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We theoretically investigate one-dimensional (1D) SU(κ) fermions in the regime of spin-incoherent Luttinger
liquid. We specifically focus on the Tonks-Girardeau gas limit where its density is sufficiently low that effective
repulsions between atoms become infinite. In such case, spin exchange energy of 1D SU(κ) fermions vanishes and
all spin configurations are degenerate, which automatically puts them into a spin-incoherent regime. In this limit,
we are able to express the single-particle density matrices in terms of those of anyons. This allows us to numerically
simulate the number of particles up to N = 32. We numerically calculate single-particle density matrices in two
cases: (1) equal populations for each spin components (balanced) and (2) all Sz manifolds included. In contrast to
noninteracting multicomponent fermions, the momentum distributions are broadened due to strong interactions.
As κ increases, the momentum distributions are less broadened for fixed N , while they are more broadened for
fixed number of particles per spin component. We then compare numerically calculated high-momentum tails with
analytical predictions which are proportional to 1/p4, in good agreement. Thus, our theoretical study provides
a comparison with the experiments of repulsive multicomponent alkaline-earth fermions with a tunable SU(κ)
spin symmetry in the spin-incoherent regime.
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I. INTRODUCTION

Huge interest in one-dimensional (1D) quantum systems
[1–3] has been renewed in the past decade thanks to experi-
mental achievements in trapping 1D ultracold bosonic [4–6]
and fermionic gases [7,8]. A fundamental distinction between
identical bosons and fermions lies in quantum statistics where
bosons tend to condense in the same quantum state below
their characteristic temperature while fermions cannot occupy
a single quantum state owing to the Pauli exclusion prin-
ciple. When spinless bosonic particles are tightly confined
in a quasi-1D regime, they become strongly interacting and
fermionized in the so-called Tonks-Girardeau (TG) gas limit
[9,10]. This regime can be reached in a dilute gas such that
the effective atom-atom interactions become infinite. Recent
studies focus on the ground states or their momentum dis-
tributions of spinless bosons [11–17], quantum magnetism
in spinful bosons [18–23] or Bose-Fermi mixtures [24,25],
and broadened momentum distributions of spin-incoherent
[26–28] spin-1 Bose Luttinger liquid [29,30]. As for recent
investigations of 1D spinful fermions [3], energy spectra and
mapping of the spin-chain model for SU(κ) fermions have
been investigated [31], exotic pairing phase of the Fulde,
Ferrell, Larkin, and Ovchinnikov (FFLO) state with finite
center-of-mass momenta has been indirectly observed in a
spin-1/2 Fermi gas [8], and two distinguishable fermions
can fermionize like two noninteracting identical fermions by
tuning interparticle interactions [32].

For spin-F fermions, only F + 1/2 s-wave scattering
lengths a

j
s with even j = 0, 2, . . . , 2F − 1 [33] are required

to describe interaction dynamics of the states with a total
spin equal to j . In two-electron fermionic atoms, there is
no hyperfine interaction between the electronic J = 0 and

nuclear spins I > 0 in the ground state (1S0). Therefore, all
scattering lengths become equal. Under this condition, SU(κ =
2I + 1) spin symmetry can emerge [34–36] in alkaline-earth
fermions 87Sr (I = 9/2) [37,38] or 173Yb (I = 5/2) [39] with
tunable spins [40,41] close to the regime of the spin-incoherent
Luttinger liquid (SILL) [27].

The SILL is a different universal class from conventional
Luttinger liquid (LL) [1,42], which shows exponential decays
of single-particle Green’s functions other than power-law
decays in the respective spin and charge sectors of LL. This
spin-incoherent regime is first investigated in semiconductor
quantum wire [27,43,44], which can be reached when the
thermal energy of the system is higher than the energy splitting
of different spin states while still low enough that collective
charge excitations are suppressed. Other systems in the SILL
regime, for example, uniform two-component gases [26],
t-J models [28,45,46], and two-dimensional Hubbard models
[47,48], have also been investigated.

Specifically, for a 1D spinful Bose gas in the TG gas limit,
the spin-independent interaction becomes infinite such that the
spin Hamiltonian can be ignored and all spin configurations are
degenerate. Under this condition, the spatial wave functions of
the atoms take the Slater determinant form of noninteracting
fermions, and TG spinful Bose gas automatically resides in the
regime of SILL [29,30]. Similarly for spinful fermions in TG
gas limit, the spin exchange energy of 1D SU(κ) fermions
vanishes and all spin configurations are degenerate, which
again puts them in the SILL regime. Away from the TG limit,
the condition for achieving SILL, however, differs between
bosons and fermions. For a weakly interacting 1D Bose gas,
one has SILL if the differences among a

j
s for different j ’s

are sufficiently small [29,30]. On the other hand, for a non-
interacting 1D Fermi gas, the sound and spin wave velocities
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are both equal to the Fermi velocity if populations of all the
components are equal. Hence for a weakly interacting 1D
Fermi gas, one does not have SILL even when the interaction
is SU(κ) symmetric.

In Refs. [29,30], we investigated SILL 1D spin-1 Bose gas in
the TG gas limit. We found the evident broadening in either the
total or spin-dependent momentum distributions in the sector
of zero magnetization. We also derived the 1/p4 asymptotic
[13,14,17,49–52], and evaluated the coefficient, related to
Tan’s contact [53,54], up to N = 16. Here we investigate
spinful fermions with tunable SU(κ) spin symmetry in the
SILL TG regime, and numerically calculate their momentum
distributions without the restriction of zero magnetization.
We also extend the particle number to N = 32 by taking
advantage of anyonic statistics (or discrete Fourier transform)
which significantly expedites the numerical calculations of
single-particle density matrix. Thus, our study provides a
comparison with the experiments of repulsive multicomponent
alkaline-earth fermions with a tunable SU(κ) spin symmetry
in the spin-incoherent regime.

The rest of the paper is organized as follows. In Sec. II,
we introduce the single-particle density matrix for 1D SU(κ)
fermions in terms of separate spatial and spin parts of the
density matrix with anyonic statistics [55–57]. In Sec. III, we
investigate two cases for the spin parts of the density matrix,
which are, respectively, the case of equal populations for each
spin components and the other one involving all Sz manifolds.
We then show the numerically calculated momentum distri-
butions and high-momentum tails in Sec. IV, and compare
the tails with analytical predictions. Finally we conclude in
Sec. V.

II. SINGLE-PARTICLE DENSITY MATRIX
OF SILL SU(κ) FERMIONS

The effective Hamiltonian of ultracold 1D SU(κ) fermions
in TG gas limit can be expressed as [40,41]

H =
κ∑

ν=1

Nν∑
j=1

[
− h̄2

2m

∂2

∂x2
j,ν

+ 1

2
mω2x2

j,ν

]
Ispin

+
κ∑

ν<ν ′

Nν∑
j=1

Nν′∑
j ′=1

δ(xj,ν − xj ′,ν ′ )g1DIspin, (1)

where we consider the atoms, with mass m, trapped in a
harmonic potential with the axial trap frequency ω, and κ spin
components satisfy

∑κ
ν=1 Nν = N with the number of atoms

Nν for the νth component. The spin-independent interactions
between SU(κ) spin-symmetric fermions can be described
by g1D = −2h̄2/(ma1D), where a1D is the effective scattering
length [11] in 1D. Next we consider a general wave function
of N fermions with spins

|�〉 =
∑

s1,s2,...sN

ψs1,s2,...sN
(�x)|s1, s2, . . . , sN 〉, (2)

where we denote the atomic spatial distributions as �x =
(x1, x2, . . . , xN ) along with corresponding spin configurations
|s1, s2, . . . , sN 〉 ≡ |�s〉. Note that each spin si is within the man-
ifold of SU(κ) spin symmetry. The total wave function must
satisfy the quantum statistics of the atoms, which is fermionic

antisymmetry considered here, and thus it is sufficient if we
only focus on the ordered region of x1 < x2 < · · · < xN . The
other regions can be obtained via permutations of this ordered
region.

The single-particle density matrix according to the general
wave function of Eq. (2) becomes

ρ(x ′, x) = N
∑

�s

∫
dx̄ψ∗

�s (x ′, x̄ )ψ�s (x, x̄ ), (3)

where x̄ ≡ (x2, x3, . . . , xN ). To proceed to calculate Eq. (3),
we consider only the region of x ′ < x which is symmetric
to x ′ > x. Equation (3) involves N (N + 1)/2 distinct and
ordered integral regions [29,30], which we denote as [55]

�m,n : x2 < · · · < xm < x ′ < xm+1 < · · ·
· · · < xn < x < xn+1 · · · < xN, (4)

where x ′ and x are located right behind xm and xn respectively.
Each distinct and ordered integral region has the same spatial
integral value, such that we obtain [29,30,55]

ρ(x ′ < x) =
N∑

m=1

N∑
n=m

ρm,n(x ′, x)Sm,n. (5)

In the above, we proceed to write down the spatial part in the
TG gas limit as

ρm,n(x ′, x) = (−1)n−mN !
∫

�m,n

dx̄ϕ∗
�n (x ′, x̄)ϕ�n(x, x̄ ), (6)

ϕ�n(�x) ≡ 1√
N !

A[φn1 (x1), φn2 (x2), . . . , φnN
(xN )], (7)

with orbital indices �n = (n1, n2, . . . , nN ) and antisym-
metrized (A) eigenfunctions φnj

(xj ) of noninteracting
fermions in a harmonic trap. Meanwhile, the spin part in the
SILL regime is denoted as [29,30]

Sm,n = (−1)m−n

∑
�s〈P12...m(�s)|P12...n(�s)〉

Trχ (E)
, (8)

with identical and m-particle permutation operators E and
P12...m respectively. The total number of spin-state configu-
rations is Trχ (E) ≡ ∑

χ 〈χ |E|χ〉 for all spin configurations
|χ〉. The Sm,n represents the normalized spin function overlaps,
which is averaged by all possible spin configurations and is
nonvanishing if the permuted spins |P12...m(�s)〉 have projec-
tions on |P12...n(�s)〉. Here we consider a statistical mixture of
many (degenerate) spin states, whereas Ref. [41] evaluates the
density matrix by picking out one (the ground) spin state.

To evaluate Eq. (5) efficiently, we take advantage of the
discrete Fourier transform or equivalently anyonic statistics
[55–57], which transforms, respectively, Eqs. (6) and (8) to

ρm,n(x ′, x) = N−2
∑
k′,k

ρk′,k (x ′, x)eiπk′me−iπkn, (9)

Sk′,k = N−2
N∑

m,n=1

Sm,ne
iπk′me−iπkn, (10)
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with discrete statistical parameters [58] of k, k′ = 2j/N for
j = 1, 2, . . . , N , and

ρk′,k (x ′, x) = N

∫
dx̄

N∏
j=2

Ak′∗(xj − x ′)Ak (xj − x)

×ϕ∗
�n (x ′, x̄ )ϕ�n(x, x̄ ), (11)

where Ak (xj − xl ) ≡ eiπ (1−k)θ (xj −xl ) with the Heaviside step
function θ (xj − xl ). Finally, we obtain the single-particle
density matrix for SILL 1D SU(κ) fermions, in terms of
discrete statistical parameters,

ρ(x ′, x) =
∑
k′,k

ρk′,k (x ′, x)Sk′,k. (12)

In the next section, we specifically calculate the spatial and
spin parts of the density matrix for SU(κ) fermions.

III. SPATIAL AND SPIN PARTS OF THE DENSITY MATRIX

A. Spatial parts of the density matrix

The spatial parts of the single-particle density matrix have
been investigated for spinless bosons [15,16] and anyons
[56,57] in a harmonic trap, where analytically exact formulas
can be derived. For 1D SU(κ) fermions in the TG gas limit
and confined in a harmonic trap potential, the dimensionless
eigenfunctions φn(y) with y ≡ x/xho and xho ≡ √

h̄/(mω) are

φn(y) = 1√
2nn!

1

π1/4
Hn(y)e−y2/2, (13)

where Hn are Hermite polynomials.
Putting Eq. (13) into Eq. (7), the spatial wave function

with �n = (0, 1, . . . , N − 1) can be expressed in the form of
a Vandermonde determinant [16],

ϕ�n(�x) =
√

CV
N

N∏
l=1

e−x2
l /2

∏
1�j<m�N

(xj − xm), (14)

where the normalization constant is

CV
N = 2N (N−1)/2

πN/2
∏N

j=1 j !
. (15)

To derive the exact form of Eq. (11), in addition to using the
above form, we need the following general equality [15,16]:

1

N !

N∏
l=1

∫ ∞

−∞
dxl g(xl )(det[fj−1(xm)]j,m=1,...,N )2

= det

[∫ ∞

−∞
dt g(t )fj−1(t )fm−1(t )

]
j,m=1,...,N

, (16)

for any functions g and fj . We separate the dependence of
x and x̄ in ϕ�n(x, x̄ ) by interpreting it in terms of minors,
φn(x)det[φj (xm)] with j = 0, . . . , n − 1, n + 1, . . . , N − 1
and m = 2, . . . , N , respectively, for n = 0, 1, . . . , N − 1.
This way we are able to cast φn(x) in a Vandermonde form,
while retaining the rest of the particles at x̄ in a determinant
form. Similar treatment to ϕ�n(x ′, x̄ ) can be done. We then
re-express Eq. (11) by grouping anyonic statistics of Ak′∗ and
Ak with (xl − x) and (xl − x ′), and let g(xl ) = Ak′∗(xl − x ′)

Ak (xl − x)(xl − x ′)(xl − x) in Eq. (16) with l starting from 2.
Applying the equality of Eq. (16) to Eq. (11), we obtain

ρk′,k (x ′, x)

= 2N−1

(N − 1)!

e−(x ′2+x2 )/2

√
π

det

[ ∫ ∞

−∞
dtAk′∗(t − x ′)

×Ak (t − x)(t − x ′)(t − x)φ∗
j (t )φm(t )

]
j,m=0,...,N−2

,

= e−(x ′2+x2 )/2

√
π

det

[
2(j+m)/2

�(j + 1)�(m + 1)

×b
k′,k
j,m (x ′, x)√

π

]
j,m=1,...,N−1

, (17)

where

b
k′,k
j,m (x ′, x) ≡

∫ ∞

−∞
dtAk′∗(t − x ′)Ak (t − x)

×(t − x ′)(t − x)t j+m−2e−t2
. (18)

Equation (18) can be derived by using equivalent Vandermonde
determinant forms for det[Hj−1(xm)] and det[xj−1

m ] which
leads to the term t j+m−2. We further derive the exact form of
b

k′,k
j,m (x ′, x) in the Appendix, which involves special functions

of incomplete � functions. This exact form significantly expe-
dites the numerical calculations of a single-particle density
matrix, but as N increases and larger than N = 32, the
calculation is limited by 64-digit computer double precision.
And as such, we give results up to N = 32, which, however,
can be pushed farther by using arbitrary precision protocols.
Next we study two cases of the spin parts in the density matrix
of 1D SU(κ) fermions.

B. Equal populations in each spin component

For equal populations in each SU(κ) spin components, the
spin configurations which contribute to Eq. (8) involve the
states

| α1...α1︸ ︷︷ ︸
N1

α2...α2︸ ︷︷ ︸
N1

... ακ ...ακ︸ ︷︷ ︸
N1

〉, (19)

where N1 = N/κ and κ spin components (α1, α2, . . . , ακ ).
The Sm,n is nonvanishing only when N1 � l with l ≡ |n −
m| + 1 from the contributions of l entries in each spin compo-
nents. Taking component α1 as an example, the contributing
spin configuration is

| α1...α1︸ ︷︷ ︸
l

α1...α1︸ ︷︷ ︸
N1−l

α2...α2︸ ︷︷ ︸
N1

... ακ ...ακ︸ ︷︷ ︸
N1

〉. (20)

Since there are κ spin components, we obtain the spin parts of
the density matrix as

Sm,n = (−1)m−n

wN

[
κ (N − l)!

(N1 − l)![N1!]κ−1

]
, (21)

where

wN = N !

[N1!]κ
. (22)
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The bracket in Eq. (21) originates from the number of states
obtained by permuting the rest of (N1 − l) spins for one of the
spin components and other N1 spins from (κ − 1) components.
We also define wN ≡ Trχ (E) as the total number of states in
the above.

C. All Sz manifolds included

Next we consider the spin configurations with all Sz mani-
folds. In contrast to the case of equal populations, the Sm,n here
is always finite, which has a contribution from l ≡ |n − m| + 1
entries in each spin component. Taking again the component
α1 as an example, the contributing spin configuration is

| α1...α1︸ ︷︷ ︸
l

......︸︷︷︸
N−l

〉, (23)

where the rest of the (N − l) spin components can be any of κ

ones. We obtain the spin parts of the density matrix as

Sm,n = (−1)m−n

wN

κN−l+1, (24)

wN = κN, (25)

and we can further simply Sm,n as

Sm,n = (−1)m−n

κ |m−n| . (26)

IV. MOMENTUM DISTRIBUTIONS

Based on Eq. (12), we numerically calculate the momentum
distributions of SILL 1D SU(κ) fermions in the TG gas limit
(h̄ = 1),

ρ(p) = 1

2π

∫ ∞

−∞
dx ′

∫ ∞

−∞
dx eip(x ′−x)ρ(x ′, x). (27)

Below we investigate various conditions of fixed total number
of atoms N , spin components κ , and number of atoms in each
spin component N1.

A. Fixed N

It is instructive at first to compare the momentum dis-
tributions of 1D SU(κ) fermions in the TG gas limit with
noninteracting multicomponent ones. In Fig. 1, we focus on
the case of equal populations in each spin component [ρeq(p)].
The feature of noninteracting κ-component fermions manifests
in the number of Friedel oscillation peaks, which is exactly N1

of them. We note that these similar oscillation peaks are also
shown in the momentum distribution of the ground state with a
balanced mixture [41], for interactions approaching the TG gas
limit. As the number of components increases, noninteracting
fermions tend to occupy lower momenta, and thus the width
of momentum distributions becomes narrower. This can be
explained by the decreasing N1 for each spin component with
a fixed N . This trend is also seen in SILL 1D SU(κ) fermions
as κ increases. In contrast, for fixed κ component and N ,
TG gas has a broadened width of momentum distributions
compared to the ones of noninteracting fermions due to the
strong interactions in TG gas limit. Furthermore, we note that
the kinetic and potential energies of 1D SU(κ ) fermions in

FIG. 1. Comparison of momentum distributions of 1D SU(κ)
fermions in the SILL regime and noninteracting multicomponent
fermions. The number of fermions is N = 32. As the number of com-
ponents increases, the width of momentum distributions decreases for
both noninteracting and spin-incoherent cases.

the TG gas limit satisfy the virial theorem [59,60], which are
equally N2h̄ω/4 (half of the total energy of the system) since
the fermions have the same density profile as the noninteracting
ones. Instead for noninteracting multicomponent fermions,
the kinetic (potential) energy is N2h̄ω/(4κ ) which is always
smaller than the one of SILL SU(κ) fermions for κ � 2.

In Fig. 2, we showρeq(p) with the sameN for different num-
bers of spin components. In contrast to the Friedel oscillations
of spinless fermions, the oscillations in SILL SU(κ) fermions
are smoothed out due to the averaging effect of spin-function
overlaps Sm,n, similar to the case of spin-1 bosons [29,30]. As
κ increases, the momentum distributions are less broadened,
which can be seen near pxho ≈ 5 and also reflects on increasing
ρeq(p = 0). In contrast, the high-momentum tails have larger
values for larger κ , which we will investigate further in detail
in the next section. For the case of all Sz manifolds included,
ρall(p), we show its difference from ρeq(p) in the insets of
Fig. 2. The ratio of relative difference to ρeq(0) is on the order of
10−3, which therefore makes ρall(p) almost indistinguishable
from ρeq(p). Nonetheless, the central maximum of ρall(0)
is smaller than ρeq(0) in respective κ components, while at
moderate 3 � pxho � 8, ρall(p) becomes larger than ρeq(p)
between around the two crossing points.

FIG. 2. Momentum distributions of 1D SU(κ) fermions in the
SILL regime with equal populations in each spin component. The
number of fermions is the same as Fig. 1, and we choose κ =
2, 4, 8, 32 to compare with spinless fermions. The inset shows
the difference between the cases of all spin manifolds and equal
populations, [ρall (p) − ρeq(p)]/ρeq(0), which is order of 10−3 to the
maximum of the distribution, respectively.
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FIG. 3. Momentum distributions of SILL 1D SU(κ) fermions for
various N with equal populations in each spin components. As the
number of fermions N increases, the momentum distributions are
uniformly broadened. For various spin components κ , we choose N =
16, 24, 32 in (a), (b), (d), and 18,24,30 in (c).

As a theoretical interest, we consider the case with a large
κ . In Fig. 2, we show the momentum distribution with κ =
N . For equal populations and fixed N , this case represents
the maximal κ allowed and indicates that every fermion
occupies exactly one distinct spin. And as such, ρeq,κ=N (p)
has the narrowest width compared to all other κ < N . Again,
ρall,κ=N (p) does not distinguish much from ρeq,κ=N (p) as
shown in the inset of Fig. 2. At κ = N , for equal populations,
we have Sm,n = δm,n. Comparing this with Eq. (26) shows
that ρall,κ→∞(x ′, x) coincides exactly with ρeq,κ=N (x ′, x), and
so almost is indistinguishable from ρall,κ=N (x ′, x). These
narrower widths and higher momentum tails are reminiscent
of the infinite κ regime where the ground-state energy [61] and
Tan’s contacts [41] of 1D SU(κ) fermions approach the case
of spinless bosons. However, for SILL 1D SU(κ) fermions
at infinite κ , the spin parts of the density matrix for all spin
manifolds become Sm,n → δm,n, whereas for spinless bosons,
Sm,n = 1 for all m and n. Therefore, SILL 1D SU(κ) fermions
never behave exactly as spinless bosons as κ → ∞. Under
this limit, we note that Sk′,k → δk′,k/N , and the single-particle
matrix becomes ρall,κ→∞(x ′, x) = N−1 ∑

k ρk,k (x ′, x), an av-
erage over anyon density matrices with statistical parameters k.

B. Fixed κ

In Fig. 3, we show ρeq(p) with a fixed number of spin
components κ . They are broadened uniformly as N increases
for various spin components due to strong interactions. We
know that for noninteracting multicomponent fermions, their
peaks scale as N0.5, while by fitting our numerical results in
Fig. 3, we find that the peaks scale as Nα where α � 0.5.

C. Fixed N1

Finally, as in the experiment of 1D fermions with tunable
SU(κ) spin symmetry [40], in Fig. 4 we plot the normalized
momentum distributions [

∫
ρ(p)dp = 1] of SILL 1D SU(κ)

fermions with fixed N1. We see broadening in momentum
distributions as κ increases. As spin components of the
fermions increase, the total number of atoms also increase.
Therefore, the broadening of momentum distributions comes
both from strong interactions of fermions in the TG gas limit
and increasing number of atoms. Under the condition of a

-8 -6 -4 -2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

FIG. 4. Normalized momentum distributions of 1D SU(κ)
fermions in the SILL regime with fixed number of atoms per
component. The number of atoms per spin component is N1 = 6. As
the number of components κ increases from 1 to 5 and accordingly
N = κN1, the momentum distributions are broadened.

fixed N1 in Fig. 4, the kinetic (potential) energy per atom is
N1κh̄ω/4, which rises up linearly as κ increases.

We also compare our results with the experiments, where
the system is at finite temperature with finite atom-atom
interactions, and experiences inhomogeneous distributions in
2D optical lattice of 1D tubes [40]. In the experiment, the
broadening of the normalized momentum distributions is also
observed as κ increases, though the Friedel oscillation is absent
in the single-component measurement due to the averaging of
inhomogeneous distributions or finite temperature. In addition,
we extrapolate their normalized momentum distributions in
Fig. 2(a) of [40], and numerically calculate their kinetic
energies. The kinetic energies approximately follow the linear
increase of κ spin components, which indicates that the
behavior of the system is similar to that in the TG gas limit.
We note that the other essential feature of SILL 1D SU(κ)
fermions manifests in the trend of momentum distributions
toward narrower ones for a fixed N in Fig. 2, as an alternative
method to measuring breathing mode oscillations [40].

D. Large p asymptotics

Here we further investigate the high-momentum tails of
1D SU(κ) fermions in the SILL regime. This universal high-
momentum asymptotic 1/p4 originates from many-body sys-
tems with two-body contact interaction, which is present in
a spinless Bose gas [13,14,17,62,63], SILL spin-1 Bose gas
[29,30], two-component [49–52,64] or multicomponent Fermi
gas [41,65], and Tan’s relation [53,54]. The coefficients of the
scaling can be related to the slope of the ground-state energy
of the many-body system, that is, (−dE/dg−1

1D ) [14,41].
We have derived the analytical results for this high-

momentum asymptotic in SILL 1D spin-1 TG Bose gas
[29,30], which can be straightforwardly extended to 1D SU(κ)
fermions in the TG gas limit,

ρ(p) =
p→∞

2(1 + Sm−1,m)

2πp4

×
∑

(ni ,nj )

∫ ∞

−∞
dx

∣∣∣∣φ′
ni

(x) φ′
nj

(x)

φni
(x) φnj

(x)

∣∣∣∣
2

, (28)

for arbitrary m since Sm,n only depends on |m − n|. The
(ni, nj ) represents all possible pairs of N harmonic oscillator
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FIG. 5. Asymptotics of high-momentum distributions of 1D
SU(κ) fermions in the SILL regime. The total number of fermions
is N = 30, and we choose κ = 2, 3, 5, 10 for comparisons. High-
momentum tails are plotted in logarithmic scales compared with
analytical curves (dash). The analytical asymptotics for ρeq(∞)
are (165, 220, 264, 297)/p4 respectively as κ increases, while for
ρall (∞), they are (159, 213, 255, 287)/p4. The inset (a) shows the
convergence of the numerical result of SU(κ = 2) to the analytical
curve as finer grids increase from dx = 0.2, 0.1, 0.05 (dash dots) to
0.025 (solid), while (b) shows the relative asymptotics of [ρall (p) −
ρeq(p)]/ρeq(p).

eigenfunctions. The coefficients depend only on the spin parts
of the single-particle density matrix, Sm,n, with |m − n| =
1, since they have the contributions only from the integral
regions of x < xj < x ′ and x ′ < xj < x for all xj ∈ x̄

with x ≈ x ′. The coefficients for spinless or spinful bosons
can be obtained by replacing (1 + Sm−1,m) with 2 or by
Sm−1,m → −Sm−1,m respectively in Eq. (28). The sign change
of Sm−1,m for spinful bosons restores the bosonic symmetry
in the single-particle density matrix. For fermions, we note
that the coefficients of (1 + Sm−1,m) in the asymptotic forms
of Eq. (28) increase as κ increases. This enhancement is also
predicted in Tan’s contacts of the ground state with a balanced
mixture, which indicates the onset of the correlation effect [41].
At κ → ∞, Sm−1,m → 0, such that (1 + Sm−1,m) maximizes
to be unity but is only half of the coefficient for spinless bosons.
This value is thus also half of that of the ground state of 1D
fermions with a balanced mixture in the κ → ∞, TG limit,
which was calculated by the Bethe-ansatz solutions under the
local density approximation [41].

In Fig. 5, we show the high-momentum asymptotic curves
and compare them with the analytical results. As κ increases,
the coefficients go up as the arrow indicates. The convergence
of the numerical calculations can be seen in the inset (a) where
the numerical result approaches the analytical one as finer
grids are used. We further compare ρall(p) with ρeq(p) by
showing its relative difference in the inset (b). The coefficients
for high-momentum tails of ρall(p) are smaller than the case
of ρeq(p). Similar to the momentum distributions at small
p � 10, the difference ratio is of order of 10−2 relative to
ρeq(p) at large p, and therefore the asymptotic curves of ρall (p)
are again close to the ones of ρeq(p). The analytical results of
the coefficients also show only a relative difference of less
than 5% (see caption of Fig. 5 for numerical values of the
coefficients), which almost overlap with each other. At 10 �
pxho � 25, the relative difference of inset (b) saturates to a flat
line, indicating the constant ratio of the coefficients between
ρall(p) and ρeq(p). Meanwhile, for pxho � 25, this difference

goes up, which marks the accuracy range of pxho ≈ 25 in our
numerical calculations.

V. CONCLUSION

In conclusion, we have investigated the momentum distri-
butions of 1D SU(κ) fermions in the TG gas limit, which puts
the system in a spin incoherent regime, forming a different
universal class of SILL from conventional Luttinger liquid. We
derive the single-particle density matrices in terms of those of
anyons, which help expedite the numerical calculations up to
N = 32. We further investigate SU(κ) fermions in two cases
of equal populations in each spin component and all Sz man-
ifolds included. Compared to noninteracting multicomponent
fermions, their momentum distributions are broadened due
to strong interactions in the TG gas limit, while becoming
less broadened as κ increases. We also compare the numerical
results with the analytical predictions in high-momentum tails,
which follow asymptotically the analytical coefficients we
derived in moderately high-momentum regions. Our results
provide an informative comparison with experiments of multi-
component alkaline-earth fermions with SU(κ) spin symmetry
in the spin-incoherent regime.
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APPENDIX: EXACT FORM OF bk′,k
j,m (x′, x)

We here derive the exact form of b
k′,k
j,m (x ′, x) of Eq. (18).

Replacing Ak (t − x) with eiπ (1−k)θ (t−x) and considering x ′ <

x, we obtain

b
k′,k
j,m (x ′, x) =

∫ ∞

−∞
dt e−iπ (1−k′ )θ (t−x ′ )eiπ (1−k)θ (t−x)

×(t − x ′)(t − x)t j+m−2e−t2
, (A1)

which can be further decomposed into three integral regions:

b
k′,k
j,m (x ′, x) =

[∫ ∞

−∞
dt + (e−iπ (1−k′ ) − 1)

∫ x

x ′
dt

+(eiπ (k′−k) − 1)
∫ ∞

x

dt

]
(t − x ′)(t − x)

×t j+m−2e−t2 = A + B + C. (A2)

These integrals can be exactly expressed in terms of incomplete
� functions. The definitions of upper and lower incomplete �

functions and ordinary � function are defined, respectively, as

�(s, x) ≡
∫ ∞

x

t s−1e−t dt, (A3)

γ (s, x) ≡
∫ x

0
t s−1e−t dt, (A4)
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�(s) ≡
∫ ∞

0
t s−1e−t dt = �(s, x) + γ (s, x). (A5)

The first integral of Eq. (A2) becomes

A = 1

4

[
(ei(j+m)π + 1)(2xx ′ + j + m − 1)�

(
j + m − 1

2

)

+2(ei(j+m)π − 1)(x + x ′)�
(

j + m

2

)]
, (A6)

where various ordinary � functions can be derived by
change of variables t2 → t ′ in Eq. (A2). The second integral

becomes

B = (e−iπ (1−k′ ) − 1)[x ′xμj+m−2(x ′, x) + μj+m(x ′, x)

− (x ′ + x)μj+m−1(x ′, x)], (A7)

with

μm(x ′, x) ≡ ε(x)m+1

2
γ

(
m + 1

2
, x2

)

−ε(x ′)m+1

2
γ

(
m + 1

2
, x ′2

)
, (A8)

where ε(x) is the sign function, and similarly, various lower
incomplete � functions can be derived by change of variables.
Finally the third integral of Eq. (A2) becomes

C = 1

2

{[
�

(
j + m + 1

2

)
− ε(x)j+m+1γ

(
j + m + 1

2
, x2

)]
− (x ′ + x)

[
�

(
j + m

2

)
− ε(x)j+mγ

(
j + m

2
, x2

)]

+x ′x
[
�

(
j + m − 1

2

)
− ε(x)j+m−1γ

(
j + m − 1

2
, x2

)]}
. (A9)
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