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We present a technique to diagnose the condensate fraction in a one-dimensional optical lattice of weakly
interacting bosons based on the dynamics of the trapped atoms under the influence of a momentum kick. It is
shown using the multi-configuration time-dependent Hartree method for bosons that the two extreme cases of the
superfluid and Mott insulator states exhibit different behaviors when the lattice is briefly tilted. The current induced
by the momentum boost caused by the tilt which depends directly on the amount of phase coherence between the
lattice sites is linearly proportional to the condensate fraction. The atom-atom interactions only change the slope
of the linear relationship. We discuss the applications of this scheme in magnetic field gradiometery.
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I. INTRODUCTION

The advances in the physics of trapped ultracold atoms has
led to a fast-growing spectrum of applications such as quantum
computers and simulators [1,2], high-precision measurement
and quantum metrology [3–5], and testing the fundamental
theories of physics [6]. Ultracold atomic clouds immersed
in an optical lattice is a basic paradigm of quantum systems
used in these applications [7,8]. Many of the recent experi-
ments on ultracold atomic clouds in optical lattices involve
a time-dependent manipulation of the underlying trapping
potential (e.g., tilting) or the interaction between the atoms
(e.g., quenching). Developing a good understanding of these
experiments requires a detailed knowledge of the properties
of the involved quantum states at both the qualitative and the
quantitative level.

The most important classes of the quantum states of ultra-
cold atoms in optical lattices are the superfluid (SF) state and
the Mott insulator (MI) state. The transition between these two
limits at zero temperature defines a quantum phase transition
[8,9]. Since the first experimental realization of Bose-Einstein
condensates (BECs) in optical lattices, one of the most im-
portant quantities used to characterize the superfluid-to-Mott-
insulator transition has been the noncondensed fraction [9].
This quantity is also relevant for studying the fragmentation
in BECs with degenerate ground state [10]. In the case of a
few-well systems with a considerable number of atoms per site,
the Mott-insulating physics boils down to the fragmentation
phenomenon. For the double-well system [11,12], the Mott-
like state corresponds to a twofold fragmented state.

Fragmentation properties can be strictly defined in terms
of the reduced one-particle density [10,13,14]: ρ(1)(x,x ′) =
〈�̂†(x ′)�̂(x)〉, where �̂ is the field operator. For a
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pure state, we have ρ(1)(x1,x
′
1; t)=N

∫
�∗(x ′

1,x2, . . . ,xN ; t)
�(x1,x2, . . . ,xN ; t)dx2 · · · dxN , where N is the number of
atoms and � is the many-body wave function. This matrix can
also be defined in terms of its eigenvalues (natural occupations)
nk and eigenvectors (natural orbitals) φk as

ρ(1)(x,x ′; t) =
M∑

k=1

nk(t)φk(x,t)φ∗
k (x ′,t). (1)

For a thermal state, the occupancies nk are temperature depen-
dent. The system is called condensed if only one natural orbital
is macroscopically occupied, n1 ≈ N [13], and fragmented if
several eigenvalues have macroscopic occupations [14]. The
condensed fraction n refers to the relative occupation of the
most occupied natural orbital n = n1

N
, while the noncondensed

fraction is (1 − n).
Unlike the SF state where the quantum states exhibit a

well-defined phase at every lattice site, the MI state exhibits
no global phase coherence but rather a well-defined number of
atoms at each lattice site. Therefore, the ballistic expansion
method has been the main tool to distinguish between the
two phases and quantify the noncondensed fraction in trapped
ultracold systems [7]. In this method, the visibility of the
interference fringes formed during the ballistic expansion after
the atoms are released to free space allows one to quantify the
(non)condensed fraction of the original quantum state [15]. In
principle, a single experimental measurement (a single shot)
can be used to quantify the noncondensed fraction in an optical
lattice. For few-well systems, the proper measurement of the
visibility in a fragmented system requires a multiple repetition
of the full experimental sequence with a careful statistical
analysis [11,12]. In general, this method suffers from several
effects such as a finite time-of-flight and an inhomogenous
trapping potential [16].

Some alternative methods have been proposed to probe
the condensate fraction and the superfluid transition such as
Bragg spectroscopy [17,18] or the quantum microscope which
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measures single-site-resolved atom number fluctuations [19].
It was recently also reported that measuring the density-density
correlations after free expansion is a good signature of the
fragmentation in single-site traps [20]. Other methods (such
as those in Refs. [21,22]) are more involved and include
additional manipulations on the clouds, e.g., phase-imprinting
with more advanced statistical collection and repetition and
postprocessing of the experimental shots.

The aim of this paper is to provide a less demanding
alternative for measuring the condensate fraction in systems
of weakly interacting ultracold atoms based on the dynamical
behavior of the single-particle density. We show that the
tunneling behavior of the atoms in the optical lattice under
the influence of a momentum kick has a strong dependence
on n. We analyze the dynamics of two- and many-site one-
dimensional optical lattice systems described by the Hamil-

tonian H = ∑
i ( P 2

i

2m
+ V (xi)) + ∑

i<j W (xi − xj ), where m

is the mass of the atom, Pi is the momentum of atom i,
V (x) is the lattice potential, and W (xi − xj ) is the interatomic
interaction potential. We use a periodic lattice of the form
V (x) = V0 cos( πx

a
), where V0 is the depth of the lattice and

a is the lattice constant, while we take W (xi − xj ) as a
δ-function potential (i.e., hard-core interaction), W (xi − xj ) =
W0 × δ(xi − xj ). For all the numerical simulations in this pa-
per, we use the multi-configurational time-dependent Hartree
method for bosons (MCTDHB) [23–25] which is available
within the MCTDHB-laboratory package [26]. We give a
prescription for quantifying the condensate fraction in terms of
the atomic oscillations after the lattice is briefly tilted. In order
to simulate quantum states with different condensate fractions,
we use the ground state of an interacting system with different
values of W0 as initial states. Whenever we refer to interatomic
interactions, we mean for the actual boosting experiment unless
otherwise stated.

This paper is structured as follows. In Sec. II, we consider
the simplest two-well model system and introduce the key
concept behind our method. In Sec. III we describe how to
diagnose the condensate fraction in an unknown stationary
quantum state for a multiwell optical lattice and discuss the
effect of the atom-atom interactions. In Sec. IV, we show a side
application of our method to the field of quantum metrology.
In Sec. V we conclude and summarize our study.

II. TUNNELING DYNAMICS IN
A DOUBLE-WELL POTENTIAL

The double-well system is a fundamental building block
for studying correlations and tunneling dynamics of quantum
many-body systems that has been realized with large controlla-
bility for bosonic [27] and fermionic atoms [28]. As simple as it
is, this system captures the physics of basic solid-state models
such as the Hubbard model and can exhibit rich dynamics (see,
for example, Ref. [29]). In this section, we illustrate the method
proposed in this paper for a double-well potential and show the
effect of the coherence between the two wells on the tunneling
dynamics through the barriers.

To understand the effect of coherence on tunneling, consider
a double-well system with two noninteracting atoms. If this
system is initialized such that the two atoms are condensed

in the ground state of one well [see Fig. 1(a)], the atoms will
eventually tunnel through the barrier to the other well. During
this process, the atoms will pass through an intermediate
(superfluid) phase where they are equally distributed in a
coherent superposition between the two wells. Therefore, if
the system is initialized in this superfluid state with the proper
phase relation between the two wells, a current will be induced
in the lattice [Fig. 1(c)].

On the other hand, if this system is initialized in a Mott-like
state, an incoherent superposition of two condensates, each
localized in one well (i.e., each atom is not aware of the other
atom), each atom will tunnel through the barrier in a direction
opposite to the other one and the net current will be zero
[Fig. 1(b)]. This can be understood mathematically by noticing
that imprinting a phase difference between the two sites causes
only a global phase change to the wave function of the MI state
and hence leads to no physical changes.

The contrast between these two extreme cases in terms of
the current induced in the lattice is a measurable effect that can
be used to distinguish between them. To induce this current,
one needs to create the initial phase relation between the two
wells. The current induced will be maximum when the initial
phase difference between the two sites of the double well is π/2
as in the transient cases in Fig. 1(a). We can induce this current
in the numerical simulation by imprinting this phase difference
manually to the initial state, or by imprinting a phase gradient
eikx such that ka = π/2, where a is the distance between
the two wells. Imprinting this phase gradient is equivalent to
giving a momentum boost to the system. This can be physically
realized by briefly tilting the lattice at the beginning. Tilting
the optical lattice potential means adding a potential gradient
Vtilt = γ x to the optical lattice potential. This potential can be
of the same type of the lattice potential, or a different type, i.e.,
a gravitational potential. The duration of the tilt should be short
compared to the timescale of the atomic dynamics. In order for
the tilt to achieve the same effect, the phase difference between
the two sites developed during the tilt interval T should be of
the same magnitude, i.e., γ aT /h̄ = π/2.

In Figs. 1(d), 1(e), and 1(f), we show the atomic oscil-
lations in double wells for the superfluid and Mott states
with noninteracting atoms using the three different boost
mechanisms presented above. Namely, the phase differences
between the two wells are created by either performing the tilt
mechanism [Fig. 1(d)], imprinting a phase gradient [Fig. 1(e)],
or imprinting a discrete phase difference [Fig. 1(f)]. The last
case is the theoretical case consistent with the intermediate
figures in Fig. 1(a), while the first two are simulations of
more practical situations. In this simulation we used a lattice
potential of the form V (x) = 2 cos2(0.2πx), where V0 can be
expressed in terms of the recoil energy ER (ER = h2

2mλ2 , λ is the
wavelength of the laser used to construct the lattice andλ = 2a)
as V0 = 101ER (we use h̄ = 1 and m = 1 in all numerical
simulations in this paper). This trapping potenial gives rise to
the tunneling coefficient J = h × 11.7 × 10−3 Hz, where h is
Planck’s constant, corresponding to a Rabi cycle of 427 s (see,
e.g., Ref. [8] for details of computing J ).

We notice in Figs. 1(d), 1(e), and 1(f) the existence of
fast-fluctuating oscillations with small amplitude on top of 〈x〉
in Figs. 1(d) and 1(e) corresponding to fast oscillations within
each well probably due to the coupling to higher bands (see
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FIG. 1. Tunneling dynamics in a double-well potential. (a) The evolution of a condensate localized in a single well during a complete Rabi
cycle, indicating the phase difference between the two sites during the delocalized phases. (b,c) Minkowski space-time plots of the density of
atoms in a double well in the Mott-like and superfluid states, respectively. The two systems are initially given a momentum boost by imprinting
a phase difference of π/2 on the wave function in the two sites. (d–f) The mean value of the position of the atoms 〈x̂〉 for the superfluid state
(blue) and the Mott state (red) when the momentum boost is generated by a brief tilt in the lattice (see upper panel) (d), imprinting a phase
gradient eikx (e), or directly imprinting a π/2 phase difference between the sites of the two wells in the initial state (f). The tilt and phase
gradients are adjusted to lead to a π/2 phase difference between the sites as well. All distances are scaled by a, the distance between the two
wells.

Sec. IV). Apart from these fluctuations, the current indicated
by the oscillations of the mean distance of the atoms 〈x̂〉 with
respect to the center of the double-well potential is almost
the same for the three studied superfluid states and zero for the
Mott states. This distinct behavior implies that the intermediate
cases where only a fraction of the atoms is in the superfluid
state yield intermediate values for the current induced, and
hence this current can be used to probe the condensate fraction
n. We verify this observation in Fig. 2. In this figure, we show
the atomic oscillations in the same double well as in Fig. 1, for
different initial states having different condensate fractions n.
These states are taken to be the ground states of Hamiltonians
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FIG. 2. (a) Matter wave oscillations in a double-well potential
subjected to a brief tilting initially for different condensation fractions.
(b) The amplitude of the oscillations in panel (a) versus the condensate
fraction n. Distances are normalized with respect to a, the separation
between the two wells.

with different interparticle interaction strengths. After the ini-
tial states are generated, the interaction is switched off, and the
boost is implemented using the tilt mechanism. There is no net
induced current in these states before applying the momentum
boost. These results were obtained by MCTDHB with two
orbitals [MCTDHB(2)] but they are identical to MCTDHB(4).
The waveforms of 〈x̂〉 are smoothed out by a moving average
technique for the sake of clarity. In Fig. 2(b), we notice the re-
markable linear dependence of the amplitude of the oscillations
on the condensate fraction n. Since this scheme requires the
atomic dynamics to be primarily due to the momentum boosts,
it is suitable only for diagnosing stationary quantum states.

III. DIAGNOSIS OF THE CONDENSATE FRACTION
IN AN OPTICAL LATTICE

The technique presented in the previous section for a
double-well potential is directly generalizable to an optical
lattice. To understand the difference between the superfluid
and Mott states in terms of the currents induced, consider the
two cases in the second quantization picture. We shall suppose
without loss of generality that the occupation is one atom per
site. The superfluid wave function is expressed as

�SF =
(

N∑
i=1

â
†
i

)N

|0〉, (2)
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while the Mott insulator wave function in the atomic limit (zero
tunneling) is expressed as

�MI =
N∏

i=1

â
†
i |0〉, (3)

where â
†
i is the bosonic creation operator at site i.

The current operator is

Ĵ = h̄

2mi
(�̂†(r)∇�̂(r) − ∇�̂†(r)�̂(r)), (4)

where �̂(r) is the field operator. If we take our basis to be the
Wannier states {wn(r)} which are localized at each lattice site,
i.e., wn(r) = w(r − rn), we can express the field operator as

�̂(r) =
∑

n

ânwn(r). (5)

In the theoretical case where the phase of the wave function at
each lattice site is given a different value in discrete steps of
	φ, we can let this phase be encoded in the Wannier states,
i.e., w̃n = ein	φwn. Substituting the field operator in Eq. (4) in
terms of the new Wannier states, we find that

〈Ĵ 〉 = h̄

2mi

(∑
k

∫
w̃∗

k (r)∇w̃k(r)dr〈a†
kak〉

+
∑
k �=q

∫
w̃∗

q(r)∇w̃k(r)dr〈a†
qak〉 − c.c.

⎞
⎠ (6)

The first term on the right-hand side (RHS) does not contribute
in the current due to the vanishing integral. The second term
vanishes in the case of a Mott insulator due to the absence
of correlations between different sites; i.e., it can be verified
using Eq. (3) that 〈a†

qak〉MI = 0 for k �= q. This is not the
case, however, in the superfluid state. If we consider the
contribution from the integral in the second term on the RHS
to be predominantly due to neighboring sites, we find that in
the superfluid state 〈Ĵ 〉 is proportional to sin(	φ).

In Fig. 3, we illustrate the mean atomic displacement in
a five-site optical lattice of the form V (x) = 25 cos2(πx),
corresponding to V0 = 5ER , without interatomic interaction.
The lattice contains five atoms, and we used five orbitals
in the simulation. The initial states are again taken to be
the ground states of interacting Hamiltonians with different
interaction strengths W0 ranging from 0 to 25. We briefly
tilt the lattice potential in the beginning of the simulation to
imprint a phase difference of π/2 to the wave function between
each neighboring lattice sites. The closest state to a Mott
insulator with maximum fragmentation we could achieve has
20% occupation for each natural orbital. This state corresponds
to the lowest point in Fig. 3(d). On the other hand, the superfluid
state with maximum occupation of a single natural orbital
corresponds to the highest point in Fig. 3(d) with maximum
amplitude of the current. The atomic density Minkowski plots
for the two cases are presented in Figs. 3(a) and 3(b).

The pronounced linear behavior in the dependence of the
current on the fragmentation in Figs. 2 and 3 indicates that, in
order to diagnose the condensate fraction in an optical lattice
in an unknown state, it suffices to identify the two points on
this graph corresponding to the extreme cases of superfluid and

0 5 10 15
1.0

0.5

0.0

0.5

1.0

Time s

x
a

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

n

A
m
pl
itu
de
a

x/a

x/a

T
im

e
(s

)
T

im
e

(s
)

(a)

(b)

(c)

(d)

I

II

FIG. 3. Diagnosing the condensate fraction in a five-site optical
lattice with noninteracting atoms. (a,b) Minkowski space-time plots
of the density of atoms after a momentum boost caused by a brief
tilting of the lattice in a Mott state and a superfluid state, respectively
(see the upper panel). (c) The oscillation of the atoms for different
condensation fractions. (d) The amplitude of the oscillations in panel
(c) versus the condensate fraction n. Distances are normalized with
respect to a, the separation between the two wells.

Mott states. Reliable simulations of larger fragmented lattices
requires a large number of orbitals, which in turn requires a lot
of computational resources beyond our current capabilities. We
believe, though, that these toy models capture the essence of
the behavior of much larger systems.

We repeated the previous simulation for a system with
interatomic interaction, W (xi − xj ) = 0.1 × δ(xi − xj ). This
value of W0 is comparable to the interaction strength for 10
87Rb atoms confined in a one-dimensional ten-site lattice [30].
The results presented in Fig. 4 indicate that the small interaction
has diminished the amplitude of the oscillations considerably,
but the amplitude still exhibits a linear dependence on the
condensate fraction. For the sake of comparison, to generate an
initial state with 90% condensation, we used W0 = 0.55. We
finally note that adding a realistic external trap potential to the
lattice potential should not change qualitatively the essential
features distinguishing the superfluid and the Mott-like states.

IV. QUANTUM METROLOGY USING MATTER WAVE
OSCILLATION IN OPTICAL LATTICES

In this section, we explore the potential application of the
atomic oscillation in an optical lattice orchestrated by the
imprinted phase gradient in the field of metrology. Let us take
the result derived in the previous section for the sinusoidal
dependence of the current on the value of the imprinted phase
step 	φ one step further and consider the interesting limit of a
very large lattice (i.e., consisting of many wells) in a superfluid
state. If a phase gradient eikx is imprinted on the initial state
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FIG. 4. Same as in Fig. 3 with the interatomic interaction W (xi −
xj ) = 0.1 × δ(xi − xj ). The initial states are the same as those in
Fig. 3. (a) The oscillation of the atoms for different condensate
fractions. (b) The amplitude of the oscillations in panel (a) versus
the condensate fraction n.

of the condensate, the frequency of the matter wave density
oscillation in the lattice will be a sinusoidal function of ka,
where a is the lattice constant.

In order to prove this statement, consider first an optical
lattice with periodic boundary conditions. The translation
symmetry leads to the eigenstates forming a Bloch band
structure. For a sufficiently deep optical lattice, where only
overlap between Wannier states in neighboring sites is con-
sidered, the energy eigenvalues as a function of the Bloch
quasi-momentumq in the first Bloch band can be approximated
by the tight-binding model, E(q) = α − 2J cos(qa), where J

is the tunneling coefficient and α is the on-site energy. In the
first Brillouin zone, the Bloch wave vector q ranges from −π/a

to π/a in discrete steps.
For the more realistic case of rigid boundary conditions, or a

lattice in an external trap, the degeneracy between q and −q is
removed and they are mixed into a new pair of eigenstates with
different parity. If we keep q as a label for these new states,
the spectrum of the first band though remains more or less well
approximated by the same formula for the tight-binding model,
E(q) = α − 2J cos(qa).

Now, what happens when we initialize this system with a
(boosted) state with momentum k, as we do by phase imprinting
or by tilting the lattice? This state can be represented as a
superposition of only a few eigenstates having the closest |q| to
k by Fourier sine and cosine series. Therefore, only those states
with |q| very close to k will participate in the dynamics. For
small-momentum kicks that keep the dynamics within the first
Bloch band, the timescale of 〈x〉 can be roughly determined by
the differences of the eigenenergies of the closest eigenstates
of different parity participating in the dynamics.

For a periodic lattice, the difference between adjacent
nondegenrate eigenstates is given by 	q

∂E
∂q

, where 	q =
2π

(N−1)a and N is the number of sites. On the other hand and
in the limit of a large lattice, the splitting between adjacent
eigenstates for a nonperiodic lattice is approximately half the
difference between adjacent nondegenrate eigenstates in the
periodic case. Therefore, the frequency ω of the oscillations of
〈x〉 can be approximated as

h̄ω ≈ 1

2
	q2Ja sin(ka) = 2π

(N − 1)
J sin(ka). (7)

The maximum frequency occurs as expected around ka = π/2.
For a double-well, in comparison, there are only two levels in
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FIG. 5. (a) Atomic oscillation in a superfluid optical lattice
consisting of 32 sites and initialized with ka = 	φ = 0.5 (thick gray),
1.0 (black), and 1.5 (thin blue). (b) The dependence of the frequency
of oscillation on the value of ka in steps of of ka = 0.1 obtained by
numerical simulation using MCTDHB(1) (dotted) and compared with
the theoretical prediction in Eq. (7) (solid).

each band, and hence the frequency of atomic oscillation is
less sensitive to the value of ka.

It is noteworthy to highlight the difference between these
oscillations which ensue in a periodic potential after a brief kick
and the oscillations of quantum particles in a periodic potential
subject to a constant force, known as Bloch oscillations. Bloch
oscillations are intrinsic and local oscillations; their frequency
is defined by the lattice spacing and the force field, while the
oscillations considered here are global oscillations that sweep
the whole lattice and therefore their frequency depends on the
dimensions of the whole lattice.

We analyzed the atomic oscillation in a superfluid optical
lattice consisting of 32 sites of the form V (x) = 25 cos2(πx)
and initialized with different values of phase steps of ka. Since
the energy eigenvalues in the first band fall in the range [α −
2J,α + 2J ], the tunneling coefficient J can be estimated as
0.25 × (E31 − E0), where En is the nth eigenenegry of the
periodic lattice and equals h × 0.05 Hz.

In Fig. 5(a), we show the matter wave oscillations for ka =
	φ = 0.5, 1.0, 1.5. The dependence of the frequency on ka

for the range 0 to π is shown in Fig. 5(b) compared with the
theoretical prediction in Eq. (7). We notice from the wiggling
on top of the atomic oscillation in Fig. 5(a) that higher band
effects appear in the simulation.

The strong dependence of the oscillation frequency on
the phase step ka and the clear peaking around ka = π/2
suggest that such a behavior can be used in quantum metrology,
specifically as a magnetic or gravitational field gradiometer.
Suppose that a field in the z direction couples to the atoms and
adds a potential term V = qz to the Hamiltonian where q is
the charge (e.g., mass for gravitational field or magnetic dipole
moment for a magnetic field) and  is the field gradient in the
z direction. Let the one-dimensional (1D) optical lattice be
aligned in a direction orthogonal to the z direction, say in the x

direction. If the lattice is physically tilted along the z direction
at an angle θ for a time interval T , each lattice site will acquire
a phase at the end of the tilting interval according to the local
strength of the field at that site while being tilted. The phase
difference between neighboring sites is 	φ = qa sin(θ )T/h̄.

Consider first the case for the gravitational field gradient
where  is the gravitational acceleration g. This system is,
somehow, the quantum analog of the classical pendulum
where the oscillation frequency is set by the gravitational field
strength. Can we measure the gravitational acceleration g by
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measuring the tilt angle that yields the maximum frequency
of oscillation, corresponding to 	φ = π/2? Let us assume
that rubidium-87 atoms are trapped in an optical lattice whose
wavelength is 780 nm, leading to a lattice constant a = λ/2 =
390 nm. Since  = g ≈ 9.8 m/s2 and q = mass(87Rb), we
find that sin(θ )T should be of the order of 3 × 10−4 s for
	φ = π/2. The uncertainties in measuring T , θ , and the
frequency of oscillation make this method very inferior to
the current methods of measuring g using cold atoms based
on Bloch oscillations [31,32] or based on atomic interference
effects which attain resolutions of the order of 10−8 m/s2 [3,5].

Next, let us consider magnetic field gradient measurement
using chromium atoms (52Cr) which possess a magnetic
moment of 6 μB trapped in an optical lattice whose wavelength
λ = 1064 nm [33]. For a field gradient of 800 nT/m, a value
that can be encountered in the field of mineral exploration and
geological investigations [34], we find that the naive estimation
of sin(θ )T should be of the order of 7 s. We notice that
this value is much higher than the case for the gravitational
potential measurement, making the accuracy for magnetic
field gradiometry much better than that for gravitational field
gradiometry since the effect of the uncertainty in measuring θ

and T will be smaller.
To get a feeling of the actual values of the tilt angle θ and

the tilt duration T , assume a tiny tunneling coefficient of J =
h × 2.5 Hz. The period of atomic oscillation at the maximum
frequency in a 1000-site optical lattice can be estimated from
Eq. (7) to be around 64 s. Since the tilt interval should be much
smaller than the period of oscillation, say at least by an order
of magnitude, we obtain for sin(θ )T = 7 s and T = 7 s a tilt

angle of 90◦. In order to exclude gravitational phase shift, this
method is suitable only for horizontal field gradients; i.e., the
tilt is made in a horizontal plane.

V. CONCLUSION

In this work we have proposed a method for measuring the
condensate fraction in optical lattices and multiwell traps. The
method requires only giving the optical lattice a well-defined
momentum boost or imprinting a well-defined phase gradient
to different lattice sites, with the subsequent measurement of
single-particle density in addition to identifying the behavior
of the two extreme cases of the superfluid state and the Mott
insulator state. The prospects of utilizing this technique applied
to superfluid states in the field of quantum metrology has
been discussed. Although we applied the technique to 1D
lattices only, it is generalizable to 2D and 3D lattices where
the tilt mechanism and the subsequent transport of atoms can
be independently performed in each direction.

ACKNOWLEDGMENTS

T.A.E. thanks Prof. L. S. Cederbaum for the discussion
and for the hospitality of the “Theoretical Chemistry Group”
of Heidelberg University where part of this research was
conducted. The authors thank anonymous referees for very
helpful comments. A.I.S. cordially acknowledges the finan-
cial support by Deutsche Forschungsgemeinschaft (DFG)
and T.A.E. acknowledges the financial support by Villum
Foundation.

[1] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, Nature (London) 464, 45 (2010).

[2] S. Debnath, N. Linke, C. Figgatt, K. Landsman, K. Wright, and
C. Monroe, Nature (London) 536, 63 (2016).

[3] S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga,
E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer,
W. P. Schleich, and E. M. Rasel, Phys. Rev. Lett. 117, 203003
(2016).

[4] A. Peters, K. Y. Chung, and S. Chu, Metrologia 38, 25 (2001).
[5] Z. Min-Kang, D. Xiao-Chun, C. Le-Le, L. Qin, X. Yao-Yao, and

H. Zhong-Kun, Chin. Phys. B 24, 050401 (2015).
[6] G. Stedman, Rep. Prog. Phys. 60, 615 (1997).
[7] I. Bloch, Nat. Phys. 1, 23 (2005).
[8] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

Phys. Rev. Lett. 81, 3108 (1998).
[9] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,

Nature (London) 415, 39 (2002).
[10] E. J. Mueller, T.-L. Ho, M. Ueda, and G. Baym, Phys. Rev. A

74, 033612 (2006).
[11] R. Gati, J. Esteve, B. Hemmerling, T. Ottenstein, J. Appmeier,

A. Weller, and M. Oberthaler, New J. Phys. 8, 189 (2006).
[12] R. Gati, M. Albiez, J. Foelling, B. Hemmerling, and M. K.

Oberthaler, Appl. Phys. B: Lasers Opt. 82, 207 (2006).
[13] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
[14] P. Nozieres and D. Saint James, J. Phys. 43, 1133 (1982).

[15] S. Fölling, Probing strongly correlated states of ultracold atoms
in optical lattices, Ph.D. thesis, Johannes Gutenberg University
Mainz, 2008.

[16] F. Gerbier, S. Foelling, A. Widera, and I. Bloch, arXiv:cond-
mat/0701420.

[17] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn,
D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569
(1999).

[18] Y. Inada, M. Horikoshi, S. Nakajima, M. Kuwata-Gonokami, M.
Ueda, and T. Mukaiyama, Phys. Rev. Lett. 101, 180406 (2008).

[19] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S.
Foelling, L. Pollet, and M. Greiner, Science 329, 547 (2010).

[20] M.-K. Kang and U. R. Fischer, Phys. Rev. Lett. 113, 140404
(2014).

[21] O. I. Streltsova and A. I. Streltsov, arXiv:1412.4049.
[22] S. Krönke and P. Schmelcher, Phys. Rev. A 92, 023631 (2015).
[23] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev.

Lett. 99, 030402 (2007).
[24] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A

77, 033613 (2008).
[25] A. U. J. Lode, K. Sakmann, O. E. Alon, L. S. Cederbaum, and

A. I. Streltsov, Phys. Rev. A 86, 063606 (2012).
[26] A. I. Streltsov and O. I. Streltsova, The multi-

configurational time-dependent Hartree for bosons laboratory,
http://www.mctdhb-lab.org, 2015.

013618-6

https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1038/nature18648
https://doi.org/10.1103/PhysRevLett.117.203003
https://doi.org/10.1103/PhysRevLett.117.203003
https://doi.org/10.1103/PhysRevLett.117.203003
https://doi.org/10.1103/PhysRevLett.117.203003
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1088/0026-1394/38/1/4
https://doi.org/10.1088/1674-1056/24/5/050401
https://doi.org/10.1088/1674-1056/24/5/050401
https://doi.org/10.1088/1674-1056/24/5/050401
https://doi.org/10.1088/1674-1056/24/5/050401
https://doi.org/10.1088/0034-4885/60/6/001
https://doi.org/10.1088/0034-4885/60/6/001
https://doi.org/10.1088/0034-4885/60/6/001
https://doi.org/10.1088/0034-4885/60/6/001
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevA.74.033612
https://doi.org/10.1103/PhysRevA.74.033612
https://doi.org/10.1103/PhysRevA.74.033612
https://doi.org/10.1103/PhysRevA.74.033612
https://doi.org/10.1088/1367-2630/8/9/189
https://doi.org/10.1088/1367-2630/8/9/189
https://doi.org/10.1088/1367-2630/8/9/189
https://doi.org/10.1088/1367-2630/8/9/189
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1007/s00340-005-2059-z
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1051/jphys:019820043070113300
https://doi.org/10.1051/jphys:019820043070113300
https://doi.org/10.1051/jphys:019820043070113300
https://doi.org/10.1051/jphys:019820043070113300
http://arxiv.org/abs/arXiv:cond-mat/0701420
https://doi.org/10.1103/PhysRevLett.82.4569
https://doi.org/10.1103/PhysRevLett.82.4569
https://doi.org/10.1103/PhysRevLett.82.4569
https://doi.org/10.1103/PhysRevLett.82.4569
https://doi.org/10.1103/PhysRevLett.101.180406
https://doi.org/10.1103/PhysRevLett.101.180406
https://doi.org/10.1103/PhysRevLett.101.180406
https://doi.org/10.1103/PhysRevLett.101.180406
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1103/PhysRevLett.113.140404
https://doi.org/10.1103/PhysRevLett.113.140404
https://doi.org/10.1103/PhysRevLett.113.140404
https://doi.org/10.1103/PhysRevLett.113.140404
http://arxiv.org/abs/arXiv:1412.4049
https://doi.org/10.1103/PhysRevA.92.023631
https://doi.org/10.1103/PhysRevA.92.023631
https://doi.org/10.1103/PhysRevA.92.023631
https://doi.org/10.1103/PhysRevA.92.023631
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevLett.99.030402
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevA.86.063606
http://www.mctdhb-lab.org


PROBING QUANTUM STATES WITH MOMENTUM BOOSTS PHYSICAL REVIEW A 98, 013618 (2018)

[27] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera,
T. Müller, and I. Bloch, Nature (London) 448, 1029 (2007).

[28] S. Murmann, A. Bergschneider, V. M. Klinkhamer, G. Zürn, T.
Lompe, and S. Jochim, Phys. Rev. Lett. 114, 080402 (2015).

[29] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 (1997).

[30] R. Beinke, S. Klaiman, L. S. Cederbaum, A. I. Streltsov, and
O. E. Alon, Phys. Rev. A 95, 063602 (2017).

[31] G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Phys. Rev.
Lett. 97, 060402 (2006).

[32] N. Poli, F.-Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli,
and G. M. Tino, Phys. Rev. Lett. 106, 038501 (2011).

[33] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Phys. Rev. Lett. 94, 160401 (2005).

[34] P. J. Heath, S. Greenhalgh, and N. G. Direen, Explor. Geophys.
(Clayton, Aust.) 36, 357 (2005).

013618-7

https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1038/nature06112
https://doi.org/10.1103/PhysRevLett.114.080402
https://doi.org/10.1103/PhysRevLett.114.080402
https://doi.org/10.1103/PhysRevLett.114.080402
https://doi.org/10.1103/PhysRevLett.114.080402
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevA.95.063602
https://doi.org/10.1103/PhysRevA.95.063602
https://doi.org/10.1103/PhysRevA.95.063602
https://doi.org/10.1103/PhysRevA.95.063602
https://doi.org/10.1103/PhysRevLett.97.060402
https://doi.org/10.1103/PhysRevLett.97.060402
https://doi.org/10.1103/PhysRevLett.97.060402
https://doi.org/10.1103/PhysRevLett.97.060402
https://doi.org/10.1103/PhysRevLett.106.038501
https://doi.org/10.1103/PhysRevLett.106.038501
https://doi.org/10.1103/PhysRevLett.106.038501
https://doi.org/10.1103/PhysRevLett.106.038501
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1071/EG05357
https://doi.org/10.1071/EG05357
https://doi.org/10.1071/EG05357
https://doi.org/10.1071/EG05357



