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Quantum Monte Carlo study of the long-range site-diluted X X Z model
as realized by polar molecules
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Motivated by recent experiments with ultracold polar molecules trapped in deep optical lattices, we study
ground-state properties of the site-diluted long-ranged XXZ model. Site dilution results in off-diagonal disorder.
We map the spin model to a hard-core Bose–Hubbard model and perform large-scale Monte Carlo simulations
by the worm algorithm. In absence of site dilution, we find that, for large enough interaction, three phases are
stabilized: a superfluid phase, a checkerboard solid phase, only present at density m = 0.5, and a checkerboard
supersolid phase which can be reached by doping the CB phase away from half filling. In the presence site-dilution
and at fixed density m = 0.5, we find that, unlike what observed in the case of short-range hopping, localization
never occurs even for site dilution larger than the percolation threshold, and off-diagonal order, although strongly
suppressed, persists for arbitrarily large values of site dilution.
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I. INTRODUCTION

Interacting bosons in the presence of disorder have attracted
a great deal of attention in the past decades. Disorder can
be found or engineered in a variety of systems, ranging from
4He in porous media and aerogels [1–3], thin superconducting
films [4–6], Josephson-junction arrays [7], to ultracold gases
[8–10]. Diagonal disorder has been extensively studied. The
compressible gapless Bose glass phase, intervening between
the Mott insulator and the superfluid phase in the presence
of diagonal disorder, has been investigated in great detail
using a variety of different methods such as density-matrix
renormalization group [11], Monte Carlo simulations [12–17],
and mean-field theory [18]. Diagonal disorder has also been
studied in the presence of long-range hopping. Depending on
the ratio between the power-law decay of the hopping and
the dimensionality of the system, the combination of on-site
disorder and long-range hopping may result in localization,
critical behavior or fully extended states [19]. On the other
hand, systems exhibiting off-diagonal disorder have received
less attention. As an example, it has been shown that, in
the presence of off-diagonal disorder, the incompressible yet
gapless Mott glass phase intervenes between the Mott-insulator
and the superfluid phase [20–23]. When both off-diagonal
long-range interaction and off-diagonal disorder are present,
the interplay between the two may result in new interesting
phenomena.

Purely off-diagonal disorder in systems exhibiting long-
range hopping and interactions have recently been realized
experimentally with polar molecules trapped in deep optical
lattices [24,25]. A spin- 1

2 degree of freedom is encoded in
two internal states of the molecules (the lowest rovibrational
state and an excited rotational state) which are coupled via a
microwave field. Molecules are pinned to lattice sites due to
the deep optical lattice while the dipolar interaction induces
spin exchanges between pairs of molecules. At integer unit

filling, and in the presence of an external dc electric field, this
system realizes a spin XXZ model where the effective magnetic
interactions decay as 1/r3 where r is the distance between
lattice sites [25]. Spin-spin interactions can be tuned with the
external electric field but they can also be modified by choosing
different pairs of rotational levels. In a typical experiment, not
all sites are occupied, but rather sites are randomly filled by a
single molecule or are unoccupied. Recent experiments report
a filling fraction of 25% [26]. This results in the presence
of disorder in the long-range spin-exchange term (equivalent
to long-range hopping). Since the configuration of occupied
sites varies in the experiments from shot to shot, experimental
measurements are effectively averaging over different disorder
realizations. Recently, this system has been studied in the case
of a single spin-excitation present [27,28]. The authors found
that localization of eigenstates depends on dimensionality
and filling. While these results can be extended to the case
of a dilute gas of excitations, the full many-body case has
yet to be studied. Here, we study the site-diluted long-range
XXZ model. Site dilution results in off-diagonal disorder. We
find that, unlike what is observed in the case of short-range
interactions, localization never occurs even for site dilution
larger than the percolation threshold, and off-diagonal order,
although strongly suppressed, persists for arbitrarily large
values of site dilution.

II. HAMILTONIAN

In the following we study the site-diluted two-dimensional
(2D) spin- 1

2 XXZ model defined on a square lattice of
linear size L, as realized by polar molecules trapped in deep
optical lattices. The spin- 1

2 degree of freedom is encoded in
two rotational states coupled via a microwave field, and the
quantization axis defining the two rotational states is aligned
perpendicular to the 2D plane of the square lattice. Hopping is
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suppressed and at most a single molecule occupies each lattice
site. The model reads

H =
∑
i,j

[
J⊥

ij

2
(S+

i S−
j + S−

i S+
j ) + J z

ij

(
Sz

i S
z
j

)]
. (1)

Here S±
i and Sz are the spin- 1

2 operators which obey
[Sz

i ,S
±
j ] = ±δijS

±
i ; the spin-exchange interaction J⊥

ij = J⊥
r3
ij

with J⊥ < 0; J z
ij = Jz

r3
ij

is the strength of the spin-spin repulsion;

rij is the relative distance between site i and site j . Note
that the Ising term, with coupling strength Jz, is present only
if an external dc electric field (parallel to the quantization
axis) is applied. Model 1 features purely off-diagonal disorder
resulting from randomly distributed unoccupied lattice sites.

Model 1 can be exactly mapped onto a site-diluted model of
hard-core lattice bosons in the presence of long-range dipolar
hopping and dipolar interaction:

H = −J
∑
i<j

1

r3
ij

(a†
i aj + aia

†
j ) + V

∑
i<j

ninj

r3
ij

, (2)

where J⊥
2 = −J , Jz = V . The first term in the Hamiltonian

is the kinetic energy, where a
†
i (ai) are the bosonic creation

(annihilation) operators on the site i satisfying the usual
commutation relations and the hard-core constraint a

†
i a

†
i = 0.

J is the hopping amplitude with hopping matrix element
Jij = J

r3
ij

, where rij is the relative distance between site i and

site j . The second term describes the dipole-dipole purely
repulsive interaction with strength V and Vij = V

r3
ij

. Site di-

lution corresponds to removing a certain fraction of sites from
the lattice, which, in the experimental setup, correspond to
unoccupied sites. Site dilution results in off-diagonal disorder.

In the following we perform large-scale quantum Monte
Carlo simulations by the worm algorithm [29] to study equi-
librium phases of model 2 both without and with site dilution.

III. PHASE DIAGRAM IN ABSENCE OF SITE DILUTION

In this section we study the phase diagram of model 2 in
the absence of site dilution. The phase diagram is shown in
Fig. 1(a) in the plane of V/J vs filling factor m = 〈Sz〉. We find
that, for large enough interaction, three phases are stabilized:
a superfluid phase (SF), characterized by off-diagonal long-
range order, a checkerboard solid phase (CB), characterized
by diagonal long-range order, only present at density m = 0.5,
and a checkerboard supersolid phase (CB SS), characterized
by both diagonal and off-diagonal long-range order, which can
be reached by doping the CB phase away from half filling. On
the other hand, at lower interaction strength, the system is in a
SF phase for any value of the filling factor. In spin language,
the CB order corresponds to the easy-axis antiferromagnetic
order, the SF phase corresponds to easy-plane ferromagnetic
order. The SF phase possesses finite superfluid density ρs ,
easily accessible in our simulations. Notice that, since the
hopping term in Eq. (2) is not limited to nearest neighbors,
the standard expression of superfluid density in terms of
winding numbers [30] must be generalized [31]. The CB solid
is characterized by a finite value of structure factor S(k) =∑

r,r′ exp [ik(r − r′)]〈nrnr′ 〉/N , k is the reciprocal-lattice

FIG. 1. (a) Ground-state phase diagram of model 2 as a function
of interaction strength V/J and filling factor m. Error bars come
from finite-size scaling. The system features three phases: a superfluid
phase (SF), a checkerboard solid phase (CB), and a checkerboard
supersolid phase (CB SS). At half filling, the SF is destroyed in favor
of a CB via a first-order phase transition. At V/J > 8, the CB SS
can be reached by doping the CB solid with particles or holes. At
large enough doping, the CB SS gives way to a SF via a second-order
phase transition. Red circles are numerical results for the SF to CB SS
second-order transition. Blue dotted line indicates CB at half filing.
(b) Hysteresis curves for ρs (red down triangles) and S(π,π ) (blue
up triangles) as a function of V/J for system size L = 32 signaling
a first-order CB-SF phase transition at m = 0.5. (c) Density m as a
function of the chemical potential μ for V/J = 9.0. (d) Finite-size
scaling of S(π,π ) at fixed V/J = 10.0 for system size L = 20, 24, 28,
and 32 (red circles, blue up triangles, green down triangles, and orange
diamonds, respectively). The crossing of different curves marks the
transition point at m = 0.4147 ± 0.005. Error bars in panels (b)–(d)
come from statistical Monte Carlo sampling. Here and throughout the
text, when not visible, error bars are within the symbol size.

vector with k = (π,π ) in the CB. Finally the CB SS is
characterized by finite ρs and S(π,π ). Compared to the case of
nearest-neighbor hopping only, in the presence of long-range
hopping, the SF phase is much more robust against interaction
strength. Indeed, at m = 0.5, the CB phase [blue dotted line
in Fig. 1(a)] is reached for interaction V/J ∼ 8 compared
with V/J ∼ 3.5 [32] in the nearest-neighbor-hopping case.
Because the presence of long-range hopping breaks down the
sublattice invariance, model 2 does not have a Heisenberg point
(i.e., Jx = Jy = Jz) and so the transition from SF to CB does
not happen continuously via the Heisenberg point but, rather,
it is expected to be of first order since it is a transition between
two broken-symmetry states. Our simulation results confirm
this expectation, as shown in Fig. 1(b) where we show the
hysteresis curve for ρs (red down triangles) and S(π,π ) (blue
up triangles) as a function of V/J for system size L = 32.

At fixed interaction strengthV/J > 8, one would not expect
two order parameters to disappear continuously at the same
critical point, thus, either the CB-SF transition is of first order or
it happens via an intermediate phase where both orders coexist.
We have observed a stable CB SS, as demonstrated by the lack
of hysteresis in the density m vs chemical potential μ at fixed
V/J . Moreover, as shown in Fig. 1(c) for V/J = 9.0, the m

vs μ curve does not display any discontinuity. The CB SS
can be reached by doping the CB solid with particles or holes
(particle-hole symmetry exists since bosons are hard core).
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At large enough doping, the diagonal order becomes unstable
and the CB SS disappears in favor of a SF via a second-
order phase transition belonging to the (2 + 1)-dimensional
Ising universality class. Standard finite-size scaling is used to
extract transition points [red circles in Fig. 1(a)] as shown
in Fig. 1(d) where we plot S(π,π )L1.0366 vs filling factor
m at fixed interaction strength V/J = 10.0 for system sizes
L = 20, 24, 28, and 32. The crossing of curves corresponding
to different system sizes signals the transition, in this case at
m = 0.4147 ± 0.005.

We conclude this section by considering the robustness of
the quantum phases observed against thermal fluctuations. We
have performed finite-temperature simulations at fixed V/J =
9.0. The critical temperature for the SF-to-normal Kosterlitz–
Thouless transition and the CB-to-normal 2D Ising-type tran-
sition at densities m = 0.4, 0.47, and 0.5 corresponding to SF,
CB SS, and CB phase at T = 0, respectively, are all of the order
of Tc/J ∼ 2. For J = 104h Hz and V = 0 as in Ref. [24], this
translates to a normal-to-SF transition temperature of about
10.0 nK.

IV. SITE-DILUTED X X Z MODEL

In this section we study model 2 in the presence of site
dilution. Because hopping is long-ranged, arguments based on
percolation theory (see, e.g., Ref. [23]) are inapplicable and
the presence of an insulating phase beyond the percolation
threshold is no longer guaranteed. In the following, we fix the
density of the system at m = 0.5 (calculated with respect to
available sites) and investigate localization of particles upon
increasing site dilution p at given values of the interaction
V/J = 0, 2, and 7, which all correspond to a SF phase in
the clean system. In all cases, temperature has been chosen
in order to ensure that the system is in its ground state,
i.e., β = 5

6L with L = 84, 100, and 150. As a reminder, site
dilution results from unoccupied sites in the experimental
setups. Averaging over different realizations of site dilution
corresponds to averaging results from different experimental
shots. The simulation results shown below are based on 50 to
100 realizations of site dilution, depending on the value of the
interaction and site dilution. To see whether superfluidity is
destroyed at large enough site dilution, we look at the spatial
decay of the off-diagonal correlator fij ∝ ∑

τ,τ ′ 〈ai(τ )a†
j (τ ′)〉,

where ai(τ ), a
†
j (τ ′) are annihilation and creation bosonic

operators expressed in the interaction picture. In the SF phase,
fij is expected to be long-ranged with respect to the distance
rij between sites i and j .

Let us start by considering the case V/J = 0 where no
diagonal interaction is present. This corresponds to absence
of external dc electric field in an experimental setup. Figure 2
shows superfluid density ρs as a function of site dilution p for
system size L = 84. As expected, superfluidity is suppressed
as site dilution increases. We have considered site dilution up
to p = 0.9. Even at such a large dilution value, superfluidity,
although strongly suppressed, still persists, as demonstrated in
the top-right inset of Fig. 2, where we plot ρs as a function
of 1/L for L = 84, 100, 150, and p = 0.9 (ρs saturates to
a finite value with increasing L). To further support this
conclusion, in Fig. 3 we plot fij as a function of the distance

p

κ

ρ
s

p

1/L

ρ
s

FIG. 2. V/J = 0. Main plot shows superfluid density ρs as a func-
tion of site dilution p for L = 84. Superfluidity is strongly suppressed
at larger site dilution. Bottom-left inset shows compressibility κ as a
function of site dilution p. Compressibility increases at large enough
site dilution. Top-right inset shows superfluid density ρs as a function
of 1/L at site dilution p = 0.9. Error bars are the result of averaging
over different site-dilution realizations.

along the x direction for system sizes L = 84, 100, and 150
and at fixed p = 0.9. The correlation function exponentially
decays to a constant value different from zero. Dotted lines
in the figure are the result of the exponential fit ae−x/ξ + b

with b �= 0. Note that, the correlation length ξ increases with
system size. These results strongly indicate that the system
remains SF for arbitrarily large values of site dilution. This
fact can be understood as follows: At site dilution p larger
than the percolation threshold pc = 0.407 253 [23], SF islands
within the lattice are geometrically disconnected but coherent!
Superfluidity of the islands follows from the fact that, at
V/J = 0, the corresponding clean system is a SF. Coherence
between islands is guaranteed by long-range hopping. As site

f i
j

xij

FIG. 3. V/J = 0, p = 0.9. Correlation function fij as a function
of x distance between sites i and j for system size L = 84, 100, and
150 (red circles, blue squares, and green diamonds, respectively).
Dotted lines are the exponential fit ae−x/ξ + b. The correlation
function decays to a constant value different than zero, suggesting
the system is in a SF phase. Note also that the correlation function ξ

increases with system size. Error bars are within symbol size and are
a result of averaging over different site-dilution realizations.
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FIG. 4. V/J = 0. Imaginary time average of the density dis-
tribution within the lattice for a single Monte Carlo configuration
and a single dilution realization, at site dilution (a) p = 0.4 and
(b) p = 0.85. The radius of a red circle at a given site is proportional
to the density at that site. Blue dots represent sites which have been
removed from the lattice.

dilution increases, the average distance between SF islands also
increases while hopping is further suppressed thus suppressing
coherence and superfluidity. We notice that a suppressed SF
density will result in a suppressed critical temperature for the
SF to normal liquid transition at finite temperature making
it challenging to observe coherence experimentally (see also
below).

Interestingly, as site dilution increases, compressibility also
increases, as the bottom-left inset of Fig. 2 shows. Indeed,
increased site dilution corresponds to a larger average distance
between disconnected lattice regions, making it harder for
particles to delocalize within the entire lattice. This implies
a nonuniform density distribution within the lattice and the
presence of lower-density regions contributing to an increased
compressibility. This can be seen in Fig. 4 where we show
the imaginary time average of the density distribution within
the lattice for a single Monte Carlo configuration and a single
dilution realization, at site dilution p = 0.4 [Fig. 4(a)] and
p = 0.85 [Fig. 4(b)]. The radius of a red circle at a given site
is proportional to the density at that site. Blue dots represent
sites which have been removed from the lattice. The standard
deviations of the average density m = 0.5 corresponding to
p = 0.4 and p = 0.85 are of the order of 0.045 and 0.1,
respectively. The conspicuous presence of sites with significant
lower-than-average density at p = 0.85 is responsible for a
larger compressibility. This scenario persists for configurations
corresponding to larger and larger number of Monte Carlo
steps. Once particles are able to reach a lower density region,
they are “stuck” there due to suppressed hopping and the
density distribution remains nonuniform.

At fixed interaction strength V/J = 2 and 7 we find
qualitatively similar results as for V/J = 0. Here, we only
report results corresponding to V/J = 7. Figure 5 shows
superfluid density ρs as a function of site dilution p for L = 84.
Superfluidity, although suppressed, remains finite even for
large site dilution. The top-right inset of Fig. 5 shows ρs

increasing with system size at fixed p = 0.75, indicating that
the system is SF. Figure 6 shows the decay of the correlator
fij at p = 0.75 for system sizes L = 84, 100, and 150. As the
exponential fit shows (dotted lines), the correlation function
exponentially decays to a constant different than zero, with
correlation length increasing with system size. These results

ρ
s

p

1/L

p

κ

ρ
s

FIG. 5. Same as Fig. 2 but for V/J = 7 and p = 0.75.

imply that superfluidity, although suppressed, persists for
large values of site dilution even at finite V/J . This can be
understood by using similar arguments as for the case of
V/J = 0. As already observed for V/J = 0 and shown in the
bottom-left inset of Fig. 5, compressibility increases at large
enough values of site dilution. This increase is less dramatic
than for V/J = 0 due to a finite value of interaction which
suppresses density fluctuations.

V. EXPERIMENTAL REALIZATION

The model studied in this work was realized by loading
KRb polar molecules into a deep optical lattice where hopping
is suppressed. Molecules are cooled so that their hyperfine
structures can be ignored. A spin 1

2 is encoded in the rota-
tional degrees of freedom and microwave fields are used to
induce transitions between two different rotational states. Spin
interactions are directly driven by dipolar interactions without
the requirement of particle tunneling. The ratio J⊥/Jz can be
controlled by tuning the external dc electric field as well as
by changing the choice of the rotational states which form the
effective spin- 1

2 system [33,34]. For example, for rotational
states used in Ref. [24], Jz/J⊥ can be tuned from 0 to 3 by
using E fields from 0 to 16 kV/cm. Based on our results,
for this experimental setup, only the easy-plane ferromagnetic
order (equivalent to a superfluid phase of model (2) may be

FIG. 6. Same as Fig. 3 but for V/J = 7 and p = 0.75.
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observed. By choosing different rotational states [35], Jz/J⊥ >

10 can be achieved with similar E fields, so that easy-axis
antiferromagnetic order (equivalent to checkerboard order) and
the supersolid phase (where both easy-plane ferromagnetic and
easy-axis antiferromagnetic order coexist) may be observed.

As for the site-diluted case, at the moment, filling factors
achieved experimentally are �25%, corresponding to a site
dilution p � 0.75 in model 2. At such large site dilution, even
for Jz/J⊥ = 0, the easy-plane ferromagnetic order is strongly
suppressed. We have estimated that temperatures T ∼ 1.5 nK
are needed to observe easy-plane ferromagnetic order. Larger
filling factors, corresponding to smaller site dilution, are a little
more favorable for observing this phase. We have estimated
that with site dilution p = 0.5, the easy-plane ferromagnetic
order would be observed at temperature T ∼ 6.0 nK.

VI. CONCLUSION

Recent experiments with ultracold polar molecules trapped
in deep optical lattices, where a spin- 1

2 degree of freedom
is encoded in two internal states, realize the site-diluted
long-ranged XXZ model. Site dilution results in off-diagonal
disorder. We have mapped the XXZ model onto the hard-core
Bose–Hubbard model and have performed large-scale Monte
Carlo simulations by using the worm algorithm. We have

studied the ground-state phase diagram of the model in the
absence of site dilution. We have found that, for large enough
interaction, three phases are stabilized: a superfluid phase, a
checkerboard solid phase, only present at density m = 0.5,
and a checkerboard supersolid phase which can be reached
by doping the CB phase away from half filling. We have also
studied the model in the presence of site dilution and at fixed
density m = 0.5. We have found that, unlike what is observed
in the case of short-range hopping, localization never occurs
even for site dilution larger than the percolation threshold and
off-diagonal order, although strongly suppressed, persists for
arbitrarily large values of site dilution. We have notice that
a suppressed SF density will result in a suppressed critical
temperature for the SF-to-normal liquid transition at finite
temperature and have provided estimates for temperatures
needed to observe coherence. Interestingly, we have found that
compressibility increases as site dilution increases.
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