increases with decreasing field h. The highest critical
temperature is obtained just above the lowest critical field hc1 ,
where the FF, BCS, and normal phase meet in a tricritical point
at hc1 ≈ 0.7�0 and T ≈ 0.025TF . This critical temperature
is well below the theoretical maximum of TF /8 obtained by
setting ns = n in Eq. (19). The reason is that the gapless
excitations in the FF phase decrease the superfluid density
below n, as we discussed above in connection with Fig. 4.
Indeed, we note that the values of the two components of the
superfluid density in Fig. 4 at T = Tc are almost unchanged
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from their values at T → 0. This is a general result: While
the flexibility of the bilayer system allows us to optimize the
induced interaction to favor FF pairing, the gapless nature of
this state prevents us from reaching critical temperatures close
to TF /8.

The critical temperature of the BCS phase is much higher, as
can be seen from Fig. 5. Due to its fully gapped spectrum, TBKT

can in fact relatively easily be tuned to be close to maximum
TF /8 by varying the layer distance d and the interaction range
ξB , even while keeping the boson-fermion interaction strength
aeff weak.

VII. CONCLUSION

We analyzed a mixed-dimensional system consisting of
two layers of identical fermions immersed in a BEC. This
system was shown to support superfluid pairing due to an
attractive induced interaction between the two layers mediated
by the BEC. When the densities of the two layers are different,
the resulting superfluid phase is inhomogeneous. Using a
plane wave FF ansatz to describe this phase, we demonstrated

that it is stabilized by the nonzero range of the induced
interaction. Importantly, the FF phase can occupy much larger
regions of the phase diagram as compared to the case of a
short-range interaction. The range of the induced interaction
can be tuned by varying the BEC healing length, which makes
the present system promising for realizing FFLO physics
experimentally. We furthermore analyzed the melting of the
superfluid phases due to phase fluctuations using BKT theory,
and demonstrated that the normal, homogenous, and inhomo-
geneous superfluid phases meet in a tricritical point in the phase
diagram. The superfluid density of the FF phase was shown to
be suppressed by intrinsic gapless excitations, and this leads
to a significant reduction in the critical temperature compared
to the homogeneous superfluid, which can be tuned to have a
critical temperature close to the maximum TF /8.
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